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Abstract

Sketches offer a simple way to understand images in a
general sense. Turning sketches into videos requires a deeper
understanding beyond basic image comprehension. Tradi-
tional methods for handling images have limitations when
applied to sketches. Recently, there has been a surge in
research focused on developing models and techniques tai-
lored specifically to the sketch domain to overcome these
limitations. Converting sketches into videos requires a better
understanding of the video medium within this research area.
Although various methods exist for sketch-to-video conver-
sion, text-based video generation has gained popularity due
to its ease of use. In this study, we explore different ways to
improve the process of turning static sketches into videos
using text prompts. Existing methods face several challenges:
maintaining the unique identity of sketches, accurately repre-
senting multiple objects, and adapting to slight variations in
sketch characteristics. To address these challenges, we pro-
pose applying various techniques used in video generation
models to the task of sketch-to-video generation. Our aim is
to enhance the quality of sketch videos, maintain sketch iden-
tity, and create longer sketch-preserving videos that better
reflect the textual content. Through these improvements, we
seek to overcome the existing challenges and produce more
coherent and representative sketch videos.

1. Introduction

Abstract sketches serve as a simplified representation of
images, portraying static landscapes or objects, as well as
dynamically moving subjects. In this paper, we aim to effec-
tively transform such sketches into videos, thereby enhanc-
ing the process of creating moving videos.

Sketches come in various forms, with the handling
method varying according to their complexity. To estab-
lish a more precise problem setting, this paper focuses on
handling sketches composed of vector representations. Sim-
ilar to sketch generation models, we will represent these
sketches’ vector representations through cubic Bezier curves

[3, 19, 20]. This vector-based representation is more concise
compared to the traditional pixel-based method and offers
relative freedom concerning resolution and scaling changes.
Additionally, cubic Bezier curves, represented by four con-
trol points, facilitate expressing line movements or changes
corresponding to various actions relatively easily.

This paper aims to create appropriate videos depicting
movements when provided with sketches in vector represen-
tation along with text prompts describing actions. To achieve
this, we will utilize various pretrained text-to-video diffusion
models [17]. To effectively use these pretrained models, an
optimization process is required to input sketches appropri-
ately into the text-to-video model and optimize them into
videos tailored to the text prompts.

Existing sketch-to-video models [3, 25] utilizing sim-
ilar approaches exhibit various shortcomings. They only
smoothly generate videos for specific sketch formats and fail
to produce distinct results for multiple objects. Moreover,
certain prompts or sketches may not adequately maintain
form or identity.

To address these issues, we check the MLPs used in exist-
ing models to apply text-to-video models to sketches more
effectively. These MLPs convert sketches into embedding
forms, adjust movements, and calculate SDS loss based on
the results, within text-to-video model. Thus, if the layer con-
necting sketches and text-to-video is more effective in con-
veying sketch information and adjusting movements, more
complete videos can be obtained. We refer to these layers as
“Sketch Encoders” in this paper and will focus on designing
them more effectively.

To design a more effective sketch encoder, we start by
identifying the shortcomings of existing models and par-
tially improving them. Firstly, we will enhance positional
encoding to make it more suitable for the sketch domain
during the process of converting sketches into embeddings.
As sketches have simpler and more regular forms, grouping
embeddings based on frame numbers or bézier curve posi-
tions and providing positional encoding according to these
rules will more effectively reflect sketch characteristics and
create high-quality videos. Furthermore, to generate videos



for multiple objects more effectively, we will apply a cluster-
ing layer to distinguish objects in sketches and design them
to separately learn movements for each object. Lastly, the
final sketch encoder will be validated and improved through
various types of sketch datasets to create a more generalized
structure of the sketch-to-video model.

The final results of the sketch encoder and the sketch-to-
video model developed through this process will be com-
pared with recent sketch-to-video papers[3, 25]. If we need
more, text-to-video papers[1, 21] can also make examples
by using various sketch datasets and text prompts.

2. Related Work
2.1. Sketch

Research on sketches, ranging from relatively detailed
sketches depicting landscapes or objects to those com-
posed of very few lines, has been conducted for some
time as a category of images. Particularly, methods uti-
lizing sketches in image synthesis processes[2] or in im-
age generation[8, 12, 23] have used sketches as auxiliary
elements in generating more concrete images. Recent at-
tempts also involve utilizing sketches in image generation
processes using diffusion[9, 22]. Additionally, there have
been attempts to use sketches composed of a few lines to
provide rough shapes as tools for image editing[5, 28]. In
this study, sketches will be used as baseline images for gen-
erating videos.

Sketches are used for various purposes depending on
their intended use, and they come in various forms. Sketches
can be divided based on differences in form, such as pixel
representation and vector representation, as well as details or
drawing methods. In this study, we will design a model that
can generalize well to any form of sketch without limitations
imposed by the various purposes and forms of sketches,
ensuring effective sketch-to-video generation.

2.2. Video Generation

With the emergence of various models for image genera-
tion, video generation models initially extended image-based
GAN methods to generate videos[7, 10]. While research has
progressed on generating videos using diffusion[4], these
studies often focus on generating videos on specific top-
ics, resulting in relatively limited diversity in the generated
content.

More recently, research has been conducted on models
for generating text-based videos, building on previous stud-
ies on text-to-image and leveraging learned data on images
and videos to perform text-to-video generation[16]. Vari-
ous diffusion-based methods for video generation have also
been studied[14, 15, 24, 27]. These text-to-video models
are trained using images as conditions[21], captioned im-
ages as conditions[ 1 3], or both text and images for content

preservation[1].

Furthermore, in the realm of video generation, research
utilizing masked diffusion for interactive video generation[6]
according to user intentions shows that user intentions can be
increasingly reflected in various ways during the video gen-
eration process. In this study, we will effectively apply such
video generation models to the sketch domain, designing
and improving encoders that can be applied to these video
generation models.

2.3. Sketch-to-video Generation

Creating moving videos through sketches is a relatively re-
cent area of research. Attempts to apply sketches to the video
domain have used methods similar to those that employed
sketches in image editing or as auxiliary elements in video
editing[11]. There have also been studies on synthesizing
new videos by combining given videos with sketches as a
basis[29]. In the field of sketch animation, existing sketch an-
imations have been completed[26] or motion sequences[ [ 8]
of videos have been provided alongside sketches to animate
them.

More recently, research has emerged that utilizes the text-
to-video prior of video generation models to apply it to the
sketch domain, that make very simple sketches composed
of several strokes move[3]. Similarly, research has been
conducted to utilize sketches as elements expressing motion,
extracting their characteristics to create smooth movements
in clipart animation[25]. However, these studies often restrict
themselves to specific forms of sketches, struggle to handle
multiple objects well, fail to maintain the form of sketches,
or do not smoothly express movements in longer videos.
In this study, we will address the limitations of existing
sketch-to-video models and propose a model that produces
higher-quality videos.

3. Method

Our method is based on the video generation process of
existing sketch-to-video models. Users provide an SVG for-
mat sketch and a text prompt describing specific actions.
Through this, we will generate a video in the SVG format
corresponding to the described action in the text prompt.
We follow the problem setting of existing sketch-to-video
models [3]. The input vector image is depicted as a series
of strokes, each stroke consisting of multiple control points.
Each control point is represented by its coordinates p =
(z,y) € R2. The set of control points in a single frame is
denoted by P = {p1,...,pn} € RV*2 where N is the
total number of points in the input sketch. This number stays
constant across all generated frames. A video with K frames
is defined as a sequence of K such sets of control points,
denoted by Z = {Pk}kK:1 € RENX2 Tet Pt represent the
set of points in the initial sketch. We replicate P,;; K times
to create the initial set of frames Zi,;. The goal is to convert
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Figure 1. Transformation Module. The input to the transformation module is the set of control points P, and its output is the set of displaced
control points, where the displacements correspond to some portion of prompted actions. This module utilizes a learned matrix to perform
scaling, shearing, rotation, and translation on the coordinates of the control points. In the baseline transformation module, transformations
are applied simultaneously to P™" for each frame. Conversely, in our sequential transformation module, each transformation is applied to
P10 produce P*, ensuring a more consistent and coherent motion sequence.

this static sequence into an animated sequence that follows
the motion described in the text prompt. We frame this task
as learning a set of 2D displacements AZ = {Ap? }ien jek.
which indicate the displacement of each point pg for each
frame j.

The output video Z = Z;n; + AZ, should maintain
the identity of the sketch while smoothly depicting the ac-
tions described in the text prompt. Additionally, these videos
should (1) handle multiple objects well, (2) maintain shapes
better, and (3) generally perform well with various sketch
formats compared to existing video models.

3.1. Identity-preserving Encoder

To improve existing methodologies, we first propose an
identity-preserving positional encoder. Given that the output
video is a sequence of sketch frames, each frame must consis-
tently depict the same object as the input sketch. Therefore,
it is crucial for each stroke in every frame to consistently rep-
resent the same part of the object throughout the sequence.
For example, if a stroke delineates an arm in the input sketch,
it should continue to represent the arm across all subsequent
frames, even if its shape is altered to animate the arm’s move-
ment. Any alteration causing the stroke to depict a different
part of the object, such as a leg, would lead to deformation
and significantly compromise identity preservation.

A sketch comprises multiple strokes, each defined by a
set of control points. To maintain stroke-specific information
across frames, we explicitly encode positional information
using sinusoidal positional embeddings. Previous methods
[3] employed a positional embedding Epqse € RENxd
where d represents the embedding dimension. This approach

injects different positional embeddings for the same stroke
in different frames, risking loss of stroke consistency across
frames. To address this, we propose (1) positional encod-
ing per control point and (2) positional encoding per stroke.
The positional encoding per control point is represented
as E, € RV*? and the positional encoding per stroke
as By € RN/Nexd \here N, is the number of control
points per stroke. The former ensures consistent encoding
for the same control points across frames, while the latter
provides consistent encoding for the same stroke throughout
all frames.

3.2. Sequential Transformation Module

To generate an animation that corresponds to the text prompt,
we utilize a “neural displacement field”, as [3] does. This
is a compact network M that takes the initial point set
Zinit as input and predicts their displacements, denoted as
M(Z;nit) = AZ. The network M comprises two parts: M,
and M. M, generates an offset AZ; for each control point
in Z;n;. On the other hand, M, predicts global transfor-
mation matrices {7} ._}X . They are applied to generate
global transformations for each frame starting from Z;,,;+:

(D

To ensure realistic motion and stability, the transformation
matrices are constrained to induce only scaling, shearing,
rotation, and translation. Moreover, these transformations
are applied simultaneously at all points in a frame rather than
on individual points, enhancing overall animation stability.
However, confining transformations to originate solely from
the initial frame poses challenges for dynamic movement, re-
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Figure 2. When control point inputs are fed into clustering module C, it performs clustering, retains only the control points belonging to each
cluster, and masks the rest, resulting in control points for each cluster P;, P». Each control point then passes through Model M, generating
movements in different ways AZ;, AZs. The learned results are concatenated to produce the overall movement AZ.

stricting motions from deviating significantly from the initial
points. Hence, we propose a novel Sequential Transforma-
tion Module to address this limitation
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where p{ = pi™i. By originating each transformation from
the previous frame rather than the initial frame, the move-
ments become more consecutive. This sequential approach
allows for a more coherent transition between frames. Fur-
thermore, a series of incremental transformations enhances
the ability to depict larger overall motions. The overall dif-
ference between two transformation modules and the details
are described in Fig. 1.

3.3. Clustering for Multiple Objects

One of the key challenges in the process of generating videos
from sketches is handling multiple objects. To address this,
we use masking techniques and various clustering algorithms.
While multiple objects have been addressed in traditional
image-to-video models, they still pose challenges in sketch
data. We aim to modularize existing ideas to better suit sim-
pler sketch datasets by (1) using the center of the four control
points of the Bezier curve as the clustering criterion to distin-
guish individual objects, (2) creating a module that segments
each object by applying various clustering algorithms, and
(3) generating independent movements by training the en-
coder with masked individual objects.(See Fig. 2).

We considered which of the four points of a Bézier curve
best represents the corresponding stroke during the clustering
process. Among the four points, the starting point and the
end point are on the stroke. However, if we determine the
middle point by considering only these two points, we cannot

take into account the curve’s direction of bending. Therefore,
we performed clustering based on the positions calculated by
considering the bending direction of the cubic Bézier curve,
specifically the midpoint of the two control points along with
the starting and end points.

To find the best clustering algorithm, we make a exper-
iment with several commonly used clustering algorithms,
K-means, DBSCAN, and meanshift. We then evaluate the
results of these algorithms on simple sketches to determine
which algorithm would be the most suitable. Based on this
evaluation, we selected the appropriate algorithm to be used
in our sketch clustering module.

4. Result
SRR N
O AN G S
E, Q \& LN\

Figure 3. Qualitative results of three types of positional encoders:
Ebuse, Ep, and Es-



“The penguin is shuffling along the ice terrain, taking cautious step to maintain balance.”

Baseline TF

QA A

gl

T | T |

Sequential TF

A\UN

Both TF

(ARNEORNEL:

{

a0 b

Figure 4. Qualitative results of three transformation modules: Baseline, Sequential, and Both.

4.1. Identitiy-preserving Encoder

Our positional encoder is explicitly designed to distinguish
each stroke across all frames, ensuring precise tracking of
every stroke throughout the sequence. To assess the effective-
ness of our proposed positional encoder in maintaining the
integrity of the input sketch, even in challenging scenarios,
we conduct experiments with sketches featuring multiple
objects. In these cases, each stroke corresponding to an ob-
ject must consistently represent the same object across all
frames. Any stroke representing a different part of another
object would significantly compromise the identity of the
input sketch. We select a sketch of a man on a surfboard,
which includes two objects—a man and a board. Using the
prompt ”A surfer riding and maneuvering on waves on a
surfboard,” we compare the baseline positional encoding
methods: (1) Epqse, applied to every control point on ev-
ery frame; (2) E,, applied to control points within a single
frame; and (3) E, applied to strokes for the same sketch and
prompt. The results are nearly identical, irrespective of the
type of positional encoder employed. (See Fig. 3)
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Figure 5. Qualitative results of with/without positional encoders:
Eba se and Eo .

We investigate the reasons behind the suboptimal perfor-
mance of the positional encoder by examining the initial
input layer of the model in detail. The model first dupli-
cates the input sketch into K frames, creating an embedding
vector that is a concatenation of the repeated input frame’s

embedding vectors. This process inherently performs a role
similar to the per-point positional encoder, E,,. Consequently,
the positional encoder may not be essential. To validate this
hypothesis, we intentionally remove the encoder by setting
all its elements to zero, Ey = 0, and compare the results
with the original encoder, Fy,s.. The results appear nearly
identical (See Fig.5).

4.2. Sequential Transformation Module

The sequential transformation module is designed to facil-
itate smooth animations by ensuring seamless transitions
from frame to frame. This approach simplifies the creation
of consecutive frames compared to simultaneously creat-
ing frames starting from an initial frame. To demonstrate
its effectiveness, we applied the same prompt to three dif-
ferent transformation modules: the baseline, our sequential
transformation module, and a mixture of both (see Fig. 4).
The results indicate that our method produces the most dy-
namic and smooth ’shuffling along’ action prompt. When
combining both transformations, the baseline tends to dis-
rupt the sequential transformation’s smoothness. Hence, it
is more reasonable to only use sequential transformation
module. For further analysis on its capability, we design two
more experiments considering intensity and directionality of
movement.

Intensity of Movement To evaluate the capability of
our module to represent both dynamic motions with strong
transitions and calm actions with minor motions, we applied
two distinct prompts describing dynamic and calm actions
respectively to the same sketch. As illustrated in Fig. 6, our
module successfully generates both types of actions accu-
rately. In contrast, the baseline module produces only calm
actions, even when the prompt specifies dynamic motions.

Directionality of Movement Since a sketch is a 2D
representation of an object, much of its 3D information is
inherently lost. However, animating a sketch requires trans-
formations that consider 3D axes. To evaluate the capability
of expressing movements based on 3D axes, we incorpo-



(Dynamic)  “The goldenfish is gracefully moving through the water, ...”
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Figure 6. Qualitative results of dynamic and calm prompts.

“The bicycle rider makes a turn at high speed.”

Baseline TF & & & & &) &) & @Q

v

Figure 7. Qualitative results of directive prompts.
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rated motions with directionality. As illustrated in Fig. 7, our
module successfully generates movements that include 3D
transitions. In contrast, the baseline module produces only
subtle movements, failing to fully capture 3D transitions.

4.3. Clutsering for Multiple Objects

In this study, we addressed the task of generating sketch ani-
mations based on text prompts. Specifically, we investigated
a method to handle multiple objects within a single sketch
by clustering the objects, training them separately, and gen-
erating animations that exhibit independent movements. To
achieve this, we experimented with three clustering algo-
rithms: K-means, DBSCAN, and Meanshift.
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Figure 8. From left to right: original sketch, segmentation results
with K-means, DBSCAN, and Meanshift.

Although the K-means algorithm requires specifying the
number of objects in a multiple-object sketch, unlike the
other two algorithms, it demonstrated relatively superior per-
formance among the three.(Fig. 8) We combined the segmen-

tation results from the K-means algorithm with an improved
encoder to generate the sketch videos.
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Figure 9. Animation of a sketch with multi-object segmentation
using the K-means algorithm. Baseline model makes movement
like both people are in single-object, while clustering module makes
different movement for each person.

The K-means algorithm is an ideal choice for real-time
applications due to its shorter training time compared to
other clustering algorithms. Additionally, it has shown to
provide the best performance in partitioning multiple objects
within a sketch and generating high-quality animations with
independent movements for each object. As shown in the
figure, unlike the previous model where two objects moved
as if they were a single object, the results using clustering
module demonstrated that the movements of the two people
appeared independently.(Fig. 9)

5. Conclusion and Future works

“A surfer riding and maneuvering on waves on a surfboard.”
“The goldenfish keeps going to right.”
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Figure 10. Qualitative results of suboptimal cases (1) & (2)

Through the experimental results, we observe that the ex-
isting positional encoding does not play a significant role, in-
dicating that enhancing positional encoding requires a more
sophisticated design. Conversely, the sequential transforma-
tion module demonstrates its ability to generate smoother
and more plausible movements compared to the baseline
module. However, it occasionally amplifies movements ex-
cessively, causing the object in the sketch to entirely dis-
appear from the frames. This is considered a trade-off for
achieving more dynamic movements.(See Fig.10-(1)) To
mitigate this issue, we temporarily adjust hyperparameters



related to the magnitudes of transition and scaling. Nonethe-
less, further analysis is needed to identify fundamental so-
lutions. Additionally, some explicit action prompts fail to
translate into the intended output movements. We hypothe-
size that this is due to the difficulty of precisely matching
the initial sketch with the prompt, which is more complex
than merely adding some motions. (See Fig.10-(2))

Through experiments with the clustering module, we con-
firmed that when a sketch composed of multiple objects is
input, clustering can distinguish the objects within the sketch.
By separately training each object through masking, we were
able to successfully generate distinct movements for each.
We found that among several algorithms, k-Means was the
most suitable for sketches with a relatively small number
of strokes. Since each object is trained and generated sep-
arately, it provides a flexible and scalable model that can
be applied to various sketch datasets in the future, allowing
for the addition of new objects or individual adjustments to
existing object attributes.

Although our research demonstrated the potential to cre-
ate sketch videos composed of multiple objects through clus-
tering, several issues remain to be addressed. First, the clus-
tering module uses k-means, requiring us to manually specify
the number of clusters. Most sketches depicted a single ob-
ject, and sketches containing more than two objects were
rare. However, in a clustering module handling multiple ob-
jects, the necessity for users to specify the number of objects
poses a problem. Therefore, it is necessary to find sketch-
oriented solutions at the model level to address this issue.
Second, as seen in the example where a stroke was misclas-
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Figure 11. Clustering result. left: K-means, right: Hierarchical clus-
tering. Both clustering algorithms show same results.

sified, improvements to the clustering algorithm are needed.
Although we conducted additional experiments using hierar-
chical clustering, as shown in the Fig.11, merely changing
the algorithm without altering the number of specified clus-
ters did not lead to improvements. Thus, we need to tune
the clustering algorithm to be more suitable for the sketch
domain, for example, by redefining the distance between
the centroids of the strokes. Lastly, in the training process,
only one text prompt is input, which poses a problem when
each clustered sketch needs to be trained with a single text
prompt like the existing model. In the example scene with
two people dancing, where both are performing the same ac-
tion, this issue does not arise. However, if a sketch contains

two objects, such as a ball and a person or a bird and a flower,
requiring different movements, training each object cluster
with the same text prompt will cause problems. To solve
this issue, we could consider allowing different text inputs
to describe the movements of each object when multiple
objects are present.
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