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Abstract

Image geolocalization, the task of determining the precise
geographical coordinates of an image, remains a challenging
problem in computer vision. Traditional approaches often
struggle with generalization across diverse datasets and
exhibit significant urban-rural disparities. In this study, we
introduce a novel geolocalization model that leverages user-
submitted photographs and satellite map images. Our model
uses a ViT-based hierarchical prediction pipeline consisting
of multiple zoom levels to progressively narrow down the
location of an image. The photo encoder extracts feature
embeddings from the input image, which are then compared
with embeddings from satellite images processed by map
encoders at various zoom levels. This iterative process aims
to improve geolocation precision.

Our preliminary results indicate that while the model’s
performance does not surpass state-of-the-art methods in
terms of accuracy, it provides valuable insights and a new
approach to the geolocalization task. The research high-
lights the challenges in data collection and integration, and
suggests directions for future improvements. Additionally,
we propose future work incorporating GeoCLIP, a well-
performing model, to enhance performance by leveraging
its robust initial predictions and harmoniously integrating it
with our model during the training phase.

1. Introduction
Image geolocalization, the task of determining the geograph-
ical location of a photograph, poses significant challenges in
the realm of computer vision. This problem is exemplified
by the popular online game GeoGuessr, where players must
deduce locations from panoramic Street View images. The
complexity of image geolocalization arises from the vast
diversity and dynamic nature of Earth’s landscapes, com-
pounded by seasonal variations and the impacts of climate
change.
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Recent advances in the field have treated image geolocal-
ization primarily as a classification problem, employing hi-
erarchical models and state-of-the-art techniques like vision
transformers and contrastive pretraining to enhance accuracy.
Despite these advancements, a critical challenge remains:
models often struggle to generalize across highly diverse and
previously unseen datasets, highlighting the need for method-
ologies that go beyond training-test distribution alignments.
Furthermore, the urban-rural disparity in image data compli-
cates model training, with urban areas being overrepresented
compared to less-documented rural or undeveloped regions.

To address these challenges, our study proposes a novel
approach that leverages map tile images from the internet,
consisting of both satellite imagery and overlaid text and
symbols, alongside photograph to improve geolocalization
accuracy. By incorporating map images with distinctive fea-
tures such as sea, land, and city boundaries, our method
enriches the data pool, allowing for a more nuanced interpre-
tation of the geospatial elements present in user images.

Our model utilizes ViT-based image encoders in a 7-stage
hierarchical prediction pipeline to predict the location of
each photo. Specifically, the model consists of a ”photo en-
coder,” which is an unmodified CLIP image encoder for ex-
tracting embeddings from images, and seven ”map encoders,”
which have been fine-tuned on satellite map tile images for
each of the seven zoom levels in our hierarchical prediction
pipeline. This design allows the model to iteratively narrow
down the search area by comparing photo embeddings with
map tile embeddings at progressively higher zoom levels.

In our prediction pipeline, the map tiles at each zoom level
are divided into a 4x4 grid, and the top k similar patches are
selected based on cosine similarity with the photo. These
selected patches are then further divided and passed through
the next zoom level’s map encoder, iteratively refining the
geolocation prediction. This process enhances the model’s
ability to accurately pinpoint locations by leveraging both
visual cues from photos and detailed geographic information
from map tiles.

The proposed approach demonstrates high performance
in initial experiments, with the model showing significant



improvements over traditional methods. However, it is worth
noting that our model exhibits lower performance compared
to some state-of-the-art models on the given Im2GPS bench-
mark. Future work will focus on addressing these limitations
and refining the model to better suit the task.

In summary, our research presents a promising direction
for enhancing image geolocalization by integrating photo
with satellite map tile images and employing a hierarchical
prediction pipeline.

2. Related Work

2.1. Image Geolocalization Problem Setting

Image geolocalization, the complex challenge of deriving
geographical coordinates from visual data, remains a critical
focus in computer vision. Historically, traditional methods
like IM2GPS utilized hand-crafted features and relied on
extensive databases for nearest-neighbor retrieval, but these
approaches struggled with scalability and were impractical
for global application due to the vast data requirements [3].
These methods faced significant limitations in handling the
diversity and volume of data required for effective global
geolocalization, reflecting the early challenges in the field.

The fundamental complexity of image geolocalization
arises from the need to accurately interpret varied and often
ambiguous visual cues within diverse environments. Factors
such as changes in lighting, weather conditions, and seasonal
variations further complicate this task. Initially, the field
relied on static databases that could not effectively adapt to
the dynamic nature of global landscapes, often resulting in
poor generalization beyond the specific regions represented
in the training data.

Moreover, traditional image geolocalization techniques
were constrained by their dependency on clear, distinguish-
able landmarks that are not universally present in all geo-
graphic locations. This reliance on distinct features meant
that rural or undeveloped areas, which typically lack such
landmarks, were notably challenging for early geolocaliza-
tion systems. The initial problem setting in image geolo-
calization thus required a shift from reliance on extensive
image libraries to more adaptive and scalable solutions capa-
ble of dealing with the inherent variability and complexity
of global environments.

Recent advancements in image geolocalization have ad-
dressed many challenges by utilizing deep learning tech-
niques and leveraging large-scale datasets. Hierarchical mod-
els, vision transformers, and contrastive pretraining methods
have significantly improved accuracy. However, these mod-
els often struggle to generalize across various and unseen
datasets, indicating a need for approaches that can effectively
overcome training-test distribution discrepancies.

Our study aims to further enhance the accuracy and ro-
bustness of image geolocalization by introducing a sophisti-

cated hierarchical prediction model. This model leverages
both photograph and satellite map images to provide a com-
prehensive geolocation solution. The process begins with a
Vision Transformer (ViT)-based photo encoder, which ex-
tracts detailed feature embeddings from the input images.
These embeddings are subsequently compared with those
generated by map encoders, fine-tuned on satellite map tiles
at different zoom levels. Starting from a broad zoom level,
the model iteratively refines the search area by selecting the
top k tiles that exhibit the highest cosine similarity with the
photo embeddings. This iterative narrowing down process
continues through progressively finer zoom levels, enhancing
the precision of geolocation predictions.

Incorporating satellite map images enriched with distinc-
tive features such as textual indications of sea, land, and city
boundaries allows our model to interpret complex geospa-
tial elements with greater accuracy. This methodology pro-
vides a nuanced understanding of the geographical context
in user images, addressing the shortcomings of models that
depend solely on photograph. By integrating these diverse
data sources, our approach enhances the model’s ability to
generalize across varied environments.

2.2. Vision Transformers for Geolocalization

The evolution of image geolocalization has been signifi-
cantly influenced by the shift from traditional methodologies
to deep learning-based approaches. Initially, methods de-
pended heavily on manually crafted features and extensive
image databases. However, the field has since transitioned to
more holistic end-to-end learning strategies that leverage the
power of deep neural networks, fundamentally transforming
geolocalization practices (Masone Caputo, 2021)[9].

Introduced by Google in 2016, the PlaNet model marked
a pivotal turn by utilizing convolutional neural networks
(CNNs) to classify geographic locations into predefined ’geo-
cells’ (Weyand et al., 2016)[19]. This approach stemmed
from the challenges associated with using regression models
for direct geographic coordinate prediction, which struggled
due to the intricate variations in geographic data and the
complex relationships between coordinates.

As deep learning technology advanced, it facilitated a
renewed examination of the IM2GPS system (Vo et al.,
2017)[17], inspired the application of CNNs on expansive
mobile image datasets (Howard et al., 2017)[6], and even
integrated these models into competitive settings such as
the GeoGuessr game, where AI competes against human
players. The integration of classification and retrieval meth-
ods has also been refined, adopting a hierarchical retrieval
framework that mirrors prototypical networks with fixed
parameters (Kordopatis-Zilos et al., 2021)[7].

With the emergence of transformer architectures, origi-
nally developed for natural language processing (Vaswani
et al., 2017)[16], a new avenue has opened in computer
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Figure 1. The pipeline of our geolocation model. The process begins with the photo encoder, which extracts feature embeddings from the
input image. These embeddings are then compared with embeddings from satellite images processed by the map encoders at multiple zoom
levels (4, 6, 8, 10, 12, 14, and 16). At each zoom level, the model selects the top-k satellite images with the highest cosine similarity scores
compared to the photo embeddings. The selected satellite images are then divided into 4x4 grids and passed to the next zoom level’s map
encoder. This process is iteratively refined through higher zoom levels. The final prediction is made by selecting the satellite image with the
highest similarity score at zoom level 16, progressively narrowing down the location of the input image with high accuracy.

vision. Vision transformers (ViT) and their multi-modal vari-
ants, including OpenAI’s CLIP and GPT-4V, have been suc-
cessfully adapted for image geolocalization, demonstrating
substantial improvements in handling complex visual tasks
(Kolesnikov et al., 2021; Radford et al., 2021; Agarwal et
al., 2021; Pramanick et al., 2022; Luo et al., 2022; Zhu et al.,
2022; OpenAI, 2023).[15][13]

To enhance the accuracy and robustness of image geolo-
calization, our study employs a Vision Transformer (ViT)
architecture, specifically utilizing the CLIP image encoder
with the ViT-B/32 model. Our approach features a multi-
stage hierarchical system that processes photograph and
satellite map images. The ViT-B/32-based photo encoder
extracts detailed feature embeddings from input photograph,
providing a robust visual representation.

These photo embeddings are compared against embed-
dings generated by a series of map encoders, fine-tuned on
satellite map tiles at different zoom levels. Starting from a
broad zoom level, the model narrows down the search area
iteratively by selecting the top k tiles with the highest cosine
similarity. This process refines geolocation predictions at
progressively finer zoom levels, leveraging the hierarchical

structure of map tiles.

2.3. Utilizing CLIP for Geolocalization

Our work builds on recent advances in computer vision by
employing OpenAI’s CLIP (Contrastive Language–Image
Pre-training) model for the task of image geolocalization.
CLIP integrates the power of vision transformers with natu-
ral language processing, making it highly effective for robust
image recognition tasks crucial in geolocalization. This inte-
gration allows CLIP to understand and process both visual
and textual data, which is particularly advantageous in the
complex task of determining geographical locations from im-
ages. Notably, CLIP’s zero-shot learning capabilities enable
it to perform well across a variety of diverse and previously
unseen datasets, addressing the challenge of geolocalization
where environments can vary dramatically.

CLIP’s utility is further enhanced by pretraining it with
auxiliary geographic, demographic, and climate data within
a multi-task learning framework. This approach significantly
improves location accuracy by providing the model with a
richer context for interpreting visual data. By broadening
the model’s exposure to various environmental conditions,



CLIP becomes better equipped to generalize across differ-
ent geographies. For instance, training on demographic and
climate data helps the model recognize patterns associated
with specific regions, such as vegetation types in tropical cli-
mates or architectural styles in urban areas, thus enhancing
its predictive accuracy [18].

Moreover, CLIP can interpret contextual clues that
emerge from metadata or textual descriptions associated with
geographic locations. This capability allows us to use de-
scriptive location-based cues from data labels or annotations
that accompany training images, effectively bridging the gap
between visual data and geographical semantics. Terms like
”mountainous” or ”coastal” found in image descriptions can
influence the model in refining its geolocation predictions.
By aligning visual and textual data, CLIP can leverage ad-
ditional contextual information to improve overall accuracy.
For example, an image tagged with ”desert” can help the
model prioritize certain features such as sand dunes or sparse
vegetation, which are characteristic of desert landscapes.

The inclusion of CLIP in geolocalization framework
demonstrates a significant advancement in applying modern
machine learning techniques to traditional computer vision
problems. By combining the strengths of vision transformers
and natural language processing, CLIP sets a new benchmark
for how complex visual and textual data can be integrated
to enhance geolocalization tasks. This hybrid approach not
only improves the robustness and accuracy of location pre-
dictions but also opens new possibilities for further research
and application in related fields. The ability to interpret and
integrate multi-modal data sources makes CLIP a powerful
tool for tackling the inherent challenges of geolocalization,
paving the way for more accurate and reliable geospatial
data interpretation.

2.4. GeoCLIP

Building upon the CLIP framework, GeoCLIP extends
its capabilities by specifically focusing on geolocalization
tasks.(2023)[1] GeoCLIP leverages contrastive learning on
geolocated image pairs to provide robust initial geolocation
predictions. This model is pretrained with auxiliary geo-
graphic, demographic, and climate data within a multi-task
learning framework, which not only improves location ac-
curacy but also broadens the model’s exposure to various
environmental conditions, enhancing its ability to generalize
across different geographies.

GeoCLIP can interpret contextual clues that emerge from
metadata or textual descriptions associated with geographic
locations. This capability allows the model to use descrip-
tive location-based cues from data labels or annotations that
accompany training images, effectively bridging the gap be-
tween visual data and geographical semantics. Terms like
”mountainous” or ”coastal” found in image descriptions can
influence the model in refining its geolocation predictions,

aligning visual and textual data to improve overall accuracy.

While we did not integrate GeoCLIP directly into our
current model, we recognize its potential for future enhance-
ments. As future work, we propose incorporating GeoCLIP
to assist in refining geolocation predictions at higher zoom
levels. By leveraging GeoCLIP’s initial predictions and inte-
grating them into our hierarchical model, we aim to improve
the overall accuracy and robustness of our geolocalization
system. This future integration could enhance our model’s
performance, particularly in complex and diverse environ-
ments, further advancing the state of geolocation technolo-
gies.

2.5. Semantic Geocell Partitioning and Advanced Geolo-
calization Approaches

Our methodology advances beyond traditional image-to-
image retrieval by employing semantic partitioning of the
Earth into classes or ”geocells,” using hierarchical cluster-
ing and Voronoi tessellation to adapt dynamically based on
the training dataset distribution. This approach addresses
the imbalance in class sizes and enhances model perfor-
mance across diverse geographical distributions [11]. The
PIGEON model further expands on these techniques with
its use of multi-task contrastive pretraining that incorporates
geographical, demographic, and climate data to improve gen-
eralization across various and previously unseen locations,
setting a new standard in the field [4].

Additionally, the introduction of GeoCLIP by Vivanco
Cepeda et al. represents a significant breakthrough by em-
ploying the CLIP model to align image features directly with
GPS coordinates, thereby transforming the geolocalization
challenge into an image-to-GPS retrieval task. This method
not only improves the accuracy of localizing images from
diverse locations but also demonstrates a structured learn-
ing approach that iteratively refines geolocation estimates,
achieving superior performance with reduced training data
requirements.

In our study, we employ a simplified yet effective ap-
proach to geocell partitioning. Initially, the satellite map is
divided into a 16x16 grid at a broad zoom level. As the model
processes these tiles, it selects the top k tiles with the highest
cosine similarity to the photo embeddings. These selected
tiles are then further divided into smaller 4x4 grids, and the
process is repeated at progressively finer zoom levels. This
hierarchical method allows us to efficiently manage and pro-
cess large datasets by focusing computational resources on
the most relevant areas, thus improving geolocation accuracy.
By starting with a broad overview and iteratively refining
the search area, our model ensures that even minute details
are considered in the final geolocation prediction.



2.6. Cross-view and Multimodal Approaches

In line with the latest research trends, cross-view and mul-
timodal approaches significantly bolster the robustness of
geolocalization systems. These techniques merge ground-
level and aerial imagery to enrich feature sets, enhancing
geolocalization accuracy, particularly in under-documented
and rural areas where data may be sparse [20]. By integrating
both perspectives, models can leverage a more comprehen-
sive understanding of geographical contexts, which is critical
for accurate geolocation in diverse environments. Ground-
level images provide detailed, localized information, while
aerial or satellite views offer broader contextual insights,
making the combined approach more effective.

Recent studies have demonstrated that cross-view learn-
ing, where ground-level images are complemented by aerial
or satellite views, can greatly enhance the detail and contex-
tual information available to geolocalization models. This
approach mitigates the limitations faced by models rely-
ing solely on ground-level imagery, which can be sparse
or ambiguous, especially in rural or undeveloped regions.
The additional perspective provided by aerial views helps
to fill in the gaps left by ground-level images, offering a
more holistic view of the environment. For instance, while a
ground-level image might show a particular building or land-
scape feature, an aerial view can place that feature within a
broader geographic context, making it easier to pinpoint the
location accurately.

Multimodal techniques further enhance geolocalization
performance by incorporating various data types, such as
textual descriptions, climate data, and demographic informa-
tion. These additional data sources provide valuable context
that can refine geolocation predictions, making the mod-
els more resilient to variations in environmental conditions
and more adaptable to different geographies. By integrating
these diverse data sources, multimodal approaches create
a richer and more informative dataset for geolocalization
models. This not only improves the accuracy of predictions
but also enhances the model’s ability to generalize across
different environments, demonstrating their robustness and
adaptability.

3. Method
3.1. Model Architecture

We believe previous approaches to image geolocalization
were limited by the lack of common-sense knowledge about
the real world. To mitigate this, we propose a model that
utilizes map tile images from the internet consisting of both
satellite imagery and overlaid text and symbols that can
provide crucial zero-shot insight into the cultural and geo-
graphical context of each location.

We propose a model that only uses ViT-based image en-
coders in a 7-stage hierarchical prediction pipeline to predict

the location of each photo. Our model consists of 8 total
image encoders, all derived from the pre-trained CLIP im-
age encoder that uses the ViT-B/32 architecture. The first
encoder, which we designate the ”photo encoder”, is an un-
modified CLIP image encoder for extracting embeddings
from images. The remaining 7 encoders, which we designate
the ”map encoders”, have been fine-tuned on the satellite
map tile images for each of the 7 zoom levels in our hierar-
chical prediction pipeline by unfreezing the last two layers
of the transformer.

In order to effectively utilize existing map tiles, we set
our geocells to correspond to available satellite map tiles
from Google Maps, which consist of regions that have been
divided from a Mercator projection by powers of two.

In the Google Maps API for map tiles, each tile is
uniquely identified using three integer values x, y, and z.
z indicates the zoom level, where each side of the square
tile corresponds to the length of each side of the original
square Mercator map divided by a factor of 2z . Then, x and
y corresponds to the zero-based index of each tile in the
horizontal and vertical directions respectively, when the map
has been divided into 2z squares on each side. Hence, the
center of the map tile identified by (x, y, z) corresponds to
the following latitude ϕ and longitude λ (in degrees):

ϕ =
180

π

[
2 arctan

{
e
2π

(
0.5−y+0.5

2z

)}
− π

2

]
(1)

λ = 360 · x+ 0.5

2z
− 180 (2)

For the 7 stages of our prediction pipeline, we utilize map
tiles of zoom levels 4, 6, 8, 10, 12, 14, and 16. This allows
the model to easily identify the smaller tiles of the next level
corresponding to each tile of the previous level by simply
multiplying the x and y values by 4.

The prediction algorithm consists of the following steps:

Hierarchical Prediction
1: function PREDICT(X) ▷ X is the target photograph
2: k ← 64
3: C ← {all tiles where z = 4}
4: p← PhotoEncoder(X)
5: for z = 4, 6, 8, 10, 12, 14, 16 do
6: M ← {MapEncoderz(c)|c ∈ C}
7: S ← {CosineSimilarity(p,m)|m ∈M}
8: if z = 16 then
9: i← argmax(S)

10: return GetCenterLatLong(Ci)

11: I ← {i| |{s|s ∈ S, s ≥ Si}| ≤ k}
12: C ← {Ci|i ∈ I} ▷ narrow C down to top k
13: C ←

⋃
{GetNextLevelTiles(c)|c ∈ C}



Distance (% @ km)

Street City Region Country Continent Inference Time
1 km 25 km 200 km 750 km 2,500 km

k=16 5.91 11.81 22.36 42.62 64.14 8’38”
k=32 6.35 11.11 15.87 28.57 55.56 20’48”
k=64 5.48 12.33 16.44 32.88 58.90 30’33”

Table 1. Inference Time and Performance Metrics for Different k Values
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Figure 2. In the training process, we employed the contrastive
learning method of the existing open model CLIP. The user’s image
and the corresponding guided patch were paired, and training was
conducted to increase the cosine similarity of the two embeddings.
As a result, the last two layers of the map encoder were trained.

3.2. Model Training

For each zoom level, the corresponding map encoder is
trained by framing the task of matching each photo with
the correct map tile as a classification problem. For each
photo in a batch, the corresponding map tile of that zoom
level is treated as the correct class, and the corresponding
map tiles for the other photos in the batch are treated as
incorrect classes. The cosine similarities of each photo em-
bedding with the embeddings of the map tiles are put into
a softmax function to output probabilities, and these are
optimized using a cross-entropy loss.

Additionally, the fact that the map tiles of the coarser
zoom levels are not very diverse and contain extremely
coarse-grained information necessitates that we augment
the training process using information from the lower zoom
levels. As such, the map encoders are trained from the finest
to coarsest zoom levels sequentially, where the encoder for
zoom level 16 is fine-tuned from the original pre-trained
encoder and each training process of the next levels is a
fine-tuning of the trained model from the previous level. We
suggest that this may improve the performance of retrieval
in the coarser zoom levels by utilizing knowledge from the
finer zoom levels.

Figure 3. It describes the initial part of the model’s inference pro-
cess. Map patches at zoom level 4, divided from the original map
into 16x16, pass through our model, leaving only the top 16 maps
with high cosine similarity. This process continues iteratively.

3.3. Inference Method

The inference process proceeds as follows. First, the Map
Encoder fine-tuned through training with satellite map im-
ages at zoom level i, and the publicly available CLIP image
encoder ViT are prepared. Here, i ranges from 4 to 16 with
a spacing of 2. Using the i Map Encoder, the cosine similar-
ity between the satellite map image patches at zoom level
i and the user’s photo is calculated, and the top k similar
patches are selected. This process is illustrated in Figure 3.
Then, the selected k patches are further divided into a 4 by
4 grid. These k × 16 patches are passed through the i + 2
Map Encoder to obtain embeddings for each, which are then
compared again with the user image to calculate similarity,
yielding the top k high probability map patches. This process
is iterated from i = 4 to i = 14, ultimately obtaining the
highest probability map patch at zoom level 16. Through this
process, the inference of the location where the user photo
was taken is completed.

Since the process of obtaining k patches with high co-
sine similarity at each zoom level affects performance, the
value of k is expected to influence the results. Therefore, we
conducted inference while varying k values to 16, 32, and
64. This proved to be a significant factor affecting inference
time. It is provided at Table 1



Benchmark Method Distance (% @ km)

Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

IM2GPS[5]

ISNs [10] 16.9 43.0 51.9 66.7 80.2
Translocator [12] 19.9 48.1 64.6 75.6 86.7
GeoDecoder [2] 22.1 50.2 69.0 80.0 89.1
PIGEOTTO [4] 14.8 40.9 63.3 82.3 91.1

Ours 6.8 11.3 18.1 34.0 65.9

Table 2. Compare with other models in IM2GPS Benchmark.
The metrics other than the performance of Ours were obtained from [4].

4. Experiments
4.1. Data Preparation

We conducted training using a portion of the Yahoo Flickr
Creative Commons 100 Million dataset (YFCC100M) [14],
which had been previously utilized in geoEstimation tasks
[11]. This subset, structured according to the data introduced
in the MediaEval Placing Task 2016 (MP-16) [8], consists
of over 5 million geo-tagged images. The dataset images
encompass a variety of scenes, including outdoor and in-
door settings, as well as photos of food, people, and other
scenes where inferring location information directly may
be challenging. The photos were crawled from the Flickr
web platform, and the data includes information such as the
photo itself, the uploader’s id, and images’ latitude and lon-
gitude. Due to time constraints in our research, we utilized
approximately 190,000 data points for training.

The MP-16 dataset provides latitude and longitude data
for the locations where user images were taken. Therefore,
to utilize 2D map images in our model, it is necessary to first
convert 3D coordinates to 2D coordinates. For the Google
images we used, which have a 2D map started at latitude 85
degrees and longitude -180 degrees, the following formula
can be used to transform coordinates. Additionally, the for-
mula to obtain the (x,y)-th map at zoom level k from the
converted coordinates is as follows.

East Distance (E) = false easting + (λ− λo) (3)

North Distance (N) = false northing + ln

(
tan

(
π

4
+

ϕ

2

))
(4)

x =

⌊
E + π

2π/2k

⌋
(5)

y =

⌊
2k − N + π

2π/2k

⌋
(6)

Here, ϕ represents latitude in radians, λ represents longi-
tude in radians, λo represents the central meridian in radians.

‘false easting‘ and ‘false northing‘ are values to correct for
the easting and northing distances during the process of con-
verting 3D coordinates to 2D rectangular coordinates. This
time, both values were set to 0 before proceeding.

4.2. Hyperparameter Setting

The crawled BP-16 dataset was divided into train, valid, and
test sets with a ratio of 10:1:1 for experimentation. During
training, a batch size of 64 was used, while a batch size
of 128 was used for validation. The optimizer employed
was Adam with a learning rate of 0.0001, and the training
proceeded for 5 epochs.

4.3. Result

Our model, trained on a large dataset of 190,000 user photo-
map image pairs, exhibited performance comparable to Table
1 across various k values on five different length scales. This
evaluation was conducted on the publicly available dataset,
IM2GPS. However, due to the lengthy inference time per im-
age as shown in the table, it was impractical to infer the entire
test set within the limited time. For k = 16, 32, 62, 100%,
27%, and 30.6% of the test set were processed, respectively.

5. Conclusion
Our model demonstrates high performance compared to idle
inference. While we anticipated significant performance dif-
ferences across various k values during the inference pro-
cess, no clear trends were observed in reality. However, there
were significant differences in inference times, indicating
the importance of selecting a model based on this criterion.
Nonetheless, as evident from Table 2, our model exhibits
lower performance compared to other models on the given
Im2GPS benchmark.

The geolocalization task, unlike many other tasks in com-
puter vision, often lacks publicly available code or does not
disclose crucial elements used in training, even if some parts
of the code are shared. [4] mentioned that this choice was



Ablation Distance (% @ km)

Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

GeoCLIP[1] 17.30 41.77 60.76 77.22 89.87
Simply attach GeoCLIP to Ours only in inference 14.29 21.43 28.57 45.24 69.05

Table 3. Performance comparison of different methods on various distances.

made because widely publicizing geolocalization tasks could
raise ethical concerns due to the potential risk of identify-
ing someone’s location based on others’ photos. Therefore,
due to such reasons, we faced challenges in utilizing our
model to surpass previous research within a limited time,
one of the methods being ’leveraging previous research”’.
Additionally, the bottleneck of manually crawling datasets
from the internet posed another challenge. It was difficult to
utilize all training data used by existing models within the
constraints of limited internet speed. Future research should
address these deficiencies and further refine models to better
suit the task.

5.1. Future works

Fortunately, the previous research, GEOCLIP [1], had its
code publicly available and distributed in a form that could
be imported and utilized. It is deemed that incorporating
GEOCLIP into our current research could potentially im-
prove performance. In fact, we devised experiments by sim-
ply connecting our model with GEOCLIP. After obtaining
k satellite map patches, we leveraged GEOCLIP by includ-
ing the map patch selected by the GEOCLIP model at the
chosen coordinate position along with the k + 1 patches for
the next stage of inference. However, since this approach did
not involve training GEOCLIP and our model harmoniously
from the training phase, we did not achieve dramatic perfor-
mance improvements. Instead, we observed a slight decrease
in performance compared to when only GEOCLIP was used
for inference, suggesting possible confusion with the GEO-
CLIP model. Comparison between two can be observed at
Table 3 Nevertheless, it could be considered as future work
to potentially enhance performance by leveraging GEOCLIP,
a well-performing model, from the training phase, enabling
it to receive map images as input, thus obtaining additional
information about terrain or text on the map.
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