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Abstract

Person re-identification (ReID) focuses on identifying a
specific individual from a collection of images taken by
different cameras. Although significant progress has been
made, current methodologies apply same strength of super-
vision to all galleries regardless of inferability which can
lead models to overfit on domain-specific data. To address
this, we introduce a novel inferability-guided learning ap-
proach that adjusts the supervision intensity based on the
inferability of each viewpoint. We propose two techniques
for measuring inferability: one assessing the angle of visi-
bility and another evaluating the length of the overlapping
visible arc modeled as an ellipse. These techniques help
the model emphasize reliably inferable features, thereby re-
ducing dependency on uncertain information. Experimen-
tal results show that our method aligns the feature space
with inferability, enhancing interpretability and explain-
ability. However, this alignment does not necessarily im-
prove generalization performance in ReID tasks, indicating
a trade-off between using reliable and potentially useful but
domain-specific data. Our contributions offer a versatile
framework for viewpoint-based supervision, aliging feature
space with infearability which further improves model in-
terpretability and explainability.

1. Introduction
Person re-identification(ReID) aims to retrieve a queried

person from a set of images captured by disjoint cameras.
With the significant advancements in visual information ex-
traction, person ReID models have achieved impressive per-
formance [2, 4, 9, 25]. However, it grapples with challenges
such as limited datasets due to privacy concerns, resulting in
fewer resources compared to other domains [10,11,15,17].
This scarcity, coupled with dataset distribution disparities,
poses complexities in training models for domain gener-
alizable (DG) ReID. Despite these hurdles, substantial re-
search [7,18,20,22] is being conducted to enable models to
exhibit robust performance across diverse domains despite
being trained on a single domain.

Figure 1. Plausibility and Inferability. All the photos in this
figure are from the gallary that are ”plausible” matches to the
queried image. These photos can be categorized as to whether
they match the queried image (left or right) or whether they can be
inferred from the queried image (top or bottom). In this case, even
though the human reidentification model is trained using images
with matching identities, it learns the back that cannot be inferred
from the front as a ground truth pair. As a result, the model will
proceed with supervised learning without sufficient evidence when
matching people, and it will learn domain-specific data.

However, we observed that the prevalent supervised
learning scheme in current ReID systems is inevitably prone
to overfit on training domain. As depicted in Fig. 1, there
exists an inherent limitation in inferring the opposite side
(i.e 180◦ difference, such as in front and back), due to the
absence of visual cues from the opposite viewpoint. For in-
stance, when the queried person is facing the camera, it is
impossible to precisely determine the correct back view im-
age, though it may be plausible. That is, not all images in
the ground truth gallery can be inferred in the same manner.

This intrinsic problem of having multiple plausible gal-
leries for a single viewpoint exacerbates the tendency of
models to overfit on the training domain. Since viewpoints
that are nearly impossible to infer from a given image lack
sufficient visual cues, it becomes inevitable to rely on the
data used during training. Continuously applying supervi-
sion to only the opposite view available within the train-
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ing domain compels the models to adopt to domain-specific
data. This leads to limit the ability to generalize in unseen
domains, as it relies on the assumption that a single desig-
nated opposite view is correct.

A natural question that arises from this observation is:
Could we reduce dependency on the training domain by re-
lying less on non-inferable information and more on infer-
able information? To address this issue, we propose a novel
inferability-guided learning scheme. Our approach mod-
ifies the supervision strategy by weighting the inferential
possibility of each viewpoint. Views that are almost im-
possible to infer receive lighter supervision, acknowledg-
ing the higher uncertainty and variability in these cases.
Conversely, viewpoints that are strongly inferable are sub-
jected to stronger supervision. This method not only re-
duces the risk of overfitting by not forcing the model to
learn from highly uncertain or inaccurate assumptions but
also enhances the generalization capabilities across diverse
arbitrary domains.

To achieve this, we propose two methodologies for quan-
tifying inferability using the heading direction of images in-
ferred by 3D body keypoints. The first method evaluates the
degree of overlap based on the angle visible to the camera.
This approach considers how much of the person’s body is
visible from the camera’s perspective and calculates infer-
ability periodically based on the extent of this overlap. The
second method models human body as an ellipse, and quan-
tifies inferability by measuring the length of the overlapping
arc of the exposed surface of the person as seen from the
camera. By assessing the proportion of the person’s surface
area that is visible and comparing it across different view-
points, we can determine the inferability more precisely.

These two quantification methods provide a robust
framework for guiding the supervision process, ensuring
that the model focuses more on reliably inferable features
while avoiding overreliance on uncertain and non-inferable
information. Our experiments demonstrate that injecting
our inferability-guided supervision methodology aligns the
feature space with inferability. Specifically, within the same
person’s galleries, images with similar viewpoints are closer
to each other than those with opposite viewpoints.

However, thorough experiments revealed that aligning
the feature space with inferability does not necessarily im-
prove generalization performance, particularly in person
ReID tasks. This may be attributed to the trade-off involved
in utilizing less information from the galleries, which, al-
though potentially unreliable in other domains, could be
beneficial for generalization. Nonetheless, our work signif-
icantly contributes to creating a feature space that is more
coherently aligned with viewpoints, thereby enhancing the
interpretability and explainability of the model.

Our major contributions are:

• We propose a novel inferability-guided learning

scheme that adjusts the supervision strategy based on
the inferability of each viewpoint.

• We introduce two novel methods for quantifying infer-
ability, providing a versatile metric that can be applied
to any viewpoint-related images.

• We demonstrate that our inferability-guided supervi-
sion methodology aligns the feature space with infer-
ability, resulting in images with similar viewpoints be-
ing closer to each other within the same person’s gal-
leries. This alignment enhances interpretability and
explainability, offering global applicability.

2. Related Work
Closed-World Person Re-Identification. Closed-

World Person Re-Identification focuses on identifying in-
dividuals within a controlled, experimental setting, where it
is assumed that all test subjects are included in the train-
ing database. This setting typically utilizes images or
videos captured by fixed surveillance cameras, with data
clearly represented within well-defined bounding boxes.
[24] significantly enhanced the efficiency of Re-ID systems
by integrating deep learning techniques within the closed-
world setting, influencing subsequent developments in Re-
ID technologies profoundly.

Many works have been conducted on feature representa-
tion learning, deep metric learning, and ranking optimiza-
tion. [12] proposed effective methods for combining global
and local features to enhance accuracy in identity recog-
nition. Additionally, [14] tackled the limitation of relying
solely on visual cues by incorporating attribute-based learn-
ing to enrich the feature set with semantic information.

In the area of metric learning, [8] utilized triplet loss
functions to enable more sophisticated identity distinctions
in Re-ID systems. This approach significantly enhances
system performance by better capturing the complex
variations in human appearance than conventional methods.
For ranking optimization, the angular loss-based metric
learning proposed by [1] proved effective. These technolo-
gies contribute importantly to accurately identifying and
matching query subjects within a closed-world setting. [19]
specifically designed to improve the ranking process by fo-
cusing on embedding distances. This methodology not only
optimizes the accuracy of the top-ranked retrieval results
but also ensures that the differences in the feature space
translate into meaningful distinctions between different
identities. By effectively reducing the intra-class variability
while maximizing the inter-class differences, this approach
has set a new standard in ranking optimization, ensuring
that the system’s responses are both relevant and reliable.

Open-World Person Re-Identification. Open-world
person re-identification (Re-ID) focuses on identifying indi-
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Figure 2. The Overall Architecture of Proposed Training Scheme. Given a query image, the pose-conditioned generator G creates a
novel plausible opposite-viewpoint images. The augmented images, along with the original ground truth xi and query xQ, are processed by
the feature extractor E, which discriminative features. The extracted features are then utilized in the inferability-guided learning process,
where the similarity between the query and ground truth images is weighted by their inferability score, derived from the difference in their
heading directions as determined by body keypoints. The entire process aims to reduce reliance on training domain via enriched the visual
cues of the non-inferable viewpoints and adjusted supervision.

viduals in unpredictable environments, where it is required
to recognize persons not previously included in the training
dataset. Unlike closed-world scenarios, open-world Re-ID
faces significant variability due to changes in background,
lighting, clothing, and appearance. [6] discuss how these
systems can dynamically update their models to incorpo-
rate new data as it becomes available, continuously learning
and improving. This approach addresses the critical issue of
model obsolescence in rapidly changing scenarios.

Additionally, [16] introduce an unsupervised learning
approach which enables the identification of individuals
without relying on pre-labeled data. This is particularly
valuable in open-world settings where obtaining compre-
hensive labeled datasets is impractical. The system adapts
using pseudo-labels generated from the data itself, refining
these labels as more data becomes available. [3] present a
novel strategy that combines multi-domain learning tech-
niques with a hardness-aware loss function. This func-
tion effectively distinguishes between in-domain and out-
of-domain data, enhancing the robustness of the Re-ID sys-
tem against the diversity of the open world. These method-
ologies significantly contribute to bridging the gap between
the controlled environments of closed-world Re-ID and the
unpredictable nature of open-world scenarios.

3. Methods

problem formulation. Given a set of images
X = {x1, x2, . . . , xn} and corresponding labels Y =
{y1, y2, . . . , yn}, the goal of person ReID is to identify the
most similar image x̂ from X that matches the query xQ,
excluding the query itself (x̂ ̸= xQ). This can be formal-
ized as finding the image that maximizes the similarity with

respect to the query:

x̂ = arg max
x∈X\{xQ}

sim(E(x), E(xQ)) (1)

where E is the feature extractor that maps an image tod a
feature space. In this work, we aim to train a feature extrac-
tor E to extract more similar features for mutually inferable
targets. To achieve this, we model inferability estimation
based on heading direction and reflect it in triplet loss to
perform inferability guided learning. Proposed architecture
is illustrated in Fig. 2, described in the following sections.
Our methodology can be used as an add-on to algorithms
that typically use distance between features in Person Re-
Identification, regardless of the structure of the feature ex-
tractor.

3.1. Inferability Estimation

As the first step to quantify the inferability between two
images, we need to determine the heading direction of it. To
do so, the 3D keypoints are estimated by a pose estimation
algorithm [5]. Out of all the 3D keypoints found, seven key
body points are used to determine the heading angle: the left
and right shoulders, hips, and a point on the 2D centerline.
These keypoints, represented as K = {{pj}7j=1}ni=1. Using
these points, a plane is found using least square fitting, and
the normal vector of this plane is defined as the heading
vector dir(xi).

dir(xi) = arg min
v∈R3

∥KT
i v − 1∥2 (2)

The heading vector is projected onto the 2D plane to get
the relative angle between the image view frame and the
direction of the person. In addition, a possible assumption
for the inferability aspect of Persion re-id is that people are
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(a) Heading direction with pose estimation.

(b) Infereble surface with symmetric assumption.

Figure 3. Illustration of Inferable Surface Estimation. Using
MMPose [5], the 3D coordinates of a keypoint on the torso that
determines the orientation of the body is obtained as shown in (a).
The heading vector(bold red arrow) is from normal vector of plane
fitted by least square from the keypoint on the torso. In (b), the
infeasible surface (red curve) is found through the heading angle
(Dir(x)) and symmetrical assumption of a person body. Images are
from MSMT17 [21].

symmetrical on the left and right. In Figure 3b, the infeasi-
ble surface is found through the previously obtained head-
ing angle using the assumption for symmetrical person. To
formalize inferability, there are two conditions that must be
satisfied, symmetry and periodicity. Symmetry reflects the
symmetry of the left and right sides of a person, and period-
icity is required to show a relationship between two heading
directions. To reflect these characteristics, we design the bi-
modal von Mises distribution and the Jaccard coefficient of
the inferable surface with the assumption that the person
have shape of ellipse pole. The values for each of the de-
signed formulas are depicted in Figure 4.

Bi-modal von Mises distribution Since the inferability
must be in the form of a periodic function for the heading
direction, we use the von Mises probability density func-
tion, which is a probability function with a periodic form
as the basis function. Also, it should follow a symmetric
distribution with respect to 0 degrees, so we define it as fol-

(a) Bi-modal von Mises, κ = 1 (b) Bi-modal von Mises, κ = 5

(c) Jaccard coefficient, b/a = 1.5 (d) Jaccard coefficient, b/a = 3.5

Figure 4. Inferability with relative heading direction. Each im-
age shows the values for two inferability designs that satisfy pe-
riodicity and symmetry, given the two heading directions that we
want to compare. For each design, there are parameters kappa and
b/a that determine how sensitive it is to angular differences. The
larger these values are, the more sensitive the variation is to the
difference between the two angles.

lows:

f(x | µ, κ) = exp(κ cos(x− µ))

2πI0(κ)

inf(xi, xj) =
1

2
f(xj | dir(xi), κ)+

1

2
f(xj | flip(dir(xi)), κ))

(3)

where dir(xi) and dir(xj) represent the heading directions
of the respective images. A larger difference in heading
directions implies lower inferability, due to less overlap in
visual cues. This metric quantitatively assesses the chal-
lenge in inferring one image from the another when their
orientations diverge significantly. κ is a hyperparameter that
controls the sensitivity of the supervision strength to differ-
ences in heading directions. A higher value of κ results in a
sharper decrease in weight for larger directional differences,
thus mitigating the impact of highly uncertain matches on
the learning process.

Jaccard coefficient with ellipse Given the person’s
heading direction dir(xi), as shown in figure 3b, we can
find the area visible in the view frame. By flipping this with
respect to the person’s front axis, we can get the entire infer-
able surface, which is called sxi

. Similarly, for the inferable
surface with xj , we get another sxj . The more intersections
of inferable surfaces, the more inferable it is. Therefore, the
Jaccard coefficient, which is the ratio of the intersection to
the union of sxi

and sxj
, is used to define inferability as
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equation 4. The | sx | can be simply computed by length of
ellipse with a ratio b/a between the major(b) and minor(a)
axes.

inf(xi, xj) =
| sxi

∩ sxj
|

| sxi ∪ sxj |
(4)

Similar to von Mises’ κ, the larger the value of b/a, the
more sensitive it is to angular disparity. This allows you
to control the sensitivity between heading direction differ-
ences and inferability between two images.

3.2. Inferability-guided learning

In contrast to the conventional supervised learning
scheme where all ground truths equally contributes during
training, our proposed inferability-guided learning incor-
porates the inferability to adjust the contribution. That
is, non-inferable viewpoints are weakly supervised while
highly-inferable viewpoints are strongly supervised.

Learning Objective.

Lsim =
∑

(i,j),i̸=j

inf(xi, xj) · l(E(xi; θ), E(xj ; θ), yi, yj)

(5)
where inf(·, ·) is inferability function of either Eq. (3) or
Eq. (4), E is a feature extractor, l is conventional loss func-
tion in person ReID, and yi is an identity label of xi. Here,
the loss function was defined as triplet loss.

This dynamic supervision strategy ensures that pairs of
images with high inferability contribute more to the model’s
training, encouraging the learning of robust and generaliz-
able features. Conversely, pairs with low inferability have
a reduced impact, preventing the model from overfitting to
ambiguous and less informative data.

4. Experiments
4.1. Datasets and Evaluation Metrics

Baseline. To evaluate our proposed learning scheme, we
chose PAT [18], the state-of-the-art generalizable person re-
id model as our baseline.

Datasets. We conducted experiments with the three
most commonly used datasets (Market1501 [23], MSMT17
[21], CUHK03-NP [13]) to evaluate the performance of
proposed algorithm both in various environments and out-
side of the training domain. Additionally, we have restruc-
tured the existing dataset by adding 3D pose information in
two ways: discretely and continuously. We used the dataset
with discretely added pose information to determine model
overfitting, while the dataset with continuously added pose
information was used for training the model.

Evaluation. To ensure a fair comparison with base-
line algorithm [18], we will evaluate performance using

mAP and R1-score, traditionally used metrics in person re-
identification tasks. We will also use a newly processed
dataset—where query-groundtruth pairs that cannot be in-
ferred are no longer recognized as groundtruth pairs—to
assess whether each algorithm is overfitting on the training
data.

Train Domain Market1501 [23]

Test Domain Market1501 [23] CUHK03-NP [13] MSMT17 [21]

Metric R1 mAP R1 mAP R1 mAP

baseline 92.5 81.4 27.2 25.9 39.6 16.3

kappa = 1 90.4 75.0 19.8 20.0 30.9 12.1
kappa = 3 75.4 52.0 4.9 5.4 11.7 3.8
kappa = 4 90.6 75.0 11.3 12.4 27.4 10.0
kappa = 5 89.2 72.4 16.7 17.3 29.8 11.1
kappa = 6 89.5 74.5 20.6 21.3 34.2 13.8
kappa = 7 90.5 75.5 20.6 21.2 33.0 13.2
kappa = 8 89.5 73.9 16.7 17.2 29.7 11.4

Table 1. Performance comparison for different values of
kappa. The shaded values represent in-domain evaluations,
while the others are assessed in cross-domain.

4.2. Viewpoint based Inferability

Distribution Modeling. Using a periodic Von Mises
Distribution, we modeled the inferability of objects in im-
ages based on their viewpoints. Since the hyperparameter
kappa is crucial in the Von Mises Distribution, and we con-
ducted ablation study with different kappa values to find
the optimal one. As shown in Tab. 1, the selected range
of kappa values is between 4 and 7. When employing these
kappa values, the inferability becomes zero if the viewpoint
difference between images of the same identity exceeds ap-
proximately 100 degrees, which is intuitively reasonable.
Injecting the inductive bias of that humans are mostly sym-
metrical, we used another Von Mises Distribution that is
symmetrical to 0 degrees along with the generated distribu-
tion. (We set the camera lens direction to 0 degrees, with
counterclockwise rotation being positive, and represented
the rotation angle from -180 degrees to 180 degrees.)

Train Domain Market1501 [23]

Test Domain Market1501 [23] CUHK03-NP [13] MSMT17 [21]

Metric R1 mAP R1 mAP R1 mAP

baseline 92.5 81.4 27.2 25.9 39.6 16.3

min = 0.2 90.7 76.2 21.3 20.9 35.6 14.3
min = 0.5 92.2 79.2 24.3 24.4 40.5 16.8
min = 0.8 92.8 79.8 25.3 24.8 40.6 16.8

Table 2. Performance comparison for different rescaling values
(kappa=4).

For galleries deemed non-inferable due to a direction
difference exceeding 100 degrees, applying the von Mises
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Figure 5. Average difference in heading direction between query and gallery. The results show the average angular difference between
the query image and the images ranked by an algorithm trained on the Market1501 dataset with kappa = 5 and minimum inferability of
0.1. Overall, as the rank increases, the angular difference also increases. Although the angular difference is larger in the untrained domain
compared to the trained domain, it still shows an increasing trend with higher ranks. The reason for different ranks across datasets is due
to the varying number of gallery images matching the query in each dataset.

distribution would set inferability to a value close to zero.
However, this approach is inappropriate as it completely
severs the relationship between queries and galleries with
a direction difference greater than 100 degrees. Therefore,
the minimum value of inferability was experimentally de-
termined and applied as shown in Tab. 2.

Viewpoint-aware Ranking. We trained our model to
prioritize images with smaller viewpoint differences from
the query image, among images with the same identity. As
shown in Fig. 5, the viewpoint difference between the im-
ages and the query increases with rank. Notably, the aver-
age direction difference within the same rank is reduced in
our method compared to the baseline. This demonstrates
that our inferability-guided supervision effectively aligns
the feature space with inferability, thereby ranking more in-
ferable images higher. The feature space, enriched with in-
ferability, is more explainable and interpretable. The persis-
tence of this tendency in cross-domain evaluation indicates
that our algorithm can consider inferability when learning
or performing inference in an open-world setting.

4.3. Domain Generalizability

In-Domain and Cross-Domain Evaluation.

Train Domain Market1501 [23]

Test Domain Market1501 [23] CUHK03-NP [13] MSMT17 [21]

Metric R1 mAP R1 mAP R1 mAP

baseline 92.5 81.4 27.2 25.9 39.6 16.3

Bi-modal von Mises distribution 92.8 79.8 25.3 24.8 40.6 16.8
Jaccard coefficient with ellipse 89.9 75.0 21.5 21.7 32.8 13.4

Table 3. Performance comparison for different inferability
measure.

For the inferability measures we proposed, bi-modal von
Mises distribution method was superior to the jaccard co-

efficient with ellipse method. (Tab. 3 Unfortunately, in all
the experiments conducted in sections 4.2 and 4.3, no sin-
gle model significantly outperformed the baseline across all
metrics. Further research is needed to achieve more gener-
alizable performance.

4.4. Time Consumption

Calculating inferability requires the extraction of 3D
body keypoints, which can be time-consuming. However,
note that inferability is applied only during training and not
during inference. As a result, while the training process
takes approximately five times longer for the same archi-
tecture, the inference time remains unaffected. Addition-
ally, by pre-extracting keypoints for the training dataset, the
overall training time can be unaffected.

Online Train Pre-extract Train Inference
Ours 5x 1x 1x

Table 4. Time consumption comparison. Inference time con-
sumption remains unaffected.

5. Conclusion

We proposed a novel inferability-guided learning ap-
proach for generalizable person re-identification. By lever-
aging differences in heading direction, our method encour-
ages the model to focus less on domain-specific knowl-
edge and more on domain-general inferable knoweldge.
Although the performance improvement in cross-domain
settings was not significant, our approach effectively con-
structs an inferability-enriched feature space. This en-
hanced feature space provides greater interpretability and
explainability, as demonstrated in our experiments.
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6. Limitations and Future Work

It was challenging to significantly improve performance
with partial modifications to the baseline algorithm’s loss
function, rather than a comprehensive overhaul. While we
hoped that our modified loss would balance well with the
existing loss function during training, it was insufficient.
Therefore, for future work, we believe that proposing a new
overall structure and redefining the loss function could lead
to groundbreaking performance improvements.

The overfitting issue we identified—specifically, the
problem of finding rear images based only on front im-
ages—could result in a decline in algorithm performance
in real-life open-world scenarios. This issue arises because
training and testing are both conducted within limited do-
mains, and there is no metric for overfitting. To clearly iden-
tify this overfitting phenomenon, it is necessary to sample
similar images from currently available datasets, perform
inference among the sampled images, and explore methods
to address this problem.
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