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Abstract

In this paper, we propose the first model that introduces001
a diffusion model for the task of video summarization. The002
goal of video summarization is to distill a video into a com-003
pact representation that preserves its essential elements and004
key moments, thereby reducing its overall length. Unlike005
previous methods, our approach draws inspiration from the006
human-like process of iteratively refining video content by007
repeatedly viewing and condensing key segments. To em-008
ulate this, we introduce SummDiff. SummDiff employs a009
Video Importance Score Denoiser to iteratively distinguish010
genuine importance scores from random noise. By progres-011
sively refining the score distribution through a generative012
diffusion model, our model dynamically adapts to visual013
contexts, enhancing the robustness and scalability of video014
summarization. Extensive evaluations demonstrate that015
SummDiff achieves state-of-the-art performance on bench-016
mark datasets, including Mr.HiSum, TVSum, and SumMe.017
These results highlight the potential of diffusion-based ap-018
proaches to transform the field of video summarization.019

1. Introduction020

In the fast-paced digital era, the exponential growth of video021
content across platforms such as YouTube, Instagram, and022
TikTok has highlighted the necessity for efficient content023
management and retrieval systems. Moreover, the market024
has seen a shift from traditional long-form videos to short-025
form videos, reflecting changes in viewer preferences and026
the rising popularity of quick, digestible content. Video027
summarization, the process of compressing the most sig-028
nificant content from a video into a concise summary, ad-029
dresses this need by allowing users to grasp the essence of030
videos quickly without consuming the entire content. This031
technique not only enhances user engagement by provid-032
ing tailored content highlights but also serves crucial roles033
in areas like surveillance and educational content curation,034
where quick information retrieval is important.035

The process of summarizing a video by a human is as036
follows: Initially, one watches the video from start to fin-037

ish, filtering out the segments to be included in the sum- 038
mary. Starting with the most important parts, subsequent 039
segments of lesser importance are added. This involves a 040
repetitive process of gauging the relative importance of dif- 041
ferent parts of the video and incorporating them into the 042
summary until the given video length is filled. In essence, it 043
is a process of continuously determining the relative impor- 044
tance of segments and summarizing accordingly. Previous 045
research on video summarization [2, 10, 22, 50, 56] at- 046
tempted to directly learn the relationship between a video 047
and its summary for a single model inference when a video 048
is presented. However, due to the limitation of this single 049
direct inference, the performance was often found to be in- 050
sufficient. It can be said that adjusting video summaries 051
through relative comparisons of video segments over sev- 052
eral steps, similar to human video summarization, consti- 053
tutes the conditions for creating good video summaries. 054

A diffusion model [14, 42] is a model that learns the pro- 055
cess of denoising from complete noise to a specific origi- 056
nal distribution. There are similarities between the diffu- 057
sion models and the process of composing a video sum- 058
mary, starting without any information when first viewing 059
the video, and then repeatedly watching to gauge the rela- 060
tive importance. Through the process of denoising multiple 061
times during inference, a more accurate video summary can 062
be constructed. Moreover, when defining the relationship 063
function between a given video and its summary as p(θ), 064
progressively fitting the derivative function p′(θ) rather than 065
directly modeling p(θ) surpasses the limitations of previous 066
models and is a method suitable for the characteristics of 067
this task. It is shown in our experiment result that ours out- 068
perform existing baselines across all metrics. Therefore, we 069
propose a video summarization method utilizing the diffu- 070
sion model. 071

In conclusion, we introduce an innovative approach to 072
video summarization through the incorporation of diffusion 073
models, inspired by their capacity for denoising and their 074
potential to closely mimic the iterative human process of 075
summarizing video content. By drawing parallels between 076
the diffusion process and the methodical way humans assess 077
and incorporate the relative importance of video segments, 078
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this work highlights the advantages of a model that itera-079
tively refines its summaries. Our method, which progres-080
sively fits a derivative function to model the relationship081
between a video and its summary, represents a significant082
departure from traditional single-step inference approaches,083
offering enhanced performance and a more nuanced under-084
standing of video content. The empirical results affirm that085
our approach not only surpasses existing baselines across086
all metrics but also captures the essence of effective video087
summarization, which lies in the ability to distill and convey088
the most pertinent information from extensive video data.089

Contributions. The contributions of this work are manifold090
and significant, delineated as follows:091

Innovative Application of Diffusion Models: We intro-092
duce a novel utilization of diffusion models in video sum-093
marization, drawing inspiration from their denoising capa-094
bilities and the iterative nature of human summarization095
processes.096

Progressive Fitting Method: Our method, which involves097
progressively fitting a derivative function to model the re-098
lationship between a video and its summary, marks a sig-099
nificant departure from traditional approaches, offering en-100
hanced performance and deeper insights into video content.101

Superior Performance: The empirical evidence show-102
cases that our approach not only outstrips existing bench-103
marks across all metrics but also encapsulates the essence104
of effective video summarization.105

2. Related Work106

Video Summarization is task where the model focuses on107
finding important information or sequences from the given108
video. Early works in video summarization use unsuper-109
vised learning as their techniques where models select video110
frames by predefined heuristics [6, 8, 18, 24, 27–31, 45, 51].111
They mainly focus on importance or diversity of the frame112
from the video. More recent works are done by supervised113
learning where the categorized video is given by manual114
tagging [4, 24, 34–36].115

Supervised learning models can easily learn the high-116
level features than unsupervised learning based models, so117
they have more accuracy on the task. DSNet[56] creates118
temporal interest proposals to identify and pinpoint the rep-119
resentative content within video sequences. iPTNet[22] em-120
ploys cross-task sample transfer by designing an impor-121
tance propagation module, enabling the conversion between122
summarization-guided and localization-guided importance123
maps. SL-module[50] applies unsupervised domain adap-124
tation technique to video highlight-generation, which can125
also be applied to summarization task.126

As the application of deep learning to the video summa-127
rization, RNN models such as LSTM is popular approach.128
Zhang et al. [52] proposed first summarization model using129

LSTM to model both short-range and long-range dependen- 130
cies. More models were suggested using recurrent models 131
as they are appropriate for predicting importance of video 132
frames over time [53–55]. Moreover, using attention layer 133
for modeling the users’ interest on time has been suggested 134
for improving the video summarization model. VASNet[10] 135
proposed the first approach for using attention, and PGL- 136
SUM[2] proposed combining local attention with global at- 137
tention. More recent studies suggest on using transformer 138
models by leveraging their ability to model long-range de- 139
pendencies and complex patterns within video sequences 140
[3, 20, 21]. A2Summ [12] suggests the use of aligning and 141
attending the multi-modal transformer based on both text 142
and video inputs, using the dual contrastive loss. 143
Diffusion models [41] are initially adds Gaussian noise to 144
data over several steps, gradually transforming the data into 145
a pure noise distribution [14, 43]. Diffusion models have 146
emerged as a groundbreaking tool in the field of genera- 147
tive such as image generation [14, 32, 38, 43, 44] or image 148
super-resolution [7, 23, 37, 39]. Due to their outstanding 149
performance, the application of diffusion models to video 150
tasks has risen as a recent main focus, primarily concen- 151
trating on video generation [9, 15, 16] or prediction [19]. 152
More recent study by Li et al. [25] suggests applying diffu- 153
sion model to video moment retrieval task when language 154
description is given. 155

One of the most commonly used dataset for video sum- 156
marization tasks is TVSum, which contains 50 videos with 157
duration of 2 to 10 minutes [45]. SumMe is also popular 158
dataset which is a collection of 25 videos from 1 to 6 min- 159
utes [11]. These two datasets have popularity of 20% and 160
19% each [40]. Other popular datasets are VSUMM and 161
MED [8, 35]. The problem with these datasets is that the 162
number of videos each dataset contains is too small due to 163
the high cost of manual labeling, which makes them prone 164
to overfitting. For these reasons, a larger dataset for video 165
summarization has been suggested, named Mr. Hisum [46]. 166
Mr.Hisum contains 31,892 videos labeled by 50,000+ users 167
per video which makes video summarization task more ro- 168
bust. 169

In this study, we propose the use of a diffusion model for 170
the task of video summarization, marking the first attempt 171
to apply such a model in this context. Also by using the 172
large scale dataset, Mr. Hisum for our model, we can train 173
and test model more reliably. 174

3. Problem Formulation 175

Given a video comprising a total of N frames, the objective 176
of video summarization is the identification and selection 177
of K ≪ N frames that effectively encapsulate the essence 178
of the video content. Let X denote the set containing all 179
video frames, i.e. X = {X1, · · ·XN}, where Xt repre- 180
sents t-th frame. Each frame is associated with a binary 181
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Figure 1. Overview of SummDiff. Given an input video, SummDiff generates importance scores conditioned on video frames.

label indicating its inclusion in the summary; thus, there182
exists a binary label Y , i.e. Y = {Y1, · · · , YN}, where183
Yt ∈ {0, 1}. The predicted video summary can be rep-184
resented as Ŷ = {Ŷ1, · · · , ŶN}. To regulate the propor-185
tion of frames included in the summary, a specific thresh-186
old, ρ = K/N , is established for each dataset, ensuring187 ∑N

t=1 Yt ≤ K.188

Most summarization datasets provide binary annotation189
from multiple annotators A, denoted as Ya ∈ {0, 1}N ,190
i.e. a = 1, · · ·A. The average of these annotations is de-191
fined as the importance score, S = {S1, · · · , SN}. Con-192
sequently, the majority of video summarization models, in-193
cluding ours, tackle this as a regression problem aiming to194
predict these important scores accurately.195

For the evaluation process, we adopt a widely-used eval-196
uation scheme by [52]. Specifically, we aggregate predicted197
frame importance scores Ŝ = {Ŝ1, · · · , ŜN} by averaging198
the scores within each shot to form Ŝ∗ = {Ŝ∗

1 , · · · , Ŝ∗
n}199

utilizing the boundary information by KTS [35]. Then,200
solving 0/1 knapsack problem with dynamic programming201
[45] to maximize the selected scores within a given budget202
(e.g., 15% of the original video length) constructs a video203
summary. F1 score is widely used to evaluate the selected204
video summary.205

4. Method206

In this section, we introduce the SummDiff model along207
with a comprehensive overview of the training and infer-208
ence processes. Overall illustration of SummDiff is outlined209
in Fig 1. SummDiff is a model designed to adapt the dis-210
tribution of importance scores for a given video by learning211
to denoise the noise distribution to ground truth importance212
score. Initially, we extract frame-level features and employ213
a transformer encoder [49] to obtain contextualized visual214
embeddings. These embeddings serve as visual conditions,215

enabling our Video Importance Score Denoiser to distin- 216
guish the genuine distribution of importance scores from the 217
random noise distribution. 218

4.1. Learning Video Importance Score with Gener- 219
ative Diffusion 220

In this section, we first discuss the principles underlying the 221
forward and reverse processes in diffusion models. Subse- 222
quently, we detail the construction of the diffusion genera- 223
tion process within the video importance score denoiser. 224

Forward. During training, we initially create a forward 225
process that adds noise to ground truth importance scores 226
S0 ∼ q (S0) into noisy data St, where t represents the 227
number of time steps. Specifically, the Gaussian noise pro- 228
cess for any two consecutive intensities [14] is defined as: 229
q (St | St−1) = N

(
St;

√
1− βtSt−1, βtI

)
, with β be- 230

ing the variance schedule. Consequently, St is derived 231
from S0 as follows: q (S1:t | S0) =

∏t
i=1 q (Si | Si−1). 232

Leveraging the re-parameterization technique, we achieve 233
noised importance score St with St =

√
ᾱtS0 + 234√

1− ᾱtϵt, where ϵt ∼ N (0, I), ᾱt =
∏t

i=1(1− βi). 235

Reverse. The denoising process aims to progressively re- 236
move noise, transitioning from St to S0. The conventional 237
single-step approach to this process is captured by the equa- 238
tion: pθ (St−1 | St) = N

(
St−1;µθ (St, t) , σ

2
t I

)
239

Here, σ2
t is determined in relation to βm, and µθ (St, t) 240

represents the estimated mean. In our study, we focus on 241
training the Video Importance Score Denoiser to invert this 242
denoising trajectory. The key distinction lies in our ap- 243
proach: instead of estimating µθ (St, t), we derive impor- 244
tance scores from the Video Importance Score Denoiser net- 245
work through fθ (St, t,F ). 246
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Figure 2. Video Importance Score Denoiser. Importance score
is denoised conditioned on contextualized visual features.

4.2. Visual Condition: Importance-aware visual247
representation248

To obtain embeddings that encapsulate importance-aware249
visual information, we first process all video frames X =250
{X1, · · · , XN} through pretrained image encoders to ob-251
tain a D-dimensional feature for each frame. These features252
are then passed through a Multi-Layer Perceptron (MLP)253
layer, resulting in a set of embeddings denoted as Z, i.e.,254
Z = {Z1, · · · , ZN}, Z ∈ RN×D. To contextualize these255
embeddings further, they are processed through Multi-Head256
Self Attention layers described in Vaswani et al [49]. Video257
embedding Z is projected as query Qi, key Ki, and value258
Vi, where i stands for head index to apply self-attention as259
follows,260

Contextualized Z : Ẑ = Concat(H1, · · · , Hh)W

where Hi = softmax(QiK
T
i /

√
dk)V

(1)261

4.3. Quantization of Importance Score.262

To denoise the noised score via the Video Importance Score263
Denoiser, it is necessary to transform St ∈ RN into a space264
of RN×D. This transformation is achieved through dis-265
cretization, which involves dividing the score distribution266
into a predefined number of uniform segments. Each seg-267
ment is assigned a learnable embedding of dimension D.268
Then, all scores are mapped according to this configuration,269
resulting in a dimensionality of RN×D. Furthermore, this270
also allows the discretized learnable embedding to be ad-271
justed according to visual conditions. This effect will be272
discussed further in the experimental results.273

4.4. Video Importance Score Denoiser 274

Training. Initially, we map the ground-truth score val- 275
ues into the range [−λ, λ] by applying the transformation 276
S0 = λ(2S0 − 1), which facilitates the incorporation of 277
Gaussian noise. After the noise addition, we ensure that 278
St remains within [−λ, λ] by clamping. A reverse trans- 279
formation is then utilized to scale St back to the original 280
interval of [0, 1], using the equation St = (St/λ + 1)/2, 281
setting λ = 1. The noised scores are quantized into K 282
intervals, with each interval linked to a distinct learnable 283
embedding. To aid in denoising, the model is made aware 284
of the noise addition moment, t, by integrating a sinusoidal 285
time encoding, Embt, with St. Moreover, acknowledging 286
the sequential essence of video scores, positional embed- 287
dings, pos, are introduced via sinusoidal functions. To pre- 288
vent any mixing of these two sinusoidal signals, their vec- 289
tors are kept orthogonal. The comprehensive representation 290
Qt = St +Embt + pos is finally processed to produce the 291
model output. 292

Qt = softmax(QtK
T )V +Qt (2) 293

Ultimately, the transformer’s output is converted into the 294
predicted scores Ŝt−1 through a straightforward fully con- 295
nected (FC) layer. In alignment with the findings of [5], 296
our objective is to minimize the difference between the net- 297
work’s predictions and the ground-truth scores S0. 298

Ldec(S0, fθ(St, t, F )) = ||S0 − Ŝt−1||22 (3) 299

Inference. After training, our SummDiff model can gen- 300
erate video importance scores for video summarization by 301
initiating with randomly sampled noise St from a Gaussian 302
distribution N(0, I). Leveraging the principles of diffusion 303
models [42], the model iteratively refines these scores to- 304
wards cleaner estimations. 305

Ŝt−1 =
√
1− ᾱt−1 − σ2

t

Ŝt −
√
ᾱmfθ(St, t, F ))√
1− ᾱm

+
√
ᾱt−1fθ(St, t, F )) + σtϵt.

(4) 306

The overall architecture of the importance score denoiser 307
are detailed in Fig 2. This framework is instrumental in pro- 308
gressively refining the video importance scores. Notably, in 309
the final step, fθ(Ŝ1, 1, F ) is directly employed to estimate 310

Ŝ0. 311

5. Experiments 312

5.1. Datasets and Evaluation Metrics 313

Dataests. We evaluate our approach, along with the state- 314
of-the-art video summarization models [2, 10, 12, 22, 50, 315
56], on established benchmarks such as Mr.HiSum [46], 316
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TVSum [45], and SumMe [11]. We use Inception-v3 [47]317
features PCA-ed to 1024D, following YouTube-8M [1]. To318
measure the zero-shot performance on TVSum [45] and319
SumMe [11] when pretrained on Mr.HiSum [46], idenitcal320
features are extracted from all of two other datasets.321

Evalutaion Metrics. To measure video summarization per-322
formance, we adopt a widely-used evaluation scheme pro-323
posed by [52]. Specifically, we aggregate predicted frame324
importance scores by averaging the scores within each shot,325
utilizing the boundary information provided by the KTS al-326
gorithm [35]. Then, we solve 0/1 knapsack problem us-327
ing dynamic programming [45] to maximize the selected328
scores within a given budget (e.g., 15% of the original video329
length), which constructs the video summary. The F1 score330
is widely used to evaluate the selected video summary.331

Furthermore, in line with [46], we also evaluate our332
method on the video highlight detection task. First, we uni-333
formly divide the input video into 5-second-long shots and334
calculated the average frame scores for each shot. The top335
ρ ∈ {15%, 50%} of these shots are designated as ground336
truth highlights, following previous works [17, 33, 52].337
Mean Average Precision (MAP) is used to measure the per-338
formance. This evalutation metric differs from the summa-339
rization f1 score in that it divides each segment uniformly340
and greedily includes each segment into the highlights. We341
demonstrate that our model consistently outperforms other342
baselines across all of these different metrics.343

5.2. Implementation Details344

For input video representation, we downsample the videos345
to a uniform frame rate of one frame per second (1 fps).346
Our model’s architecture employs two transformer encoder347
layers for visual encoding and an additional two transformer348
layers focusing on denoising video importance scores. Each349
of these transformer layers has a hidden size of 256, 8 atten-350
tion heads, and feed-forward network with a dimensionality351
of 1024. To optimize our model, we use the AdamW op-352
timizer [26], incorporating a cosine annealing strategy for353
the learning rate [48]. This strategy gradually reduces the354
learning rate from an initial value of 5e-5. Our training pro-355
cess utilizes a batch size of 256, runs for 200 epochs and is356
executed on a single NVIDIA A4000 GPU.357

5.3. Experimental Results358

Comparison with State-of-the-Art models. We follow359
Mr.HiSum [46], to split train, validation and test set to train360
our model and other existing video summarization methods361
on the train set and select the best performing model on the362
validation set. The performance on the test set are summa-363
rized in Table 1. For A2Summ [12], which integrates text364
information, the text part of the model is removed for fair365
comparison.366

Model F1 Score MAPρ = 50% MAPρ = 15%

SummDiff (Ours) 57.71±0.005 65.28±0.007 33.67±0.03

PGL-SUM [2] 55.89±0.04 61.60±0.14 27.45±0.15

VASNet [10] 55.26±0.05 58.69±0.30 25.28±0.40

SL-module [50] 55.31±0.09 58.63±0.13 24.95±0.13

A2Summ [12] 51.87±0.16 59.18±0.13 30.70±0.21

DSNet [56] 50.78±0.16 57.31±0.18 24.35±0.34

iPTNet [22] 50.53±0.16 55.53±0.25 22.74±0.13

Table 1. Performance on Mr.HiSum dataset

Figure 3. Performance metrics over DDIM Steps.

As you can see clearly from the table, PGL-SUM [2], 367
VASNET [10], SL-module [50], and our model, SummDiff, 368
consistently outshine other video summarization techniques 369
in terms of F1-score. Particularly, SummDiff demonstrates 370
superior performance across various metrics when com- 371
pared with leading models. For example, it surpasses PGL- 372
SUM by 1.82% in F1-score, 3.68% in MAPρ = 50%, and 6.22% 373
in MAPρ = 15%. Unlike prior models that estimate importance 374
scores in a straightforward manner from the video input, 375
SummDiff adopts a novel approach by modeling the flow 376
of the functional relationship between the video content and 377
its importance scores, resulting in more precise video sum- 378
maries. Crucially, our approach departs from conventional 379
methods that generate importance scores for the entire video 380
at once. Instead, SummDiff employs a generative technique 381
that allows for conditional creation. It crafts each segment 382
of the summary by considering the current video segment 383
and refining based on the previously denoised score. This 384
methodological innovation ensures that each portion of the 385
summary is contextually coherent with the preceding con- 386
tent, significantly enhancing the quality of the summary, as 387
demonstrated by the outstanding results reported in Table 1. 388

Performance over DDIM Steps. In figure 3 and table 2, 389
we explore the effects of different DDIM [42] steps. 1 step 390
refers to directly going from a complete noise distribution to 391
the predicted importance score. Both the figure 3 and table 392
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Model SummDiff (Step 1) PGL-SUM

F1 Score 57.12 55.89
MAPρ = 50% 63.32 61.60
MAPρ = 15% 31.69 27.45

Table 2. Performance comparison at step 1.

Datasets Models

Training Test SummDiff VASNet PGL-SUM

TVSum TVSum 56.7 54.2 ±0.9 55.5 ±0.7
Mr.HiSum TVSum 57.6 57.1 ±1.0 57.1 ±0.7

SumMe SumMe 42.4 41.9 ±3.3 41.7 ±3.2
Mr.HiSum SumMe 41.8 42.6 ±1.3 42.3 ±2.1

Table 3. Comparison of training performance from scratch and
zero-shot transfer performance when pretrained on Mr.HiSum
[46], evaluated on the TVSum [45] and SumMe [11] datasets.

2 suggest that SummDiff (Ours) outperforms PGL-SUM[2],393
the best performing model among pre-existing video sum-394
marization models, even with DDIM [42] step 1 across all395
of the metrics. This result also supports our claim that mod-396
eling the flow of the function between video input and the397
corresponding importance score is superior to direct model-398
ing like other models. We can also observe that increasing399
step size leads to better model performance showing that400
the iterative generation process refines the video importance401
score at each step and produces a better summary.402

Comparison on Traditional Benchmarks. To validate the403
effectiveness of our model on additional video summariza-404
tion datasets, we present its performance on TVSum [45]405
and SumMe [11]. The first and third columns of table 3 dis-406
play the performance metrics when each model is trained407
from scratch on the respective dataset. Due to the limited408
size of the dataset, we employed 5-fold cross-validation.409
This approach allowed us to set aside a test set while us-410
ing a validation set from each training fold. The average411
performance across all 5 folds is reported to ensure a robust412
evaluation of our model. Across both datasets, SummDiff413
outperforms the two leading baselines, PGL-SUM [2] and414
VASNet [10], by a margin of 1.2% for TVSum and 0.5%415
for SumMe, demonstrating superior capabilities. The sec-416
ond and fourth columns illustrate the zero-shot prediction417
competency when pretrained on the Mr.HiSum [46] dataset418
and subsequently evaluated on the target datasets. In ev-419
ery evaluation setting across all datasets, SummDiff consis-420
tently showcases enhanced performance.421

Embedding Type F1 score MAPρ = 50% MAPρ = 15%

Fixed Uniform Rand 56.95 64.85 33.50
Fixed Fourier 57.27 65.24 33.02
Learnable 57.71 65.28 33.65

Table 4. Embedding Type Performance Comparison

K F1 Score MAPρ = 50% MAPρ = 15%

5 57.31 64.94 32.22
10 57.23 64.58 32.30
50 57.49 64.54 32.39

100 57.60 65.20 33.08
200 57.83 64.78 32.91
400 57.76 65.34 32.66
800 57.20 64.93 33.01

1600 57.47 65.15 33.21

Table 5. Performance Metrics for Different Values of K

Classifier Free Guidance [13]

w 0.1 0.2 0.3 0.4 0.8 1.6 3.2

p = 0 57.51

p = 0.1 57.31 57.67 57.67 57.05 57.34 56.80 57.31
p = 0.2 57.71 57.59 57.08 57.24 57.25 57.33 57.20

Table 6. CFG: Classifier Free Guidance F1 score over p and w.

6. Ablation 422

Embedding Type. To analyze the effect of learnable vec- 423
tors after quantization as described in section 4.3, we ex- 424
perimented with fixed uniform random vectors and fixed 425
Fourier vectors for each quantized score. For the fixed 426
Fourier embedding, we assigned vertical embeddings along 427
with positional embeddings to ensure that each signal re- 428
mains distinct during training. As illustrated in Table 3, 429
learnable embeddings outperform the other two options. 430
This superiority can be attributed to the learnable embed- 431
dings’ capacity to adapt to visual conditions during the 432
training of the importance score denoiser. 433
Quantization Analysis in SummDiff. The quantization 434
process plays a pivotal role in our SummDiff model, facil- 435
itating the transformation of scalar scores into embeddings 436
for processing by the attention layer. In table 5, we explored 437
a range of K values, which decide the number of segments 438
into which the score values ranging from 0 to 1 are divided. 439
Each segment is associated with a learnable embedding. 440
Contrary to expectations, setting K = 5, thereby dividing 441
the score range into 5 uniform segments, yielded satisfac- 442
tory performance. This outcome highlights a unique aspect 443
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of video summarization—its reliance on relative rather than444
absolute score precision. Incremental increases in the value445
of K led to marginal improvements in model accuracy, as446
finer segmentation allowed for more precise score predic-447
tions. However, the performance enhancement plateaued448
and subsequently declined beyond K = 200, suggesting449
that the model struggles to learn from more than 200 score450
segments effectively.451
Classifier Free Guidance [13]. In our experiments, we ex-452
plored different values for the hyperparameters p and w to453
optimize our model. The parameter p represents the proba-454
bility of an unconditioned sample, where we replace the vi-455
sual condition with a null video (a completely black video)456
that undergoes the same feature extraction process as other457
videos. The parameter w determines the extent to which458
unconditioned information is used during inference.459

The inference update is performed using the following460
formula by [13]:461

ϵ̃θ(St, c) = (1 + w)ϵθ(St, c)− wϵθ(St),462

where c denotes the condition, and wϵθ(St) represents the463
unconditional score term.464

Scale λ 0.5 1 2 4

F1 Score 57.28 57.71 57.02 55.73
MAP 50 64.31 65.28 64.14 62.00
MAP 15 32.02 33.67 31.52 29.10

Table 7. Performance metrics for different scale values of λ.

Scale Parameter λ. The scale parameter λ plays a cru-465
cial role in mapping the ground-truth score values into the466
range [−λ, λ] as described in section 4.4. This parameter467
influences the extent of the tail information from the Gaus-468
sian distribution that is utilized. After the forward process,469
we apply clamping, making λ a significant factor for the470
model’s performance. As demonstrated in Table 7, setting471
λ to 1 is effective for scaling the score values to the range472
[−1, 1] during the training’s forward process.473

7. Conclusion474

In this paper, we proposed SummDiff, the first model using475
the diffusion technique for the video summarization task in-476
spired by the denoising nature of the human summarization477
process. Our model works by denoising the noisy score478
based on contextualized visual features with a generative479
diffusion technique. Additionally, our model incrementally480
fits a derivative function to model the relationship between a481
video and its summary, representing a substantial advance-482
ment over traditional methods. These techniques not only483
improve performance but also provide a more profound484
understanding of video content. As a result, our model485
outperforms state-of-the-art video summarization models,486

trained not only on the large-sized Mr.HiSum dataset 487
but also on the traditional TVSum and SumMe datasets. 488

489
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