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Abstract

Decoding visual experiences from brain activity presents
a novel approach to comprehending how the brain perceives
the world and to analyzing the link between our visual sys-
tem and computer vision models. In particular, the Natural
Scenes Dataset (NSD), which consists of fMRI Beta-Image
pairs, is becoming a benchmark dataset. GLM-based fMRI
Beta has been widely used in previous studies, but it has
limitations in reflecting the complex and non-linear inter-
actions between brain regions. We propose to investigate
the performance of BOLD signals versus Beta values de-
rived from GLM for fMRI-to-Image reconstruction, focus-
ing on the MinD-Vis and MindEye models. Due to the lim-
ited training of our models, it is difficult to draw definitive
conclusions about which type of fMRI data is more suit-
able for image reconstruction based on the current results.
Future research should involve developing models that can
account for interactions between brain regions, using large-
scale fMRI datasets, and ensuring sufficient training time to
revisit and thoroughly investigate the research question.

1. Introduction

Brain decoding, a field at the intersection of neuro-
science and artificial intelligence, aims to interpret brain
signals to extract meaningful information. By analyzing
brain signals recorded while an individual watches a movie,
researchers can potentially discern: 1) the specific scenes
being viewed, 2) the content of the dialogue being heard,
and 3) the emotions experienced at that moment. This chal-
lenging endeavor has seen significant progress due to recent
advancements. Large-scale, publicly accessible brain imag-
ing datasets, such as the UK Biobank, provide extensive
data, including imaging data from thousands of individuals
over several minutes of recording. Additionally, advance-
ments in artificial intelligence and increased computational
power have further facilitated brain decoding research.

In particular, brain decoding has shown promise in vi-

sion reconstruction. Deep learning models reconstructed
images from fMRI signals [6], [20], [16]. This capabil-
ity improves our understanding of visual processing in the
brain and paves the way for applications in neuroprosthetics
and brain-computer interfaces.

Building on this potential, recent research in brain
decoding with non-invasive neuroimaging data, particu-
larly fMRI-to-Image reconstruction, has shown significant
progress. A widely used dataset in this domain is the NSD.
The Natural Scenes Dataset (NSD) [2] comprises fMRI data
collected from 8 participants who viewed a total of 73,000
RGB images. This dataset has been widely utilized to re-
construct perceived images from fMRI. However, the fMRI
data from NSD and the models developed based on it have
limitations for capturing the complex and nonlinear interac-
tions between different brain regions essential for accurate
brain vision decoding.

Previous studies [16], [20], [25] have utilized fMRI data
derived not from the fMRI BOLD signal but from the
Beta values obtained after applying a General Linear Model
(GLM). The brain is a network system where different re-
gions interact to perform functions. For instance, in fa-
cial recognition: 1) V1 extracts basic visual features such
as edges, lines, and orientations from the visual informa-
tion received from the retina; 2) V2 analyzes intermediate
features by integrating patterns, textures, and spatial fre-
quency information passed from V1; 3) V3 processes shape
and motion information to help distinguish the contours and
movements of faces; 4) V4 analyzes complex forms, in-
cluding color information, to contribute to the formation of
the overall image of a face; 5) Finally, the Fusiform Face
Area (FFA) integrates all processed visual information to
recognize faces. While the brain’s visual processing in-
volves both distinct regions and their interactions, the GLM
assumes independence between voxels, failing to capture
these interactions. Moreover, the brain’s complex activi-
ties include nonlinear patterns [4], yet the Beta values from
the GLM reflect only linear brain activity. Neuroscience
research has demonstrated that applying nonlinear models,
such as deep learning, to brain imaging data yields higher
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predictive performance compared to linear models [1].
Thus, we aim to investigate whether BOLD signals

outperform Beta values for fMRI-to-Image reconstruction.
Specifically, we will compare the performance of models
using NSD’s fMRI BOLD and fMRI Beta data in the con-
text of Image Reconstruction, focusing on the MindEye and
MinD-Vis models. MindEye has shown the best reconstruc-
tion performance using NSD data [2], while MinD-Vis, al-
though not developed with NSD, was the first to apply large-
scale pre-trained fMRI models in this domain. We antici-
pate that leveraging this pre-trained model will yield good
reconstruction performance.

2. Related works

2.1. Brain Decoding

The evolution of brain decoding has seen significant
advancements over recent decades, aiming to interpret
brain activity patterns, particularly through non-invasive
techniques like functional Magnetic Resonance Imaging
(fMRI), to understand and reconstruct visual stimuli. Early
works [10], [14] in this field primarily focused on classify-
ing broad categories of visual stimuli using linear classifiers
and basic machine learning techniques. [22] was the first to
advance the field by applying convolutional neural networks
(CNN) to extract image features and mapped fMRI signals
to the CNN-based image features. These methods leveraged
the hierarchical features extracted from pre-trained CNNs
such as VGG [23] to map brain activity to visual categories.

Recent advancements have shifted towards reconstruct-
ing high-quality images directly from brain signals. [21]
proposed an end-to-end deep learning framework that di-
rectly translates fMRI signals into images using a combi-
nation of autoencoders and generative adversarial networks
(GANs). The advent of high-resolution image synthesis
with Latent Diffusion Models [19] and multi-modal con-
trastive models like CLIP [18], along with the availability
of extensive fMRI datasets [2], has significantly advanced
research efforts in mapping fMRI signals into the CLIP
embedding space. This technique facilitates latent diffu-
sion models in image reconstruction, with various efforts
through self-supervision [3], contrastive learning [20], and
masked modeling [7]. A notable approach was proposed
by [25], which utilizes Stable Diffusion to reconstruct im-
ages from fMRI by translating brain activities into text de-
scriptions and subsequently generating corresponding im-
ages.

Despite these advancements, challenges such as the com-
plexity of the visual cortex, remain significant hurdles.
Studies have indicated that the complexity of representa-
tions within the visual cortex increases hierarchically [9].
In addition, [15] illustrated that leveraging information from
various visual areas can enhance the performance of image

reconstruction tasks. Consequently, simple decoding mod-
els without considering the non-linearity may be insufficient
for accurate image reconstruction from brain activity.

2.2. Masked Brain Modeling

Masked Brain Modeling (MBM) represents a novel ap-
proach in the domain of self-supervised learning, specifi-
cally tailored for brain signal decoding. Inspired by the
success of Masked Signal Modeling (MSM) in vision and
language processing, MBM employs a similar strategy to
learn effective representations from fMRI data. The core
idea of MBM is to mask a portion of the input data and train
a model to reconstruct the missing parts, thereby capturing
the underlying structure and context of the data.

Chen [6] proposed the Sparse-Coded Masked Brain
Modeling (SC-MBM) framework, which aligns with the bi-
ological principle of sparse coding observed in the visual
cortex. In SC-MBM, fMRI data is divided into patches,
and each patch is encoded into a high-dimensional vector
space, creating an over-complete representation space. This
approach not only enhances the capacity of the fMRI rep-
resentations but also reflects the efficient coding strategies
employed by the brain.

SC-MBM leverages large embedding-to-patch-size ra-
tios and high mask ratios to exploit the spatial redundancy
in fMRI data, enabling the model to learn rich and gener-
alizable representations with minimal computational over-
head. This technique has shown promise in generating more
accurate and semantically meaningful reconstructions from
fMRI data compared to conventional methods.

2.3. Latent Diffusion Model

Latent Diffusion Models (LDM) have emerged as pow-
erful generative models capable of producing high-quality
content by operating in the latent feature space. Unlike
traditional diffusion models that work directly in the data
space, LDMs compress images into a lower-dimensional la-
tent space, which significantly reduces computational costs
and improves image synthesis quality.

The LDM framework proposed by [19] incorporates a
Vector Quantization (VQ) regularized autoencoder to com-
press images into latent features and a UNet-based denois-
ing model with attention modules to perform the reverse dif-
fusion process. This setup allows for flexible conditioning
of image generation through cross-attention mechanisms,
making LDMs highly suitable for tasks requiring condi-
tional synthesis.

The effectiveness of LDMs in brain decoding tasks has
been demonstrated through various researches. MindEye
[20] is a notable example, which uses a novel fMRI-to-
image approach that combines contrastive learning with a
diffusion prior. This model comprises two parallel submod-
ules specialized for retrieval and reconstruction, which en-
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ables mapping fMRI brain activity to a high-dimensional
multimodal latent space, such as CLIP image space. [20]
has shown state-of-the-art performance in both image re-
construction and retrieval tasks by leveraging advanced
training techniques and large parameter models.

Another innovative approach is the BrainDiffuser [16].
The model employs a generative latent diffusion model for
natural scene reconstruction from fMRI signals. BrainDif-
fuser effectively captures the semantic and structural as-
pects of the visual stimuli, producing high-quality recon-
structions from brain activity data.

These advancements highlight the potential of LDMs
in enhancing our understanding of the human visual sys-
tem and improving brain-computer interfaces by achiev-
ing high-quality, semantically accurate image reconstruc-
tion from fMRI data.

3. Method

3.1. Dataset

We utilized the Natural Scenes Dataset (NSD) [2], a
publicly available fMRI dataset that captures the brain re-
sponses of participants viewing natural scenes from the
MS-COCO dataset [13]. The NSD [2] is a 7-Tesla fMRI
dataset, comprising brain responses from several partic-
ipants who each spent up to 40 hours in an MRI ma-
chine passively viewing images. These images, which are
square-cropped and depict natural scenes, were sourced
from the MS-COCO dataset [13]. Each of the 9,000-10,000
unique images was shown for three seconds, repeated three
times across 30-40 scanning sessions, resulting in a total of
22,000-30,000 fMRI trials per participant.

We employed preprocessed, flattened fMRI voxels in
1.8-mm native volume space from the ”nsdgeneral” brain
region, as defined by the NSD authors. This region includes
approximately 16,000 voxels in the posterior cortex that are
most responsive to the visual stimuli presented. The fMRI
BOLD data, originally a 4D time series, was processed by
extracting voxels from the ”nsdgeneral” region that were ac-
tivated above a specific threshold and then flattening these
into a 2D format. The fMRI beta data was obtained using
GLMSingle [17], resulting in session-wise z-scored single-
trial beta outputs. This processing yielded a dataset with
24,980 training samples and 2,770 test samples. For the test
set, we averaged the three repetitions of each image, result-
ing in 982 test samples, but did not average the training set,
following the approach of Takagi and Nishimoto [25].

We developed an individual-subject model specifically
for participant 1, who completed all scanning sessions, and
utilized a test set comprised of the 1,000 images that were
presented to all participants. We adhered to the same stan-
dardized train/test splits used in other NSD reconstruction
studies [16], [25]. Specifically, the train set for each subject

contains 8,859 image stimuli and 24,980 fMRI trials. The
test set includes 982 image stimuli and 2,770 fMRI trials.

3.2. Brain Decoding Pipeline

In our study, we adopted the Mind-Vis framework [6] as
our baseline due to its proven efficacy in embedding fMRI
data through Masked Brain Modeling (MBM). The Mind-
Vis model, inspired by vision transformer architectures [8],
leverages MBM to effectively capture the intricate charac-
teristics of the fMRI data. We hypothesized that robust rep-
resentation learning is essential for high-quality image re-
construction, and the Mind-Vis framework, with its innova-
tive MBM approach, excels in this area.

The methodology involves two key stages: Sparse-
Coded Masked Brain Modeling (SC-MBM) and Double-
Conditioned Latent Diffusion Model (DC-LDM). Initially,
MBM is pre-trained on a comprehensive dataset which in-
cludes visual areas V1 to V4 from the Human Connectome
Project (HCP). This training captures the detailed features
of the visual cortex, crucial for interpreting fMRI scans and
reconstructing images. Vectorized voxels are divided into
patches with a patch size of 16 and transformed into an
embedding with 1024 dimensions. During pre-training, ap-
proximately 75% of the tokens are masked, challenging the
model to reconstruct the occluded parts and enhancing its
ability to generalize across diverse brain activities.

In the second stage, the trained MBM is integrated with a
Latent Diffusion Model (LDM) for the conditional synthe-
sis of images. The LDM operates on the image latent space,
using the learned fMRI representations to guide the image
generation process. This integration was achieved through
a double-conditioning mechanism, where the fMRI latent
representations were used to condition the cross-attention
layers and time-step embeddings within the LDM. This dual
conditioning ensured that the generated images maintained
high semantic accuracy and visual fidelity.

For our model, we fine-tuned both the MBM and LDM
using the Natural Scenes Dataset (NSD). This dataset in-
cludes high-resolution fMRI scans corresponding to a wide
array of natural scenes, providing a rich source of data for
training. Custom dataloaders were implemented to handle
the NSD data, ensuring efficient loading and preprocessing.
These dataloaders were designed to accommodate the spe-
cific requirements of the NSD, including handling the high-
dimensional fMRI data and the corresponding image data
for effective training and evaluation of the model.

3.3. Evaluation Metrics

Both quantitative and qualitative evaluations were con-
ducted in our experiments. For quantitative evaluation, we
employed nine metrics for high-level and low-level eval-
uation following established research. Specifically, high-
level metrics included InceptionV3, CLIP, EffNet-B, SwAV,
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Figure 1. Model architecture of MinD-Vis

and N-way top-k accuracy, which assess various aspects
of the semantic and structural fidelity of the generated im-
ages. Low-level metrics included AlexNet (2), AlexNet
(5), Structural Similarity Index Measure (SSIM) and pixel-
wise correlation (PixCorr), which evaluate the image qual-
ity based on pixel-level information.

PixCorr evaluates the pixel-wise correlation between the
generated image and the ground truth image, providing a
measure of the linear relationship between the correspond-
ing pixels in two images. Higher correlation values indicate
greater similarity.

SSIM [27] measures the structural similarity between the
generated and ground truth images, considering luminance,
contrast, and structure. This metric is crucial for assessing
the perceptual quality of the images.

AlexNet (2) and AlexNet (5) are used to evaluate the
high-level feature representations extracted from the gen-
erated images. By comparing the feature activations from
different layers of AlexNet [12], we can assess how well
the generated images capture the hierarchical structure of
visual information.

InceptionV3 is another model used to assess the high-
level semantic content of the generated images. The In-
ceptionV3 [24] model’s average pooling layer outputs are
compared between the generated and ground truth images
to evaluate their similarity.

CLIP (Contrastive Language-Image Pre-Training) [18]
is employed to measure the alignment between the textual
descriptions and the visual representations of the generated
images. The model encodes both text and images into a
shared latent space, enabling the comparison of their em-
beddings.

EffNet-B [26] is used to calculate the latent distance be-
tween the generated and ground truth images. This metric
assesses the Euclidean distance between the feature vectors

extracted from the generated and real images, providing in-
sights into the high-level semantic fidelity of the generated
outputs.

SwAV (Swapping Assignments between Views) [5] is a
self-supervised learning method that clusters data without
requiring labeled data. The SwAV metric quantifies the sim-
ilarity between the neural network’s internal feature repre-
sentations and the brain’s mechanisms for object recogni-
tion.

N-way classification accuracy [11] is used to evaluate the
semantic correctness of the generated images by calculating
the top-1 classification accuracy among n-1 randomly se-
lected classes plus the correct class. This approach verifies
the semantic accuracy of the generated images.

4. Experiments

4.1. SC-MBM Finetuning

We used the pre-trained models of Chen [7]. The model
was trained on resting-state fMRI data from Human Con-
nectome Project (HCP) 1200 Subject Release (600,000
fMRI segments). Hyperparameters used in the SC-MBM
pre-training stage are listed in Table 1. All other unlisted pa-
rameters are set to their defaults. The SC-MBM pre-training
is performed on RTX4080 SUPER GPU.

During pretraining, the model was scheduled to run
for 500 epochs, with the initial 40 epochs designated as
warmup epochs to gradually increase the learning rate from
a lower value to the specified learning rate. The batch size
was set to 100, meaning that 100 samples were processed
together before the model parameters were updated. Gradi-
ent clipping was employed with a threshold of 0.8 to prevent
the gradients from becoming excessively large, which can
destabilize the training process. For fine-tuning, the model
was trained for 30 epochs with a batch size of 32, and 2
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parameter value

patch size 16
embedding dim 1024
mask ratio 0.75
mlp ratio 1.0
decoder embed dim 512
max learning rate 2.5e-4
warm-up epochs 40
max epochs 500
encoder depth 24
encoder heads 16
decoder depth 8
decoder heads 16
clip gradient 0.8
weight decay 0.05
batch size 500
optimizer AdamW

Table 1. Hyperparameters used in the Full model for SC-MBM Pre-training.

epochs were designated as warmup epochs. Examples of
masked brain prediction are shown in Fig.3 and Fig.4.

Figure 2. Loss of the model fine-tuned with SC-MBM on NSD Beta and NSD BOLD
datasets. The loss is lower when using BOLD data, and more fMRI frames result in
a lower loss

We observed that the loss was lower and learning oc-
curred more rapidly with BOLD signals compared to Beta
signals (Fig. 2) Considering that the number of data points
in the pre-trained model was smaller than that in the tar-
get dataset, we increased the size of the target dataset and
found that the loss in SC-MBM fine-tuning decreased as
the amount of fMRI data increased The better performance
with BOLD signals can be attributed to the difference in in-
formation content between Beta and BOLD signals, as well
as the fact that the pre-trained fMRI encoder was trained on
BOLD signals.

Figure 3. Examples of masked brain prediction using fMRI-beta data.First column:
original fMRI data (Visual Cortex) flattened; Second column: masked fMRI; Third
column: data recovered from SC-MBM decoder. Mask ratio: 0.75. The correlations
between the original and recovered fMRI are also shown.

Figure 4. Examples of masked brain prediction using fMRI-BOLD data. First col-
umn: original fMRI data (Visual Cortex) flattened; Second column: masked fMRI;
Third column: data recovered from SC-MBM decoder. Mask ratio: 0.75. The corre-
lations between the original and recovered fMRI are also shown.

4.2. DC-LDM Finetuning

All fine-tunings in our experiments were performed with
a single RTX 3090 Ti GPU for 50 epochs. Due to GPU
memory constraints, the batch size was set to 4. We con-
ducted fine-tuning separately on the NSD-beta and -BOLD
datasets. The detailed hyperparameters are shown in Table
3.

5. Conclusion and Discussion
In this study, we investigated whether BOLD signals out-

perform Beta values for image reconstruction tasks with
fMRI data. By comparing the performance of models us-
ing NSD’s fMRI BOLD and fMRI Beta data, we aimed to
demonstrate that BOLD signals capture the brain’s complex
and nonlinear interactions more effectively, leading to supe-
rior image reconstruction accuracy.

However, our experimental results are limited in address-
ing the research question due to certain methodological is-
sues. Notably, our main model was not trained for as many
epochs as reported by [6], which likely resulted in insuf-
ficient training for optimal image reconstruction. Conse-
quently, the performance presented in this study may not be
adequate to interpret the results fully.
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Table 2. Comparison of Four Methods on NSD Data for Subject 1 Using Various Evaluation Metrics. The metrics used are: PixCorr (Pixel Correlation), SSIM (Structural
Similarity Index), Alex(2) and Alex(5) (AlexNet top-2 and top-5 accuracy), Incep (Inception Score), CLIP (Contrastive Language-Image Pre-Training), EffNet-B (EfficientNet-B
score), SwAV (Swapping Assignments between Views), and N-way Top-k classification accuracy. (For PixCorr, SSIM, AlexNet(2), AlexNet(5), Inception, N-way Top-k and CLIP
metrics, higher is better. For EffNet-B and SwAV distances, lower is better. This is indicated by the arrow pointing up or down, respectively) Training epochs: Brain-Diffuser [16]:
50,000 iterations for CLIP-Text and CLIP-Vision regression, Mind-Eye [20]: 120 epoch

NSD Data Low-Level High-Level

Method PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓ N-way ↑
Takagi et al. [25] – – 83.0% 83.0% 76.0% 77.0% – – –
Brain-Diffuser [16] .343 .372 92.9% 90.6% 69.4% 64.8% .937 .620 16.8%
Mind-Eye [20] .205 .306 91.8% 96.9% 94.6% 94.9% .636 .366 63.6%
Mind-Vis [6] -Beta .063 .292 54.4% 58.9% 60.8% 57.7% .962 .607 7.0%
Mind-Vis [6] -BOLD .057 .288 53.3% 53.8% 53.7% 53.0% .984 .624 4.9%

parameter value

Epoch 50
batch size 4
image resolution 256×256×3
diffusion steps 1000
optimizer AdamW
image latent dim 64×64×3
pre-trained type Label-to-Image
learning rate 5.3e-5
M 77

Table 3. Hyperparameters used in the Full model for DC-LDM Finetuning.

Even if such methodological challenges are resolved, it
seems likely that BOLD signals would still not perform bet-
ter than Beta values in image reconstruction tasks with the
currently available models. We used BOLD data that had
been transformed from a 4D signal into a 2D shape. The
Beta data we utilized represent the activation levels in the
early and higher visual regions (i.e., nsdgeneral ROI mask).
For a fair comparison, we: 1) used BOLD signals only from
the visual regions of the whole brain, and 2) adjusted the
4D time series data (3D brain * timepoint) into a 2D shape.
This allowed us to use the same brain ROIs as the Beta
data and maintain data complexity, but likely excluded the
spatio-temporal dynamics inherent in the BOLD signals.

When processing images, various brain regions within
the visual network, including the visual cortex (V1 to V4)
and the occipito-temporal boundary responsible for visual
attention and object localization, interact in a complex man-
ner. The fMRI BOLD signals obtained from this process
include interactions between these different brain regions,
unlike the Beta values derived from GLM fitting for each
voxel. However, in our study, we limited the use of BOLD
data to the anatomical visual cortex, which likely prevented
the model from fully learning the spatial dynamics con-
tained in the BOLD signals.

Additionally, in real-world environments, the brain pro-
cesses visual stimuli in the form of videos rather than static

images. The brain flexibly adapts over time, handling vi-
sual stimuli that are presented continuously. The fMRI
BOLD signals obtained in this context are well-suited to
reflect temporal dynamics. For instance, in the case of the
NSD, images were presented for approximately 4 seconds,
during which 3 fMRI frames were captured (TR = 1.33).
This means that while GLM-derived Beta values yield one
value per image, BOLD signals provide three-time points
per image. Despite the GLM’s limitations in reflecting the
brain’s real-time temporal dynamics, existing studies using
NSD have shown good performance in image reconstruc-
tion, likely because the NSD experiments involved viewing
static images without any tasks. This suggests that cogni-
tive functions beyond simple visual processing were not en-
gaged. In real-world settings, we do not merely process
visual stimuli; we recognize objects or people, understand
their purposes, and make decisions based on this informa-
tion. The NSD dataset, which does not capture cognitive
processes beyond basic visual processing, has demonstrated
good performance in reconstructing static images. How-
ever, models trained on this dataset may struggle with more
complex visual tasks.

Therefore, future fMRI-to-image reconstruction re-
search should focus on developing models that can effec-
tively reflect the spatio-temporal dynamics of the brain,
based on data that closely mimic real-world visual process-
ing conditions.
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