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Abstract

Robotic systems that operate in diverse weather condi-
tions require robust scene text recognition (STR) models
under adverse weather conditions. Current STR models of-
ten exhibit suboptimal performance in real-world scenar-
ios as they rely on ineffective synthetic datasets for train-
ing. In this paper, we propose a novel approach to en-
hance STR model robust specifically for rainy days. Our
approach trains De-rain and Scene text detection models
with augmented data simulating rainy weather conditions,
incorporating manipulated images with raindrops. By in-
troducing raining effects on real-world images, our method
enables accurate text recognition in challenging rainy envi-
ronments. We will conduct experiments to demonstrate its
effectiveness in improving STR model performance, specifi-
cally in rainy day scenarios.

1. Introduction

For robotic systems to effectively understand and in-
teract with their surroundings, comprehending texts and
signs is crucial. Scene Text Recognition (STR) technolo-
gies are indispensable in this regard, serving as core com-
ponents in a variety of modern applications. These applica-
tions include autonomous vehicles such as self-driving cars,
drones, and unmanned aerial vehicles (UAVs) [7,14,20,24,
26]; robotics, particularly in delivery robots, service robots,
and humanoid robots [9,12,21]; as well as augmented real-
ity (AR) and virtual reality (VR) smart assistants. [10, 17]

Even though current Scene Text Recognition (STR)
models [15] show significant improvement, they often fall
short when deployed in real-world scenarios, particularly in
adverse weather conditions such as rain and snow. Rain-
drops and snow can distort the image, posing challenges for
STR models in reading the text correctly.

One of the main reasons why STR models underperform
in adverse weather scenarios is that the training data pri-

Figure 1. The architecture of our proposed work flow using Rain
removal model and Scene text detection model

marily consists of synthetic datasets, which do not reflect
the characteristics of adverse weather conditions. [1] While
these datasets offer scalability and diversity, they often fail
to capture the complexity and variability present in real-
world environments. As a result, STR models trained solely
on synthetic data may struggle to generalize to unseen real-
world data, leading to decreased performance and reliabil-
ity.

To address the inherent shortcomings of the training
dataset, we propose a novel approach to enhance STR
model’s robustness by incorporating augmented data into
the training process. By introducing raining effects on ma-
nipulated real-world images, we aim to simulate various
weather conditions encountered by robots during their op-
erations. This augmentation strategy enables the model
to learn robust features that are invariant to changes in
weather, thereby improving its performance and generaliza-
tion capabilities.

Our expected contributions from this project are as fol-
lows:

• We propose novel data augmentation methods to sim-
ulate various weather conditions, vividly representing
real-world scenarios.



• We will demonstrate that conventional scene text
recognition (STR) models underperform in adverse
weather conditions and that our image augmentation
methods significantly enhance model performance.

• We propose a robust architecture for processing im-
ages with raindrops. Specifically, our model consists
of a raindrop network that denoises the rain traces and
a text detection network that detects the coordinates of
the text.

2. Related Work

2.1. Optical Character Recognition

Optical Character Recognition (OCR) systems extract
text from images, relying on traditional methods for pattern
recognition and feature extraction. While effective in con-
trolled environments, these techniques struggle with com-
plex scenes due to varying lighting, occlusions, and text ori-
entations. Deep learning advancements have significantly
improved OCR accuracy, particularly with large datasets.
Despite these improvements, challenges persist in adapting
OCR systems to diverse real-world scenarios with varying
backgrounds and contexts.

2.2. Scene Text Recognition

Scene Text Recognition (STR) is a subset of OCR fo-
cused on identifying text within natural scenes like signs,
storefronts, and labels. Unlike traditional OCR, which
works in controlled environments, STR deals with cluttered
backgrounds, varying fonts, sizes, orientations, and light-
ing. Early methods used handcrafted features and heuristic
algorithms but struggled with generalization. Deep learn-
ing introduced end-to-end trainable models, enabling di-
rect learning from raw image data, revolutionizing STR re-
search.

For example, MGP-STR [23] is built upon the origi-
nal Vision Transformer (ViT) [5] model by adding a spe-
cial module called Adaptive Addressing and Aggregation
(A3). This module selects important token combinations
from ViT and combines them into one output token for
each character. It also uses different modules for predict-
ing subwords, which helps understand language better. Fi-
nally, all these predictions are merged together using a sim-
ple method.

PARSeq [3] utilizes an ensemble of internally linked
autoregressive(AR) language models(LM)s with shared
weights using Permutation Language Modeling, thereby in-
tegrating context-free non-AR and context-aware AR in-
ference. Through training on synthetic data and leverag-
ing attention mechanisms, it ensures robustness in han-
dling arbitrarily-oriented text commonly encountered in
real-world images.

CLIP4STR [30] incorporates the permuted sequence
modeling technique proposed by PARSeq, and addition-
ally introduces a novel STR method built upon image and
text encoders of CLIP [19]. The model incorporates two
branches, one for visuals and one for cross-modal refine-
ment, utilizing a dual predict-and-refine decoding strategy.

Despite significant progress, STR models trained on syn-
thetic datasets often face challenges when deployed in real-
world settings due to domain gaps and the inability to gen-
eralize to diverse environmental conditions. CRAFT [2]
identifies text regions by analyzing the area and connec-
tion between characters. It excels in pinpointing text areas
on a character-by-character basis, making it highly effec-
tive for recognizing text in diverse shapes and orientations.
DBNet [11] proposes the approach designed to improve
both the precision and efficiency of text detection within in-
tricate real-world settings using Differentiable binarization
and adaptive scale fusion. DOTS [13] presents the methods
to handle oriented text by integrating a unique RoIRotate
module, enabling it to recognize rotated texts directly.

2.3. Data Augmentation for Raindrop

Data augmentation techniques play a crucial role in en-
hancing the robustness and generalization capabilities of
OCR and STR models. By artificially increasing the diver-
sity of training data through various transformations, aug-
mentation methods aim to mitigate overfitting and improve
model performance on unseen data. Common augmentation
strategies include geometric transformations (such as rota-
tion, scaling, and perspective transformation), color aug-
mentation (adjusting brightness, contrast, and saturation),
and noise injection (adding Gaussian noise, blurring, or
dropout) [16, 22]. Previous attempts have been made to
apply weather conditions such as rain or snow as a part
of data augmentation techniques [1]. However, Conven-
tional techniques for simulating weather conditions such
as rain or snow as a part of data augmentation have often
produced unrealistic images. In addition, novel approaches
have emerged recently that a dataset consists of manipulated
images using professional image editing software such as
Adobe Photoshop [25]. However, there have been no pre-
vious attempts to apply weather conditions such as rain as
part of data augmentation using the software. In this study,
we aim to fill this gap by exploring the feasibility of apply-
ing raindrop conditions using this image editing program.
We anticipate that our approach will produce more realistic
images, enhancing data augmentation effectiveness in scene
text recognition.

2.4. Raindrop Removal Methods

Numerous methods have been proposed to address the
challenge of removing raindrops from single images, pri-
marily leveraging convolutional neural networks (CNNs).



Eigen et al. [6] introduced a CNN-based approach trained
on paired raindrop-degraded and raindrop-free images.
While effective for sparse and small raindrops, this method
struggles with larger and denser raindrops, often resulting
in blurred outputs due to network limitations.
AttentiveGAN [18] employs an adversarial training strategy
coupled with visual attention mechanisms for raindrop
removal. Despite its success, the presence of inexplicable
noise points in output images remains a limitation. Ex-
panding upon these advancements, Haiying Xia introduced
a novel two-step generative adversarial network (GAN)
approach for raindrop removal [27]. By incorporating
hierarchical supervision and attention mechanisms, this
method addresses the deficiencies of previous techniques
and achieves superior performance in raindrop removal
tasks.

Notably, prior research primarily focused on raindrop
removal without considering the presence of text in images.
In this study, we aim to bridge this gap by creating a
synthesis dataset containing text, leveraging existing scene
text recognition (STR) datasets such as ICDAR2015 [8]
and TotalText [4]. Our new synthesis dataset will be
utilized to train and evaluate both raindrop removal and
STR models, providing insights into their performance in
real-world scenarios.

3. Method

3.1. Model Architecture

Our text detection pipeline consists of two modules: rain
removal and text detection. For the rain removal module,
we adopt the pre-trained AttentiveGAN model [18], which
effectively removes raindrops from images. For the text de-
tection module, we utilize either the CRAFT [2] or DB-

Figure 2. Generating manipulated raindrop image

Net [11] models. When an image is taken as the input, the
raindrops are first removed using the rain removal module.
The cleaned images are then processed through the text de-
tection module to detect the text. (Figure 1)

3.2. Optimization

For the rain removal module Mrem and the text detec-
tion module Mdet, a raindrop-affected image x is processed
by Mrem to produce a de-rained image ŷ. This de-rained
image is then processed by Mdet to obtain ẑ, the coordi-
nates for the text in the image. In this process, loss function
for de-rain net is defined as a generative adversarial loss:

Lrem = minMremmaxDER∼pclean
log(D(R))+

Ex∼praindrop
log(1−D(Mrem(x)))

(1)

where D represents the discriminative network for adversar-
ial training and R is a sample from a pool of clean natural
images. The loss function for the text detection module is
defined using two scores: the affinity score and the region
score. The affinity score represents the probability that a
pixel is in the center of the space between adjacent charac-
ters, while the region score indicates the probability that a
given pixel is the center of a character. The loss function
for the text detection module is calculated as the sum of
two Mean Squared Error (MSE) losses—one for the region
score and one for the affinity score.

Ldet =
∑
p

(||Sr(p)− S∗
r (p)||22 + ||Sa(p)− S∗

a(p)||22) (2)

where p denotes the pixel in the bounding box region, and
Sr(p) and Sa(p) is the predcited region score and affinity
score.

As our model consists of two separate modules, how to
train the entire model using two losses is a design choice.
We conduct experiments for two training strategies: train-
ing rain removal and text detection separately and simulta-
neously.

For separate training, we first train the de-rain module
independently, without supervision from the text detection
module. Since the de-rain module is pre-trained on images
without text, we further fine-tune it using rainy images that
contain text. Concurrently, we train the text detection mod-
ule without any assistance from the de-rain module. This
approach enhances the robustness of the text detection mod-
ule under adverse conditions, ensuring it performs well even
without prior rain removal.

The only difference in the simultaneous training ap-
proach is that the de-rain module receives training signals
from both Lrem and Ldet. In other words, the objective
function for training the de-rain module is L = Lrem +
Ldet, while the text detection module maintains the same
loss function as in the separate training approach.



Figure 3. Optimization strategy for our framework. In training separately, the rain removal module and text detection module are trained
separately. In training simultaneously, training signal from text detection loss is back-propagated to the rain removal module.

3.3. Data Augmentation

In this section, the process for creating a new dataset of
manipulated images is detailed, as depicted in Figure 2. The
process begins with datasets such as ICDAR2015, Totaltext,
and CTW 1500. Gaussian blur with a standard deviation of
0.6 is applied to simulate raindrops on the images. Next,
the effect of rain lines is applied by adding clipping masks
with arbitrary vertical lines, resembling rain flowing down
a wet window. Lastly, random wet window images are syn-
thesized to diversify the dataset. This approach enables the
generation of a sizable and diverse collection of manipu-
lated images, crucial for training robust scene text detection
models. Moving forward, efforts will be made to further re-
fine this dataset and explore additional augmentation tech-
niques to enhance its effectiveness in STR tasks.

4. Experiments
4.1. Datasets

As mentioned in Section 2.3, we utilized Adobe Photo-
shop to overlay raindrop images on the dataset required for
model training. Specifically, the datasets used are as fol-
lows:

4.1.1 Datasets for Text Detection

ICDAR 2015 (IC15) [8] is the fourth challenge of the IC-
DAR 2015 Robust Reading Competition, serving as a pop-
ular benchmark for oriented scene text detection and recog-
nition tasks. The dataset features 1,000 training images and
500 testing images, all captured through Google Glass with-
out specific attention to the positioning of the device. Con-
sequently, the texts within these images may appear in var-
ious orientations. The dataset primarily contains English
text, with annotations provided at the word level utilizing
quadrilateral boxes.

CTW 1500 [28] is a recently introduced dataset designed
for curved text detection. It comprises 1000 images for
training and 500 for testing. The dataset specifically empha-
sizes curved text instances, each labeled with a 14-polygon
annotation.
TotalText [4] contains 1,555 images exhibiting various text
styles, such as horizontal, multi-angled, and curved text ex-
amples. It aims to tackle the insufficient diversity in text
alignment observed in current scene text datasets by high-
lighting three distinct text alignments: horizontal, multi-
angled, and curved. This dataset represents a pioneering
effort in presenting a broad spectrum of text alignments on
a relatively large scale.

4.1.2 Datasets for Rain Removal

Raindrop dataset [18] contains 861 pairs of images for the
training set of raindrop images. The test set is divided into
two subsets: TestA and TestB. TestA consists of 58 pairs,
which are a subset of TestB containing 249 pairs. Notably,
this dataset is not generated through data synthesis. Instead,
it involves the use of two identical glasses—one sprayed
with water and the other kept clean—followed by image ac-
quisition using the Sony A6000 and Canon EOS 60 cam-
eras.
MLVU Raindrop dataset comprises 150 image pairs for
the training set, showcasing raindrop images, and 76 pairs
for the test set. Remarkably, this dataset is not synthesized;
rather, it is created by employing two identical glasses—one
coated with water and the other left pristine—capturing im-
ages with Sony Samsung SM-F926N and Canon EOS 200D
cameras. Our image dataset not only addresses raindrop re-
moval but also incorporates a crucial element: text. Unlike
other datasets focused solely on removing raindrops from
images, our dataset includes text and provides quadrilateral-
type bounding box annotation, making it invaluable for



IC15 (ICDAR 2015)
w/o raindrops w/ raindrops

Recall Precision H-mean Recall Precision H-mean
CRAFT 86.4 90.5 88.4 84.2 (-2.2) 89.3 (-1.2) 86.7 (-1.7)
DBNet-18 56.8 87.9 69 55.8 (-1.0) 83.0 (-4.9) 66.7 (-1.3)
FOTS 75.9 79.8 77.8 71.2 (-4.7) 80.1 (+0.3) 75.4 (-2.4)

Table 1. Performance of baselines on images without and with
raindrops. The number inside the parenthesis is the performance
gap between the two settings.

Dataset Raindrop IC15 w/rain MLVU raindrop
Method PSNR SSIM PSNR SSIM PSNR SSIM
AttentiveGAN [18] 31.57 0.91 15.82 0.82 19.68 0.56

Table 2. PSNR and SSIM generalization comparisons on Raindrop
dataset and our dataset

Dataset Method Recall Precision H-mean

CTW1500 w/o rain 84.8 90.3 87.5

CTW1500 w/ rain base 80.6 91.5 85.7
derain 80.8 91.9 86.0
fine-tuned derain 77.8 92.5 84.5

Total-text w/o rain 88.2 92.9 90.5

Total-text w/ rain base 85.6 92.1 88.7
derain 80.7 91.1 85.6
fine-tuned derain 81.5 92.7 86.7

ICDAR 2015 w/o rain 86.4 73.1 75

ICDAR 2015 w/ rain base 84.2 89.3 86.7
derain 72.8 89.0 80.1
fine-tuned derain 78.6 92.1 84.8

MLVU w/o rain 64.2 33.8 44.3

MLVU w/ rain base 40.8 34.6 37.4
derain 53.2 30.1 38.4
fine-tuned derain 37.0 40.0 38.5

Table 3. OCR performance of baseline models on multiple
datasets each with and without raindrops. Raindrop-applied im-
ages are directly used as the input(base), raindrops are removed
with pretrained de-raining model(derain), and raindrops are re-
moved with de-raining model fine-tuned for each dataset(fine-
tuned derain). For the CTW1500 and Total-Text datasets, we em-
ploy MixNet for inference. For other datasets, we utilize CRAFT
for text detection during inference.

tasks such as text detection. This unique feature sets our
dataset apart and underscores its significance for advancing
research in this domain.

4.2. Training Details and Evaluation Setup

We experimented with MixNet and CRAFT across a va-
riety of datasets. All models were initialized from pre-
trained versions on datasets without raindrop effects. Sub-
sequently, the models were further fine-tuned on raindrop-
affected datasets. All models were implemented in PyTorch
and optimized using the Adam optimizer. For evaluation
metrics, we used recall, precision, and harmonic mean (H-
mean) following prior works.

4.3. Experimental Results

Model Adaptation Results To demonstrate the impact of
the raindrop effect on scene text detection, we conduct the

preliminary experiment which compares the performance of
major baselines [2,11,13] on images with and without rain-
drops.

In Table 1, we illustrate the performance gap observed
when the same model, which has not been fine-tuned on im-
ages with raindrops, evaluates the ICDAR ’15 images both
with and without raindrops. Each model exhibits a perfor-
mance decline ranging from 1.3 to 2.4 points for images
with raindrops. This indicates that state-of-the-art (SOTA)
scene text recognition (STR) models may lack robustness
to raindrop-affected images, highlighting the importance of
dataset augmentation techniques for these conditions.

For pretrained Attentive GAN model [18] with a limited
amount of raindrop data, we observe moderate performance
in terms of PSNR and SSIM on the Raindrop dataset. How-
ever, when applying raindrop effects, which we specifically
manipulated, the model demonstrated significantly reduced
PSNR score (reaching 19.68) and SSIM score (reaching
0.56) (Table 2). Also the result of the image from the pre-
trained model has color illusion and character distortion or
MLVU raindrop data. This stark difference suggests that the
Attentive GAN model could benefit from a more extensive
and diverse training dataset, such as the one we have devel-
oped. Therefore, future iterations of the model should fo-
cus on incorporating larger datasets, including our dataset,
to further enhance its performance and generalization capa-
bilities.

We conduct experiments with two state-of-the-art base-
lines using different training approaches and optimization
strategies to validate our claim. Across all datasets and
models, we find the tendency that inference with pre-trained
or fine-tuned derain module enhances the performance.

MixNet MixNet [29] is a hybrid architecture combining
CNNs and Transformers to accurately detect small scene
text instances under challenging conditions, such as ir-
regular positions and nonideal lighting. Using MixNet,
we conducted text detection predictions on two datasets,
CTW1500 [28] and Total-text [4]. As illustrated in Table
3, the model demonstrates strong performance on the orig-
inal datasets without raindrops. However, its performance
significantly deteriorates when raindrops are added to the
images, supporting our hypothesis. When the raindrops are
removed using a pre-trained DeRain [27] model, there is
a slight improvement in performance, though it still falls
short compared to the original dataset. Notably, retraining
the DeRain model with our specific dataset leads to a per-
formance gain, highlighting the importance of appropriate
preprocessing and training on rain-affected datasets for op-
timal text detection results in real-world scenarios.

CRAFT CRAFT [2] is a U-Net architecture proposed for
multi-lingual text detection. As CRAFT is pre-trained on



Figure 4. Comparison of de-rained images from training separately (c) and training simultaneously

(a) rain-photoshop (b) derained

Figure 5. Images from ICDAR2015 with synthesized raindrops
and raindrops removed with DeRain

(a) rain-real (b) derained

Figure 6. Images from our dataset with real raindrops and rain-
drops removed with DeRain

the ICDAR 2015 dataset, we conduct fine-tuning for the IC-
DAR 2015 rain datasets and perform out-of-distribution in-
ference on the MLVU dataset. In Table 3, the model demon-
strates robust performance when there is no influence of
raindrops.

For the ICDAR 2015 dataset without rain, the baseline
model achieves H-mean of 75. When de-rain module is pre-
sented, the performance of the baseline model shows a com-
parable result H-mean of 84.8. For the out-of-distribution
MLVU dataset, the baseline model performs poorly with H-
mean of 37.4. Incorporating the pre-trained de-rain module
improves the performance to a H-mean of 38.5.

The Effect of Training Simultaneously In Table 4, we
only presented the results with the training Separately. In
this section, we will discuss the effect of the training Simul-
taneously. When trained simultaneously, the performance
dropped across all datasets. Additionally, the de-rained im-
ages indicate that supervision from the text detection loss,
i.e., training simultaneously, degrades the de-raining perfor-
mance (Fig 4).

Unlike the de-rained images from separate training,

Dataset Training Recall Precision H-mean

ICDAR 2015 w/ rain Separately 78.6 92.1 84.8
Simultaneously 63.5 86 63.5

MLVU w/ rain Separately 37 40 38.5
Simultaneously 36.6 35.4 35.9

Table 4. The effect of training CRAFT separately and simultane-
ously for ICDAR 2015 and MLVU dataset

which effectively removes raindrops while maintaining the
overall color of the entire image (Fig 4.c), simultaneous
training results in distorted image colors. This implies that
the text detection loss adversely affects the de-raining ca-
pability when both modules are trained simultaneously (Fig
4.d).

Overall, these results highlight the importance of the
de-rain module, particularly for out-of-distribution datasets
like MLVU raindrop. When raindrop effects are present, the
baseline model without the de-rain module does not show
robust performance, especially in out-of-distribution sce-
narios. Fine-tuning the de-rain module for specific datasets
significantly improves the text detection performance under
adverse weather conditions.

4.4. Discussion

Our current work focuses on the individual training and
evaluation of models for raindrop removal and scene text
detection. However, there are several ways for future re-
search to enhance the robustness and applicability of this
approach.
Challenges in Real-World Application Despite our efforts
to train the model using Photoshop-generated raindrop im-
ages, we found that applying the model to real-world data
proved to be challenging. The synthetic data, while useful
for controlled training, did not entirely prepare the model
for the variability and complexity of actual raindrop pat-
terns on real-world images. This honest acknowledgment
of our model’s current limitations highlights the need for
more realistic and diverse datasets.

Particularly in the case of the derain model, we observed
a significant drop in performance when experimenting with
real-world images. As shown in Fig 5 and Fig 6, while the
derain process was successfully carried out with the syn-



thesized raindrop image, the real-world image did not ex-
perience the same level of success. This indicates that our
current model is not yet fully capable of handling the com-
plexities found in actual raindrop patterns.

Future work will involve collecting and utilizing real-
world data to bridge this gap and improve the model’s per-
formance in practical applications. This will ensure that our
models are not only effective in controlled environments but
also robust and reliable in real-world scenarios.
Generalization to Different Weather Conditions Another
limitation of our approach is the current focus on raindrop
effects. While this is a significant challenge, other adverse
weather conditions such as snow, fog, and heavy rain can
also severely impact the performance of scene text recog-
nition systems. The robustness of the model under vary-
ing weather conditions has not yet been thoroughly tested.
Future research should aim to extend the current approach
to handle a broader range of weather conditions. This
could involve creating and utilizing diverse weather-specific
datasets and developing adaptive algorithms that can gener-
alize well across different environmental challenges.

5. Conclusion
In this paper, we addressed the critical issue of Scene

Text Recognition (STR) performance degradation under ad-
verse weather conditions, particularly focusing on rainy
days. Our proposed approach involves the use of novel data
augmentation techniques to simulate various weather con-
ditions, specifically by manipulating real-world images to
include raining effects. This methodology aims to create a
more robust training dataset that better represents the chal-
lenges faced in real-world scenarios.

Through our experiments, we demonstrated that conven-
tional STR models exhibit significant performance drops
when exposed to adverse weather conditions due to their
reliance on synthetic datasets that fail to capture real-world
complexities. Our enhanced training process, incorporating
augmented data with realistic raining effects, significantly
improves the robustness and generalization capabilities of
STR models.

In conclusion, our approach of augmenting training data
with realistic weather conditions and integrating a rain re-
moval model provides a promising solution to improve the
robustness of scene text detection systems. This advance-
ment holds significant potential for various applications in
robotics, autonomous vehicles, and augmented reality, en-
suring reliable text recognition even in challenging environ-
ments.
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