
Exploring Shape and Texture Bias in Object Detection

Yejin Kim, Junha Kim, Doyeon Lee
Graduate School of Data Science, Seoul National University

{a2000yejin, terajunha, doyeon.lee}@snu.ac.kr

Abstract

Ways to mitigate CNN’s texture bias has been studied in
various works under the image classification task. How-
ever object detection models were not explicitly examined
whether texture bias is really an issue. We hypothesized that
object localizing task and its corresponding loss helps the
model learn more shape related features since the bound-
ing box needs to be aligned with the silhouette of the ob-
ject. In the preliminary experiment we found previous aug-
mentation methods used to test texture bias of classification
models were not quite adequate in measuring texture/shape
bias. Thus we modified several augmentation methods to
suit the object detection task. We tested three current State-
Of-The-Art object detection models on augmented images
and found that texture bias was low in all three models. We
suggest injecting the idea of localization to image classifica-
tion models to increase robustness against texture changes.
Also, further work on other detection models using various
augmentation methods will be needed to get a better under-
standing of how models work and develop features that are
not susceptible to texture deformed images, such as paint-
ings.

1. Introduction
Object detection is a major computer vision task along

with image classification and semantic segmentation. Ob-
ject detection really started to take off with the introduc-
tion of Convolutional Neural Networks(CNN) developed by
AlexNet [17] under the image classification task. State-of-
the-art object detection models such as Faster R-CNN [27]
and YOLO [26] mainly follow standard CNN architecture
(e.g. AlexNet, VGG) and DETR [3] employs a transformer
with CNN extracted features.

CNN was thought to use high-level features such as
shapes to understand images but recent works suggest the
opposite. [11] claimed that unlike humans, CNN relies on
simple correlations such as texture rather than shapes to
classify images, making it susceptible to perturbations and
domain shifts. Other works [1, 32] also support CNN’s bias

towards texture.
While various methods have been proposed to reduce

CNN’s texture bias by enhancing shape bias [11, 18], some
argue that shape bias is mostly unrelated with corruption
robustness [22, 25]. However, each work uses different
datasets making it hard to verify their arguments. [15] also
felt the need for a common dataset and created six datasets
for measuring texture and shape bias but our work differs
in that it is designed for object detection instead of image
classification. CNN model’s texture bias has been studied
mainly under the image classification task but we believe
a separate study is needed for object detection since it is
trained with more shape information to correctly localize
objects.

Also, each existing dataset’s ability to properly capture
the object feature (e.g. shape, texture, color) it was sup-
posed to is questionable considering that some augmented
images have background information while some don’t. We
believe the background can be a confounder and created
a total 13 datasets of 5 augmentation methods with three
variations – no background (‘mask’), original background
(‘obj’), and augmented background (‘all’) (edge and silhou-
ette methods only have two variations). We found that there
is a significant difference in performance between images
with different background variation. However, we discov-
ered several limitations of existing augmentation methods
especially when applied to object detection. Therefore, we
chose three additional augmenting methods resulting in 11
datasets of 4 styles with three background variations each
(except for patch shuffling which has two variations).

By testing SOTA object detection models on these
datasets and qualitatively examining the results using
saliency maps, we aim to understand the effect of shape and
texture bias in object detection models. Our contributions
are as follows.

• We propose 11 datasets of 4 styles - style transfer, cue-
conflict, color compression, and patch shuffle - as a com-
mon dataset to measure texture bias in object detection
models.

• We found that current object detection models are more
sensitive to shape changes than texture changes. We be-



lieve the supervision provided by bounding box labels en-
hance shape bias.

• Based on our finding, we propose two new ways to en-
hance shape bias in the classification task. First is through
creating an dataset that contains one object per image and
the second is through an additional loss term that forces
the model to look at similar shapes in texture deformed
images.
In section 2 we review previous works which try to

alleviate texture bias in image classification and object
detection models through data augmentation. In section
3 we report the problems found in existing augmentation
methods. Based on this preliminary finding we create new
datasets and interpret the results of three SOTA models in
section 4. Lastly we summarize our study and suggest new
ways for future research.

2. Related Work
2.1. CNN’s texture bias

Although CNN based models have achieved outstand-
ing performance in photo realistic datasets (e.g. ImageNet
[28], MS COCO [19], PASCAL VOC [7]), their accuracy
on out-of-domain (OOD) data such as noisy images and
paintings is significantly lower [14, 26]. Fine-tuning mod-
els directly on target domains such as People-Art [2, 31]
still fell short of models trained and tested on photographs.
[11] claimed that CNN’s bias toward texture is the reason
behind its susceptibility toward corruption. By fine-tuning
a CNN model on images stylized by paintings (Stylized Im-
ageNet), they achieved 81% accuracy in the texture-shape
cue conflict dataset where only texture was changed to that
of other classes (e.g. cat shape with elephant texture). Fol-
lowing this study, many other works used style transfer or
other data augmentation methods (e.g. color jitter, random
greyscale, random Gaussian Blur, weather effects, patch
shuffling) [12, 14, 16].

Other works added auxiliary tasks such as predicting
rotation [12] and style [5]. Architectural changes such as
adversarial training [33] and contrastive learning [18] were
also used to mitigate CNN’s texture bias.

2.2. Data augmentation

Most works focus on data augmentation as a way to
measure and lessen CNN’s texture bias. With images cre-
ated using various augmenting techniques they train stan-
dard CNN models. The role of each augmenting technique
is interpreted by the authors [18] or evaluated using shuf-
fled image patches and texture-shape cue conflict images
[13, 22]. They also test corruption robustness of fine-tuned
models using stylized images, artworks [13], and images

augmented by Gaussian blur, phase noise, weather types,
contrast changes etc. [11].

These studies all view data augmentation as a useful
tool for debiasing CNN models but whether enhancing
shape bias leads to corruption robustness is still debatable.
[22] found that models trained on edge images showed
high shape bias but low robustness to image perturbations.
They argued that shape bias doesn’t lead to corruption
robustness and that learning a robust representation through
style variation whether it be shape related or not is more
important. Their claim is contradictory to other works
[11, 14, 18]. However, the datasets used for training and
testing are different across papers, making it hard to reach
a concise conclusion. For example, edge images used in
[11] excludes the background but [22] does not. Also,
[11] applies style transfer to the entire image including the
background which can lead to background bias. We felt the
need to create a common dataset. We created 11 datasets of
4 styles with 3 variations each (except for patch shuffling)
to test each augmentation method’s influence on model
performance while also controlling the background.

2.3. Object Detection

Object detection has a lot in common with classifica-
tion tasks since they both use CNN backbones trained on
ImageNet. Thus, object detection models such as Faster
R-CNN, YOLO and DETR are also presumed to have the
problem of texture bias. Based upon this assumption sev-
eral works finetune object detection models on augmented
datasets. However, testing whether object detection mod-
els really do have the problem of texture bias is needed
since these models are trained differently from classifica-
tion models. We hypothesize that object detection models
are more shape focused since they require a bounding box
to be aligned with the object’s outline shape [11].

Based on the assumption that object detection models
are biased towards texture several works examine their per-
formance in OOD datasets. [2] and [31] used VOC2007
and People-Art dataset to finetune R-CNN and Fast R-CNN
respectively. [14] transferred the styles of paintings from
the Painter by Numbers dataset directly to the MS COCO
dataset. They trained Faster R-CNN on this StyleCOCO
dataset and achieved 0.68 AP50 on the People-Art dataset.

Our work applies various augmentation methods to
ImageNet-S which has instance level annotations and
MS-COCO. We use these to test three SOTA models
without fine-tuning to examine whether texture bias is a
real problem even in current detection models. We chose
CO-DETR, DiffusionDet and YoloX as SOTA models
for the following reasons. CO-DETR is the SOTA model
in the COCO test-dev dataset scoring the highest mAP.
DiffusionDet employs a diffusion model which is known
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to reduce classification error in images with disrupted
texture [6] and we wish to see if this still holds under the
object detection task. YoloX is an extension of the Yolo
series which strictly follows a CNN structure compared to
CO-DETR and DiffusionDet and its performance surpasses
YoloV.4 and V.5. We detect 16 classes in ImageNet-S and
80 classes in MS-COCO.

3. Preliminary experiment
In the following section, we introduce preliminary ex-

periments designed to explore the differences in shape and
texture bias between image classification and object detec-
tion using the ImageNet dataset.

First, we present the ImageNet-S dataset used for detec-
tion (Section 3.1). We then explain how we applied existing
experimental methods to augment this dataset (3.2). Finally,
we analyze the results (3.3) and discuss the limitations (3.4)
demonstrating the necessity for our newly designed experi-
ments in Section 4.

3.1. Dataset

CNN’s previous research on texture bias was created
with an ImageNet-based dataset [28]. In order to com-
pare the texture/shape bias of detection models with existing
classification models, we used ImageNet images grouped to
16 upper classes with WordNet hierarchy [20] same as pre-
vious researches [11]. And for the detection task, we made
bounding boxes from class segmentation information pro-
vided by ImageNet 1000-based ImageNet-S dataset [8].

However additional patch merging was needed. Objects
of the same class but separated segments are merged into
one box. This preprocessing was only applied to ImageNet-
S data which doesn’t have ground truth bounding boxes, and
was not applied to the MS-COCO dataset.

3.2. Augmentation methods based on image classi-
fication

In the preliminary study, we applied 4 augmentation
methods used to test texture bias of classification mod-
els and 1 additional method we designed. The 4 methods
widely used in previous classification works are ‘greyscale’
which eliminate color and ‘silhouette’, ‘edge’ and ‘cue-
conflict’ which distort texture. Specifically, ‘cue-conflict’
applies the texture of another class onto the original image.
The method we designed is ‘color-compression’ which aims
to remove texture while preserving shape.

We believe the background information can help the
model detect the object regardless of its augmentation type.
Thus we control the background by creating three varia-
tions of background deformation - ‘all’, ‘obj’ and ‘mask’ -
for each augmentation. ‘All’ applies deformation to the en-
tire original image, ‘obj’ transforms only the object while

(a) Greyscale (mask) (b) Silhouette (obj) (c) Edge (all)

(d) Cue conflict (obj) (e) Color comp (all)

Figure 1. Data augmentation

leaving the background unchanged and ‘mask’ removes the
background completely transforming only the object. Sam-
ple images for each style with a specific background type
can be found in Figure 1.

3.3. Result

In the dataset we created, we combined the ground truth
labels of overlapping objects into one bounding box. If sev-
eral small bounding boxes are detected, it is highly likely
that they are separate parts of a single object. Therefore, to
prevent the detected bounding boxes from being calculated
with a small IOU, predicted boxes are also combined into
one bounding box. This was applied only when the ratio
of the overlapping region between each detected box and
the ground truth box to the ground truth box exceeded the
specified threshold ratio.

For accuracy assessment, we considered mAP (mean
Average Precision), accuracy, and shape-texture ratio rep-
resenting proportion of correct answers aligned with either
shape or texture. Additionally, we analyzed the results
through qualitative analysis of bounding box predictions to
further understand the outcomes.

Low texture bias in detection models. Consistent with
prior research, we measured the ratio of correctly identified
answers based on shape versus texture in cue-conflict im-
ages. As seen in Figure 2, the average proportion of texture-
based correct answers was significantly lower in ’obj’ and
’mask’ dataset, indicating the absence of texture bias in
these datasets. Although there were more texture-based cor-
rect answers in the ’all’ dataset, the ratio was still lower than
several classification models. Considering the data augmen-
tations used here had some limitations in capturing shape
and texture bias - more on this in section 3.4 - we used other
augmentation methods to validate this claim - more on this
is section 4.
Difference between classes. A general decrease in mAP
was observed through data augmentation. When classifying
this trend based on their accuracy propensity, three different
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Figure 2. Ratio of texture-based correct answers per class

The dashed line is the average ratio.

Figure 3. Ambiguity of cue conflict(texture deform) methodology

patterns were seen. This led us to speculate that the ratio
of reliance on shape or texture might vary across different
classes.

Background influence It appeared that YoloV8 heavily re-
lied on the original background. When the background was
removed or augmented, performance significantly deterio-
rated regardless of the augmentation type. This signifies
that the background can be a confounder when measur-
ing texture/shape bias and the effect of augmentation meth-
ods should be compared within the same background vari-
ation. Further analysis of the influence of background is
warranted.

3.4. Limitation

We tested only Yolov8, a common one-stage model
which conducts region proposal and classification simulta-
neously, enabling quick detection with high throughput.

As seen in Figure 3, the previous cue-conflict method
was not suitable for accurately measuring individual biases
since the so-called ‘texture’ image still has shape informa-
tion of small objects. Looking at the predicted bounding
boxes and saliency map(CAM method) [21], we concluded
that this kind of texture is especially problematic in ob-
ject detection. Since an image with many repetitions of the
same object is not being interpreted as texture by the model,
we will narrow down the meaning of texture to full-width
patches of an animal or material in the main experiment.
More details are provided in Section 4.

Also, we found the quality of edge and silhouette trans-

form was very different depending on which original im-
age was used. Previous works interpreted edge images as
containing shape details but we excluded edge and silhou-
ette datasets in our main experiments since they remove too
much information in some images.

4. Experiment
Building on the issues identified in existing image aug-

mentation methods for measuring shape and texture bias,
we propose a new augmentation method (Section 4.1). We
applied this method to the COCO dataset, which is com-
monly used for object detection. Additionally, we se-
lected the latest state-of-the-art(SOTA) models to investi-
gate whether bias still impacts their performance (4.2).

Our experiments revealed that all tested models exhib-
ited a greater shape bias than texture bias, with detailed
results discussed later (4.3). Finally, based on insights
gained during the experiments, we suggest several direc-
tions for future experiment (4.4).

4.1. Augmentation methods

Style transfer image. Style transfer[9] uses the VGG
network [29] to deform original images into art reference
image styles. Previous works randomly selected one art-
work from the entire Painters by Numbers dataset [30] but
we randomly selected from only 8 paintings to have more
control on the quality of the augmented images.

When generating images, the VGG network applied
gradient descent using the L-BFGS algorithm instead using
Adam. This variation has all, obj, and mask images.

Cue conflict image. We used the same VGG network used
above to transfer styles of texture reference images to the
original image since simply blending texture images like
we did in the preliminary study preserved the texture of
the original image. Also, in the preliminary study, texture
images were created based on the training dataset’s class,
but because images of repeated small objects had too much
shape information, we only used real texture-like images
(cat fur, dog fur, elephant skin, rubber tires, wood bark,
paint etc.).

For each texture image two non-copyrighted images
were selected using Google’s image search, and two more
texture images were created through prompt engineering
using DALLE-3 in ChatGPT-4[23, 24] just like the method
used in the preliminary study. Each texture style has four
images and is randomly applied to the original image to be
transformed. This variation has all, obj, mask images.

Color compression image. Original image was deformed
by using the cv2.kmeans function. We set the cluster
parameter to 3. We also experimented with 20 clusters in
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Figure 4. Patch shuffling for object detection

the preliminary study, but this was excluded because there
seemed to be no significant difference with the original
image. This augmentation dataset has all, obj, mask images.

Patch shuffle image. In the previous study of image clas-
sification, the whole image was split into patches and ran-
domly mixed to test whether the model had texture bias. In
this study, the method was modified to fit the object detec-
tion task. Each bounding box was separated into several
patches by obtaining the maximum common divisor of the
bounding box height and width, and the overlapping area
of each patch with the object mask was calculated. Only
patches that overlap with the mask by a certain percentage
or more, were randomly mixed within each object. The rea-
son for this is that if the entire image is randomly mixed,
objects for all classes will be mixed and the detection model
wouldn’t know where to draw the bounding box. To prevent
this, the original bounding box was maintained, and shape
information was distorted only within each object as much
as possible without affecting the background. The defor-
mation process can be found in Figure 4. This variation has
obj, mask images.

For measuring texture bias we used the datasets whose
backgrounds were also transformed (the ‘all’ dataset among
3 background variations)

Examples of all modification methods can be found in
Figure 5.

4.2. Models

We chose three models - CO-DETR, DiffusionDet and
YoloX[4, 10, 34] - which all extract image features us-
ing CNN but whose architectures vary greatly. CO-DETR
is a modified version of DETR which uses transformers,
DiffusionDet applies a diffusion model to generate correct
bounding boxes, and YoloX uses convolution layers to clas-

(a) Style transfer (all) (b) Color comp (obj)

(c) Cue conflict (obj) (d) Patch shuffle (mask)

Figure 5. Data augmentation

Figure 6. mAP values after data augmentation

sify and regress bounding boxes. We hypothesize that if
similar results are observed in all three models, it is due to
the characteristic of the detection task itself, not some spe-
cific architectural design.

4.3. Results

By comparing model performance in texture deformed
images (style transfer, cue conflict, and color compression)
with shape deformed ones (patch shuffle) we tested whether
current SOTA models also have the problem of texture
bias. We discovered that current detection models do not
rely heavily on texture. Even for classes where texture
bias of classification models was high, detection models
were more prone to shape deform than texture deform.
Additionally, the three models performed differently when
background was removed hinting the need for further study
on each model’s background bias.
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model shape-biased texture-biased
CO-DETR 0 (person), 1 (bicycle), 2 (car), 12

(parking meter), 17 (horse), 19 (cow),
20 (elephant), 22 (zebra), 25 (um-
brella), 27 (tie), 31 (snowboard), 60
(dining table), 62 (tv), 63 (laptop), 64
(mouse), 67 (cell phone), 71 (sink)

33 (kite)

DiffusionDet 17 (horse), 20 (elephant), 21 (bear),
22 (zebra), 25 (umbrella), 27 (tie), 54
(donut), 63 (laptop), 77 (teddy bear)

8 (boat), 9 (traffic light), 33 (kite)

YoloX 0 (person), 1 (bicycle), 2 (car), 3 (mo-
torbike), 5 (bus), 6 (train), 7 (truck), 10
(fire hydrant), 12 (parking meter), 14
(bird), 15 (cat), 16 (dog), 17 (horse),
18 (sheep), 19 (cow), 20 (elephant),
21 (bear), 22 (zebra), 23 (giraffe), 24
(backpack), 25 (umbrella), 26 (hand-
bag), 27 (tie), 28 (suitcase), 29 (fris-
bee), 34 (baseball bat), 35 (base-
ball glove), 36 (skateboard), 37 (surf-
board), 38 (tennis racket), 39 (bottle),
40 (wine glass), 41 (cup), 42 (fork),
43 (knife), 44 (spoon), 45 (bowl), 54
(donut), 55 (cake), 56 (chair), 58 (pot-
ted plant), 60 (dining table), 61 (toi-
let), 62 (tv), 63 (laptop), 64 (mouse),
66 (keyboard), 67 (cell phone), 68
(microwave), 69 (oven), 71 (sink), 77
(teddy bear)

33 (kite), 78 (hair drier)

Table 1. Classes where shape/texture was important (threshold = 1)

Classes where classification models focused on texture a lot (among the 16 imageNet superclasses) are written in bold.

Low texture bias in detection models. As in Figure 6. all
three models showed low mAP in patch shuffled images
compared to images whose texture was more heavily
deformed. This shows that object detection models do not
rely on texture, unlike classification models. YoloX scored
the highest mAP in all augmentation methods contrary to
our belief that more recent models will fare better. All three
models’ mAP in the original COCO dataset were lower
than the score reported by the original model’s paper which
might be indicative of fluctuations in test performance.
More robust testing will be needed to compare corruption
robustness between models. However our main finding that
detection models show low texture bias is reliable based
on the consistently low performance in patch shuffled data.
This is aligned with our preliminary results.

Texture bias per class. We examined whether the degree
of texture bias differs across classes. In the preliminary

study we grouped classes based on accuracy propensity but
here we took a different approach to objectively compare
80 classes. We compared whether the maximum AP value
among the texture augmented datasets - style transfer, cue
conflict, color compression - is higher or lower by a value of
1%p compared to patch shuffled data. If the former is higher
then we interpret the model relies more on shape to detect
that class. If the latter is higher we conclude the model is
sensitive to texture for that specific class.

From the results displayed in Table 1, we see that only
two or three classes were texture sensitive while there were
17 shape sensitive classes for CO-DETR, 9 for Diffusion-
Det and 52 classes for YoloX. The ‘elephant’ class which
showed high texture bias compared to other 15 superclasses
in AlexNet, VGG-16, GoogLeNet and ResNet-50 classifi-
cation models[11] was included as a shape biased class in
all three detection models. The ‘bear’ class which was also
sensitive to texture in classification models was shape bi-
ased in YoloX and DiffusionDet.
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(a) CO-DETR (b) DiffusionDet (c) YoloX

Figure 7. mAP per background

Although there were more classes whose shape was
more important, all three models showed high texture
bias when detecting the ‘kite’ class. Since there were 91
instances of kite in the dataset we thought the models’
inability to detect kites was meaningful and found that the
kites in the dataset were usually small and their shapes
were irregular. We speculate the various shapes of kites
leave the model no choice but to rely on texture.

Background influence As seen in Figure 7, DiffusionDet
and YoloX showed highest mAP when original background
was preserved. This result is similar to YoloV.8’s result in
the preliminary study (‘obj’ dataset). This means the se-
mantic information of the background helps them classify
and detect objects.

However, CO-DETR’s performance in images with the
original background was lower or similar to the case where
the background was blacked out (‘mask’ dataset). We
speculate CO-DETR is less dependent on background in-
formation and removing the background actually helps the
model by emphasizing the silhouette of the target object. In
Figure 8 we display examples where CO-DETR detected
more objects in the masked image while DiffusionDet’s
performance was better in the ’obj’ image.

4.4. Future experiment

In the course of our experiments, we found several ex-
periments that would be meaningful. In this study, we in-
vestigated how the texture bias characteristic of CNN-based
models differs in detection tasks by using the most basic
version of CO-DETR with a CNN backbone. It would
be beneficial to compare these findings with other high-
performing models, such as those based on transformer ar-
chitectures like Swin-L, to determine any significant differ-
ences. Additionally, just as humans tend to focus more on
texture or shape depending on the object, it could be mean-
ingful to analyze class-specific bias characteristics, not just

(a) CO-DETR (mask) (b) CO-DETR (obj)

(c) DiffusionDet (mask) (d) DiffusionDet (obj)

Figure 8. Background influence

the model’s inherent bias.
Furthermore, during our experiments, we observed

distinct patterns of attention from shallow to deep layers.
Analyzing these patterns could provide insights into how
models interpret images. These aspects will be explored in
future work.

5. Conclusion and future work

We aimed to investigate the shape/texture bias in ob-
ject detection. Most detection models extract image fea-
tures using a CNN-based backbone, but they also provide
additional supervision for shape information to match the
bounding boxes to the object’s location. We expected this to
result in different behavior compared to classification tasks.
By improving upon existing experimental methods using
our novel augmentation technique, we evaluated the perfor-
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mance of more recent models. We found that while ob-
ject detection models utilize features similar to those used
by image classification models, they exhibit a higher shape
bias due to the task of locating objects and the correspond-
ing bounding box loss function.

Based on these findings, we concluded that the super-
vision provided by the dataset and the loss function corre-
sponding to the task influence the tendency of models (e.g.,
texture bias or shape bias). Applying this conclusion, to
focus more on shape within image classification, which is
traditionally known for its texture bias, we can consider im-
provements from two perspectives. Firstly, the commonly
used ImageNet dataset often includes multiple objects in a
single image, which might hinder the model from learning
object shapes. Therefore, it is necessary to crop specific ob-
jects and train on a dataset with texture deformed images.
Secondly, we could introduce pseudo-labels by adding a
loss function that ensures the activation weights are similar
across original, style transfer, cue conflict, and color comp
images, facilitating shape-focused learning. As seen in Fig-
ure 9 the attention weights in cue conflict and color comp
images are similar. Since texture is deformed in these im-
ages we hypothesize the transformer based model is looking
at object’s shape (High attention values are in blue and low
values in red). Adding a loss term to make the activated
weights similar in all images with deformed texture might
help the model learn what shape is. Furthermore, we hy-
pothesize that semantic segmentation could have an even
higher shape bias than object detection by utilizing silhou-
ette information as additional supervision.

(a) Patch shuffle (b) Cue conflict (c) Color comp

(d) Patch shuffle (e) Cue conflict (f) Color comp

Figure 9. Saliency map of attention weights

In the future, if we further analyze using other methods,
understanding how and why models’ image perception dif-
fers from human perception, we can develop even better
models and features that are not vulnerable to texture de-

formed data, such as paintings, resulting in even more ro-
bust performance.
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