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Abstract

In this paper, we present a novel approach to dynamic
scene modeling and editing by integrating physics-based
simulations with Gaussian Splatting. Existing methods that
directly model deformation often fall short in rendering
quality for fast-moving scenes and demand significant com-
putational resources. To address these limitations, we lever-
age the explicit representation and real-time rendering ca-
pabilities of Gaussian Splatting, further enhanced by em-
bedding physical properties to model underlying dynamics.
Our method reconstructs dynamic scenes from multi-view
image sequences, capturing both geometric and physical
properties to enable realistic, complex motion modeling and
editing. We evaluate our approach on 2 datasets, show-
ing the possibility of a difficult task of modeling geometry
and physical properties from scratch using only multi-view
images captured from a single dynamic scene. We expect
further development of training process and exploring best
hyperparameters can significantly improve current perfor-
mance.

1. Introduction
The synthesis and manipulation of dynamic environ-

ments in virtual reality, gaming, and film industries are vi-
tal for creating immersive experiences. Traditional methods
relied on multi-view camera settings to model dynamic en-
vironments, offering high-quality outputs but often falling
short in practicality due to their extensive hardware require-
ments. The advent of Dynamic Neural Radiance Fields
(NeRF) has facilitated the modeling of dynamic scenes with
single-camera setups. However, while enabling easier cap-
ture, these methods often struggle with rendering quality,
especially in fast-moving scenes, and are hindered by sig-
nificant computational or memory demands.

Recently, Gaussian Splatting has emerged as a promising
solution, offering rapid training times and real-time render-
ing capabilities. This method, with its explicit representa-
tion, has shown potential in more accurately depicting dy-
namic scenes compared to implicit methods like NeRF. De-

spite its advantages in modeling and synthesizing dynamic
scenes, the editing of such environments—particularly in
an interactive or complex manner—remains underexplored.
Existing studies have generally focused on rudimentary
tasks such as object removal or color changes [6,10], lack-
ing in more sophisticated editing functionalities.

In response to these limitations, recent advancements
have introduced text-based dynamic environment editing
using Gaussian Splatting [11], showcasing impressive po-
tential. However, these approaches predominantly target
high-level, holistic edits [2] rather than precise, localized
motion control. To address this, new techniques such as
SC-GS [4] have been developed, which learn explicit el-
ements (e.g., control points) from dynamic scenes that can
manipulate transformations of Gaussians to model plausible
motions. These techniques, however, have been constrained
to minor movements and have struggled with complex mo-
tions [16].

To address the aforementioned limitations in dynamic
environment editing, techniques embedding physical prop-
erties, like PhysGaussian, have been introduced. These ap-
proaches use well-reconstructed 3D Gaussian models as in-
puts, which, while effective, limit their practicality due to
the specificity of the required input data. Recognizing the
need for a more adaptable and widely applicable solution,
we propose a new method that integrates the restoration of
given dynamic scenes and physics simulations directly from
multi-view image inputs of dynamic scenes. This approach
not only enhances the realism and complexity of the mod-
eled motions but also broadens the potential applications of
dynamic environment modeling and editing. Through this
innovative integration, our methodology aims to substan-
tially improve the capacity for realistic and complex motion
editing in highly dynamic settings. Our contributions are as
follows:

• We try to enhance dynamic scene modeling by embed-
ding physical properties into the Gaussian Splatting
framework, allowing for realistic and complex motion
generation directly from multi-view image sequences.

• We propose novel multi-stage joint training schemes
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Figure 1. Problem settings of our method. We take multi-view images captured from a single dynamic scene as input, jointly optimize
material properties and 3d gaussian, and the learned model is used to synthesize the same dynamic scene in a novel view and generate
novel motion.

to stabilize training geometry and physical properties
which only take multi-view images of single dynamic
episode as input.

2. Related Work
2.1. Dynamic gaussian splatting.

Recent advancements in dynamic scene modeling have
seen significant contributions from dynamic Gaussian splat-
ting techniques. These methodologies have fundamentally
restructured the way spatial and temporal data are handled,
distinguishing between canonical spaces learned through
static representations and explicitly modeling temporal de-
formations over time. Several studies have introduced ap-
proaches that separate these spatial and temporal dimen-
sions, learning a canonical space and then explicitly track-
ing deformations as they evolve [15]. However, the assump-
tion of a canonical space presents limitations, particularly
when modeling scenarios involving the emergence or disap-
pearance of objects, and poses challenges for explicit mo-
tion modeling necessary for long-term tracking.

Dynmf [8] encoded spatiotemporal information within
HexPlane voxels for each Gaussian, enhancing the preci-
sion of dynamic interactions captured. Meanwhile, [13]
advanced the field by learning 4D primitives, facilitating a
more comprehensive modeling of dynamic environments.
These methods showcase the continuous evolution towards
more sophisticated and precise dynamic scene representa-
tions, addressing the complexities inherent in environments

with variable and emergent properties. However, the need
for improvements in long-term tracking and handling non-
permanent scene elements remains, signaling directions for
future research in this domain.

2.2. Editing dynamic scenes.

Gaussian splatting-based methods have emerged as po-
tent tools for dynamic scene manipulation due to their ex-
plicit nature, allowing for direct control over Gaussian ele-
ments. A notable application of this advantage is seen in the
work by [17], where control signals are automatically ex-
tracted from individual parts of an object, according to user
commands. This approach enables the re-animation of only
the relevant parts of a dynamic scene, enhancing targeted
intervention capabilities.

In another innovative approach, Control4D [11] utilized
a text-to-image diffusion model to perform holistic 4D edit-
ing across dynamic scenes. This method leverages the
power of 4D generative tasks, facilitating broad and inte-
grative changes across time and space with minimal user
input required for detailed specifications.

Further advancing the capabilities of GS, SC-GS [4] in-
troduced the use of sparse control points to learn motions
in a canonical space. This methodology allows for the ma-
nipulation of these control points, enabling motion editing
that was previously challenging with conventional dynamic
GS techniques. By providing a framework where users can
directly influence motion parameters, this approach signif-
icantly extends the flexibility and applicability of GS for
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Figure 2. Overview of proposed method.

dynamic scene editing. These developments collectively
enhance the utility and precision of GS in dynamic envi-
ronment applications, setting a new standard for interactive
and user-driven scene manipulation.

2.3. Physics-based deformation in 3dGS

Recent innovations in Gaussian Splatting have incorpo-
rated physics-based models to enhance the simulation and
management of complex dynamic scenes. VR-GS [7] en-
hances virtual reality (VR) interactivity by dynamically ad-
justing Gaussian splats based on physical interactions and
user inputs. This approach provides immersive experiences
with physically plausible responses, aligning closely with
real-world physics, thereby improving the user’s sense of
presence and engagement in virtual environments. The
most closely related work to ours is PhysGaussian [14],
which embeds physics-driven transformations directly into
3D Gaussians, allowing for the simulation of fluid dynam-
ics and other complex deformations. It also supports the
generation of highly dynamic scenes where physical laws
dictate the movement and interactions of particles. While
PhysGaussian leverages the advantages mentioned earlier
and serves as a foundation for our method, it depends on
a well-trained 3D Gaussian Splatting model. Additionally,
it has not been tested for its capability to accurately gener-
ate complex motions based on the underlying physics from
multi-view image sequences of dynamic scenes. In contrast,
our proposed method effectively adjusts motions to adhere
to physical laws even within dynamic environments.

3. Method

In our research, we focus on extracting both physi-
cal properties and geometric representation from dynamic
scenes using posed multi-view image sequences and the
corresponding time data. Our objective is to leverage this
data to create complex and realistic user-interactive mo-
tions. Inspired by previous studies on modeling dynamic
scenes by predicting canonical Gaussians and their defor-
mations, as well as PhysGaussian [14] that treats Gaussian
kernels as discrete particle clouds representing simulated
continua, we propose a pipeline as illustrated in Fig. 2.

In the canonical field, we extend the properties defined
by traditional Gaussian splatting—position, rotation, scale,
opacity, and spherical harmonics coefficients—to include
physics simulation properties such as Young’s modulus,
Poisson’s ratio, and mass, following PhysDreamer. These
parameters are optimized to minimize rendering loss with
the given dynamic video, detailed further in Section 3.2

3.1. Preliminaries

3.1.1 3D Gaussian Splatting

3D Gaussian splatting explicitly represents a 3D scene
using a set of unstructured Gaussian kernels G =
{xp, σp, Ap, Cp}p∈P , where xp, αp, Σp, shp represent the
position, opacity, covariance, and spherical harmonics coef-
ficients, respectively. The covariance matrix is decomposed
as Σ = RSSTRT for optimization, where R is a rotation
matrix, and S is a diagonal matrix representing 3D scale.
The presence of a Gaussian at a location x is expressed as:

G(x) = e−
1
2 (x−xp)

TΣ−1(x−xp) (1)
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Figure 3. Material Point Method.

During rendering, 3D Gaussian splatting projects these
Gaussians onto the image plane as 2D Gaussians, which
are efficiently aggregated using α-blending to compute the
color C(u) of pixel u in real-time:

C(u) =
∑
i∈N

αiSH(di, shi)

i−1∏
j=1

(1− αj) (2)

Here, i denotes the index according to the z-depth order
within the frame, and di represents the view direction from
the camera origin to xi. The parameters of the Gaussians
are optimized using L1 and SSIM Loss between the ren-
dered and ground truth images to enable realistic rendering.
The explicit nature of the Gaussians also facilitates direct
manipulation of the scene, including physics-integrated ma-
nipulation, which will be discussed in subsequent sections.

3.1.2 Material Point Method

The Material Point Method (MPM) is a numerical technique
used for simulating the behavior of materials under various
conditions, such as deformation, fracture, and other physi-
cal processes. It combines the advantages of both particle
methods and grid-based methods to provide a comprehen-
sive and flexible approach to computational material mod-
eling [3, 5, 12].

In MPM, the material to be simulated is represented by
a collection of material points, which carry information
about the material’s properties like mass, velocity, stress,
and strain. These material points move through a back-
ground computational grid, which is used to solve the equa-
tions of motion. A schematic diagram is presented in Fig.
3. The process works as follows. First, Material points
are initialized with material properties including volume Vp,
mass mp, position xtp, velocity vtp, deformation gradient F tp ,
and local velocity field gradient Ct

p at time step t. Then,
particle-to-grid (P2G) transfers properties of the material

points including mass and momentum to the background
computational grid as follows.

mt
iv
t
i =

∑
pN(xi − xtp)[mpv

t
p + (mpC

t
p − 4

(∆x)2∆tVp
∂ψ
∂F F

t
p
T
)(xi − xtp)] + f ti

(3)
mt
i =

∑
pN(xi − xtp)mp, where N(xi − xtp) is B-spline

kernel. Then the transferred properties are used to solve
equations of motion, typically using finite difference meth-
ods. Then grid-to-particle (G2P) process is performed to
transfer the computed grid velocities, local velocity gradi-
ent, and deformation gradient.

vt+1
p =

∑
iN(xi − xtp)v

t
i , xt+1

p = xtp +∆tvt+1
p

(4)
Ct+1
p = 4

(∆x)2

∑
iN(xi − xtp)v

t
i(xi − xtp)

T , F t+1
p = (I +∆tCt+1

p )F tp

(5)
After G2P process, material points are moved according
to their velocities and computational grid is reset for next
timestep.

3.2. Joint Training

In this section, we introduce our system design, which is
depicted in Figure 2. Similar to various deformable Gaus-
sian splitting approaches [8, 13, 15], we decouple static ge-
ometry from dynamic scenes and represent it in a canonical
space. The parameters for this static geometry, referred to
as canonical Gaussian parameters, are initialized following
the method described in 4dGS [15]. These initialized Gaus-
sians are coupled with physical parameters—Young’s mod-
ulus E = [E1, · · · , EP ], Poisson’s ratio ν = [ν1, · · · , νP ],
and volume V = [V1, · · · , VP ] (hereafter collectively re-
ferred to as θ)—and include initial velocity field as an ad-
ditional parameter to enable physical simulations. The ini-
tialization of these physical parameters and the Gaussians’
initial velocity follow the protocols outlined in [18].

During each training iteration, Gaussians are sampled
from the canonical Gaussians to perform physical simula-
tions based on the Material Point Method (MPM). After
each time step, rasterization is conducted using the result-
ing Gaussians to compare against images from the input dy-
namic sequence. The simulation between adjacent video
frames can be expressed by the following equation:

xt+1, vt+1, F t+1, Ct+1 = S(xt, vt, F t, Ct,mθ,∆t,N),
(6)

Following the simulation, the resulting Gaussians at each
time step are rendered according to Eq. 2. The rendered
image Ît is then subjected to a per-frame loss function
as follows, which is used to update the parameters of the
canonical Gaussians and the differentiable parameters of the
MPM.

Lt = λL1(Î
t, It) + (1− λ)LD−SSIM(Ît, It), (7)

where we set λ = 0.1 in our experiments.
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Figure 4. Comparison of novel view dynamic video synthesis on 3 selected PAC-NeRF scenes

We have structured our framework for fast rendering and
training using two triplanes and three-layer MLP for both
material and initial velocity fields. Triplanes store features
and these features are decoded through MLP to predict its
field property. To ensure the spatial smoothness of the ma-
terial field and initial velocity field, we incorporated a total
variation regularization term for each 2D spatial plane.

Ltv =
∑
i,j

∥ui+1,j − ui,j∥22 + ∥ui,j+1 − ui,j∥22, (8)

where ui,j is a feature vector on the 2D plane. This regu-
larization helps maintain a smooth gradient in spatial prop-
erties, enhancing the stability and accuracy of our simula-
tions.

We employ a two-stage optimization process to ensure
stable training instead of jointly learning the canonical
Gaussian, initial velocity field, and physical properties from
the start. In the first stage, we focus on training the canon-
ical Gaussian and initial velocity field. Optimization uses
only the first 4 frames to establish a stable base. Similar
to the warm-up process in 4dGS [15], we avoid performing
simulations during the initial optimization steps to prevent
instability in learning. Instead, we optimize the canonical
Gaussians first and then proceed to train them with the ini-
tial velocity field jointly. In the second stage, we fix the
canonical Gaussian and initial velocity field and use the en-
tire image sequence to optimize the physical properties. To
prevent gradient explosion or vanishing, similar to the ap-
proach in PhysDreamer [18], we restrict the gradient flow
to only the previous frame.

4. Experiment

We conducted experiments on two distinct tasks. The
first task involves using a multi-view image sequence of
a dynamic scene as input to render that scene from novel

viewpoints (novel view dynamic video synthesis). The sec-
ond task focuses on rendering new motions by applying ex-
ternal forces to the learned physical properties (novel mo-
tion generation).

4.1. Setup

4.1.1 Dataset

PAC-NeRF dataset. The PAC-NeRF dataset utilizes a
photo-realistic simulation engine to simulate and render
images of various objects under different lighting condi-
tions. This dataset provides multi-view image sequences
that capture significant shape transformations of different
objects. The PAC-NeRF dataset supports a variety of ma-
terial types, including elasticity (torus, bird), plasticine
(Play-Doh, cat), Newtonian fluid (cream, toothpaste), and
non-Newtonian fluid (droplet, letter). Each scene is cap-
tured from 11 uniformly distributed viewpoints on the up-
per hemisphere, with 14 time-synchronized frames captured
from each viewpoint.

PhysDreamer dataset. In the PhysDreamer dataset, 8
real-world static scenes are provided, each accompanied by
a multi-view image sequence and corresponding static 3D
Gaussian sets. Only selected parts of these sets are manu-
ally specified for simulation. For training, dynamic scene
videos are created by selecting 1-2 images from the image
sequence and generating a 14-frame video for each image
using the Stable Video Diffusion model [1]. Our method
requires predicting both physical properties and geometry
from video; therefore, the desired videos are captured from
various viewpoints. Since the PhysDreamer dataset does
not provide such videos, we rendered multi-view dynamic
videos using the originally trained PhysDreamer model to
construct the training data for both our method and the base-
line.
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Table 1. Novel view dynamic video synthesis result on 4 PAC-NeRF scenes

Methods Droplet Cream Torus Cat
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PAC-NeRF 32.93 0.987 35.87 0.992 32.86 0.985 32.60 0.991
Ours 21.84 0.976 24.88 0.981 19.90 0.971 28.91 0.991

4.1.2 Baselines

We compared our method against two baselines: PAC-
NeRF [9] and PhysDreamer [18]. Similar to our approach,
PAC-NeRF predicts the geometry and physical parameters
of highly dynamic objects through multi-view videos. Like
us, it uses the Material Point Method (MPM) for physics
simulation to model the dynamic scene. However, PAC-
NeRF differs in that it employs a hybrid representation com-
bining Eulerian (static voxel NeRF) and Lagrangian (parti-
cles), whereas our method utilizes the same representation
for both physics simulation and rendering. We conducted
both qualitative and quantitative comparisons of novel view
dynamic video synthesis performance between our method
and PAC-NeRF using the PAC-NeRF dataset.

PhysDreamer uses a multi-view image dataset captured
from static scenes to reconstruct a well-formed set of Gaus-
sians, which it uses as known geometry to learn physical pa-
rameters through videos generated by diffusion. For a fair
comparison with our method, which uses videos captured
from dynamic scenes as training data, we extracted canon-
ical Gaussians from the 4dGS [15] model trained on such
dynamic videos to serve as the geometry for training the
PhysDreamer model. We qualitatively compared the perfor-
mance of novel motion generation using the PhysDreamer
dataset.

4.1.3 Metrics

For the novel view dynamic video synthesis task, we uti-
lized widely used metrics in novel view synthesis such as
PSNR and SSIM to report performance. For the novel
motion synthesis task, while PhysDreamer employs a user
study with a two-alternative forced choice (2AFC) protocol
to evaluate the realism of the motions perceived by humans.
However, such metric is hard to conduct in this project.
Therefore, we have relied solely on qualitative results to as-
sess the performance of our generated motions.

4.2. Implementation details

During the first 100 epochs, we focused solely on learn-
ing the canonical Gaussian to ensure stable acquisition of
position and shape. Subsequently, we jointly trained the
canonical Gaussian and initial velocity field for 200 epochs.
With the canonical Gaussian and initial velocity field fixed,
we then trained the material field over another 200 epochs.

The initial velocity field and material field are each mod-
eled using triplanes of resolutions 83 and 243, respectively,
followed by a 3-layer MLP.

For simulations using the Material Point Method
(MPM), the resolution of the computational grid was set
to 323 during the first stage and 643 in the second stage.
To achieve precise motion, we conducted simulations with
64 sub-steps between consecutive video frames in the first
stage and 768 sub-steps in the second stage. To address the
memory consumption issues arising from the large num-
ber of sub-steps, we implemented simulation state check-
pointing along with re-computation during gradient back-
propagation.

4.3. Results

4.3.1 Novel view dynamic video synthesis on PAC-
NeRF dataset

Firstly, we perform novel view dynamic video synthesis to
test if our joint training method effectively learns the ge-
ometry and physical properties of the given dynamic scene.
This task involves re-simulating the input dynamic scene
using the trained canonical Gaussians, initial velocity field,
and material property field, and rendering the entire image
sequence from new viewpoints not used in the training data.
Currently, PAC-NeRF [9] is the only other study that si-
multaneously learns geometry representation and material
properties using only a multi-view image sequence of the
dynamic scene as input. Therefore, we compare our perfor-
mance with PAC-NeRF using the same dataset.

Figure 4 compares the rendering results for objects with
three different types of materials. Our method appears to
render well in the initial frames but seems to progressively
disappear as the object moves away from its original posi-
tion. While we have not fully analyzed the cause of this
issue yet, one possible reason might be that we mistakenly
set the simulation bounds as the boundary of the initial sfm
point cloud, without considering the volume traversed by
the object throughout the frames. This may cause render-
ings to fail once the Gaussians exceed these bounds. As
shown in Table 1, the quantitative results also indicate that
our performance is not as good as PAC-NeRF’s. However,
we anticipate that addressing the aforementioned issue and
further tuning the training and simulation-related hyperpa-
rameters could significantly improve our results.
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Figure 5. Initial state and novel dynamic scene generated by user interaction on 2 selected PhysDreamer scenes

4.3.2 Novel motion synthesis on PhysDreamer dataset

We perform novel motion synthesis to verify that our jointly
learned geometry and material properties are not merely
overfitted to the input motion but accurately reflect the ac-
tual properties of the objects. This task also highlights the
benefits of physics-integrated dynamic scene modeling, em-
phasizing the generation of physically and visually plausi-
ble new motions. In this task, we do not use the learned
initial velocity field specific to the input video. Instead, we
apply forces at user-specified locations to generate motions,
while the learned canonical Gaussian and material property
fields remain unchanged. Since there is no ground truth data
for evaluating the newly deformed scenes - except for the
lattice deformation benchmark rendered through desired in-
teractions in the simulation engine by PhysGaussian [14],
which has not been released - we only report qualitative re-
sults. Additionally, as there are no existing works that suc-
cessfully perform novel motion synthesis under a fair set-
ting, we do not compare our results with other methods.

Figure 5 illustrates the resulting motions generated by
applying forces to two different types of objects, depicted
across several frames. In the frames where forces are ap-
plied, the points of force application, as well as the mag-
nitude and direction of the forces, are displayed. Although
both objects move with a slightly larger amplitude than ex-
pected considering their properties and the applied forces,
the motions are otherwise physically and visually plausi-
ble to some extent. Detailed results can be found in the
supplementary video. However, for the second object, the
telephone, parts of its cord appear to disappear. One pos-
sible reason could be that, as mentioned in Section 4.3.1,

some parts exceed the pre-set simulation bounds due to
larger than anticipated amplitudes, resulting in their disap-
pearance.

5. Conclusion
In this study, we proposed a novel approach to enhancing

dynamic scene modeling and editing by integrating physics-
based simulations with Gaussian Splatting. Our method
effectively addresses the limitations of existing techniques
by enabling complex, realistic motion generation and pre-
cise editing capabilities directly from multi-view image se-
quences. Through the combination of canonical Gaus-
sian parameters and physical simulation properties, our ap-
proach partially shows potential to improve the representa-
tion and manipulation of dynamic environments.

Our experiments demonstrate the capability of our
method to reconstruct and synthesize dynamic scenes. In
the task of novel view dynamic video synthesis using the
PAC-NeRF dataset, our results show promising initial frame
renderings, though further refinement is needed to address
issues related to disappearing objects. The qualitative anal-
ysis of novel motion synthesis on the PhysDreamer dataset
highlights the effectiveness of our approach in generating
physically plausible motions, although challenges remain
in controlling a plausible amount of movement and solving
disappearing parts.

Overall, our integration of physics-based properties with
Gaussian Splatting represents a potential in dynamic scene
modeling. Future work will focus on optimizing the training
process, refining simulation parameters, and expanding the
applicability of our method to a broader range of dynamic
scene datasets.
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