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1. Introduction

Recent advances in editing multimedia contents have
emerged with the development of various deep learning
based generative models, represented by Generative Adver-
sarial Networks (GANs) [11] and Diffusion Models (DMs)
[15, 32]. As AI technology is heavily leveraged to cre-
ate and modify contents, attempts to develop the output of
image generation and editing to appear more realistic have
been highlighted. Recently, images generated by stable dif-
fusion models such as DreamBooth[31] are so elaborate that
they can be difficult to distinguish from authentic images.
Especially, in the realm of AI-generated contents where the
widespread availability of image editing techniques, ease of
image manipulation has reached unprecedented levels. Im-
age manipulation involves encompassing modification from
simple alterations with copy-move, image splicing to ad-
vanced Deepfake generation facilitated by deceptive algo-
rithms. However, this technical progress has also lead to
critical challenge of the ability to discern authenticity from
manipulated contents. With the potential for image forgery
has grown exponentially, misinformation and fraudulent ac-
tivities has escalated simultaneously.

While significant efforts to detect whether it is fake or
not have been studied in the domain of generated image
detection, show robustness across a variety of methodolo-
gies. However, the field of image manipulation localization
lags behind in addressing real-world scenarios effectively.
Even though existing approaches have achieved high ac-
curacy from several benchmarks, it has been hampered by
limitations inherent in existing datasets. These constraints
include the necessity of pixel-level ground truth masks for
fully supervised learning, absence of datasets with annota-
tion synthesized through generative techniques and reliance
on outdated benchmarks such as CASIA [8] proposed over
a decade ago. Furthermore, the manipulation techniques in
CASIA are limited to only two ways: copy-move and splic-
ing. Consequently, existing researches would have encoun-
tered limitations in attempting to generalize and adapt to
novel image benchmarks without ground truth masks [45],
manipulated by generative models that aligns more closely

with real-world scenarios.
In this context, our research endeavors to bridge these

gap by proposing a novel approach aimed at achieving
both robustness and generalization. Our method is de-
signed to address two critical tasks concurrently: gener-
ated image identification and localized detection of manip-
ulated regions within images, all without the constraint of
labeled ground truth masks. By operating within a weakly-
supervised framework, we expect to develop a versatile and
generalized solution capable of robust performance across
a wide range of manipulation scenarios. In contrast to con-
ventional fully-supervised methods relying on pixel-level
annotations, our proposed weakly-supervised generated
image manipulation detection framework requires only
binary image-level labels, aiming at significantly alleviat-
ing the burden of extensive manual annotation. Given the
limitations that CNNs suffer from weak long-range and
non-semantic feature modeling [24], we demonstrate our
approach by leveraging both high-level semantic informa-
tion from a Vision Transformer-based architecture [9] and
low-level features from a ResNet-based model [14]. By
fusing prediction maps generated by these models to cre-
ate pseudo ground truth mask, we would take the advan-
tages of both models’ learning capabilities, thereby enrich-
ing our approach with both semantic and low-level features.
In summary, through our approach, we would achieve the
following main contributions:
1. Our work aims to address the challenging task of identi-

fying whether images are either entirely or partially ma-
nipulated by generative models and localizing the ma-
nipulated regions within partially fake images. To the
best of knowledge, it is the first attempt to generalize
generated image detection in a weakly-supervised set-
ting.

2. We propose a novel approach that combines multi-label
discrepancy-aware knowledge distillation with adversar-
ial learning. This allows our model to adapt to unseen
data by effectively capturing characteristics of features,
preserving robustness and generalization across different
domains.

3. We integrate CNN-based and Transformer-based ap-
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proaches for manipulation localization. By extracting
activation maps from the CNNs and attention maps from
the Transformer indicating patch correlations, it ensures
effectively accurate learning even with limited labeled
setting.

4. Through extensive experimental validation, we demon-
strate that our framework achieves robust generaliza-
tion in weakly-supervised localization of manipulated
regions, even in the presence of unseen generative mod-
els by leveraging the proposed methods.

2. Related Work

2.1. Fake Image Detection

In the field of fake image detection, research has been
conducted with diverse approaches according to different
types of forgeries, broadly categorized into deepfake de-
tection and generated image detection. [5] proposed a
task for forged image detection in weakly-supervised set-
ting, employing a CNN auto-encoder based approach with
few-shot domain adaptation techniques. Addressing the
challenges of cross-model generalization, [23, 36] inves-
tigated extracted discrepancies, focusing on artifacts such
as high-frequency noise generated by CNN-based genera-
tors. [4, 25] explored more robust way to detect both gener-
ated by GANs and DMs, leveraging fingerprint and measur-
ing feature distance between real and fake images, respec-
tively. Further extending the research on diffusion mod-
els, [10, 37] enhanced generalization in challenging task,
exploiting properties of the generative models with online
augmentation, pixel prediction and reconstruction after in-
version framework. Similarly, [6] also introduced cross-
concept generalization task, calculating quality scores uti-
lizing simple ResNet. Adversarial detection framework pro-
posed in [44] aimed to generalize to unseen image gen-
erators by jointly performing teacher-student discrepancy-
aware learning and generalized feature augmentation. Re-
cently, [22] focused on detecting fake traces in generative
models, learning trace representation with homogeneous
and heterogeneous projection methods.

Furthermore, in the domain of deepfake detection, [39]
presented knowledge distillation framework, leveraging la-
tent space augmentation techniques and cross-domain aug-
mentation. [12] developed a multi-stage detection frame-
work, distinguishing authenticity of images and recognizing
architectures between GANs and DMs. They utilized noise
addition and reverse learning processes, demonstrating the
superiority of ResNet over Vision Transformers.

While these papers contributed to the advancement of
generalized fake image detection across different generative
models and domain shifts, they have demonstrated that they
predominantly rely on low-level features such as pixel pre-
diction and typically engages in binary classification task.

Therefore, simple models like ResNet achieved commend-
able performance. We observed that [25] was the only paper
leveraging transformer models, which utilize high-level se-
mantic information. We focused on the potential for further
exploration with robustness and generalizability in integrat-
ing high-level features for more challenging detection task.

2.2. Image Manipulation Localization

Consequently, recent studies in image manipulation lo-
calization have attempted to address challenges through
various approaches. [13] explored self-attention method
for interaction modeling and feature fusion in CNNs.
Based on this, [24] proposed the first attempt to lever-
age Vision Transformers for manipulation localization task.
Subsequently, [43] introduced non-mutually contrastive
learning techniques between feature maps of the manip-
ulated regions with pre-training free encoder-decoder ar-
chitectures. [1] addressed an innovative approach us-
ing encryption-based proactive scheme, exploiting separate
detection and localization modules combined with trans-
former and CNNs. By incorporating a weakly-supervised
setting that enables learning with only binary labels, [41]
integrated multi-source and inter-patch consistency learn-
ing phase without intricate ground truth mask. [45] also
demonstrated that effectiveness of patch-based approach ro-
bust on both fully-synthesized and partially manipulated
images in weakly-supervised setting. Another contribution
came from [35] rectified detection mechanism using dif-
ferent forensic filters with cues as input modalities, com-
bining with encoder-decoder architectures through late and
early fusion. In recent, [40] proposed a mask-guided query-
based approach, utilizing a transformer decoder with query
token to locate manipulations and [34] developed a method
to learn forgery cues and manipulation maps without paired
data. Their approach located and fused attention regions,
focusing on locating exploitable cues.

Despite these studies highlighted efforts to enhance gen-
eralized manipulation localization with their own set of
challenges, fundamental challenges still remain. Limitation
arises from the benchmarks utilized for experiment and val-
idation, as they were too small datasets and focused on basic
manipulation techniques such as splicing. Additionally, ex-
isting methodologies solved the problem focusing on low-
level discrepancies such as artifacts, thereby neglecting the
nuances presented by modern generative models. Conse-
quently, they may struggle to detect forgeries produced by
these advanced techniques.

2.3. Weakly-Supervised Object Detection

We focused on how to demonstrate forgery detection in a
weakly-supervised setting, exploiting attention and activa-
tion map-based object detection methods. This approach
not only enhances detection capability but also provides
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interpretability by highlighting which parts of the model
are focusing on. Previously, object detection primarily re-
lied on Class Activation Maps (CAM), however, this ap-
proach presents several critical issues. Activation often
occurs in the background areas or only activates part of
the object, significantly hindering the learning. Therefore,
recent studies in weakly-supervised object detection have
addressed these challenges by considering various meth-
ods beyond limited resource settings. [21] presented a co-
operative framework between detection and segmentation
tasks, employing a collaboration loop with heatmaps and
generative adversarial localization techniques. [2] intro-
duced a method combining transformers and CNNs, lever-
aging the local perception capability while retaining global
self-attention maps with cross-patch attention information.
In a transformer-based approach, [30] focused on learning
affinity from attention with pixel-adaptive refinement tech-
nique and [20]addressed the partial activation limitation in-
herent in CNN’s local receptive fields, leveraging the at-
tention weights from transformer to capture both low- and
high-level spatial feature affinity. [38] explored a single-
stage approach that emphasizes representation consistency
between global and local views, integrating local semantics
into transformer blocks.

Existing research has shown that there is a significant
contrast between the advancements in generated image de-
tection and the challenges encountered in image manip-
ulation localization. The former has witnessed substan-
tial progress, benefiting from active research and demon-
strating its robustness across models and cross-domain,
while the latter is hindered by the limitations inherent in
available datasets and the rapid evolution of manipulation
techniques. Thus, our work aims to bridge this gap by
proposing methods to effectively handle both tasks within a
weakly-supervised learning framework. By adopting prin-
ciples from weakly-supervised object detection, we develop
a framework that simultaneously address forgery classifi-
cation and localization. Leveraging insights from exist-
ing researches, our approach emphasizes self-supervised
learning, employing two distinct strategies: multi-label
discrepancy-aware knowledge-distillation and localization
with activation map and attention.

3. Method

3.1. Problem Definition and Architecture Overview

In this section, we introduce a novel framework aimed
at enhancing robustness in the challenging task, detection
and segmentation of generative manipulated images in a
weakly-supervised setting, as illustrated in Figure 1. In
the addressed task, there is no information without cor-
responding label whether a given image is real, partially
manipulated, or fully generated. Then we divide the task

into two primary challenges for efficiency, image identifi-
cation and localization of manipulated regions within par-
tially fake images. With the rapid emergence of genera-
tive methods, generators have advanced to precisely cap-
ture low-level features like pixel inconsistencies. Therefore,
we endeavor to distinguish between real, partially fake, and
completely fake images utilizing semantic information pro-
vided by transformers without degrading performance on
unseen data. Especially in a weakly-supervised setting, it
is crucial to utilize as much information as possible to ac-
curately detect which region has been manipulated when
dealing with partially fake images. To this end, we propose
a method that combines a multi-label discrepancy-aware
knowledge distillation approach with adversarial learning to
easily adapt to unseen data by capturing its characteristics.
For manipulation localization, we integrate CNN-based and
transformer-based approach. We extract activation maps
corresponding to the partially manipulated regions from the
CNN and attention maps indicating correlations between
patches from the transformer. The final result is derived
by utilizing both of these maps. By integrating these meth-
ods, our framework aims to achieve robust generalization
in weakly-supervised localization of manipulated regions,
even in the presence of unseen generative models.

3.2. Multi-label Discrepancy-Aware Knowledge-
Distillation

Rather than exploiting a single network to classify real, par-
tially fake, and fully generated images, we propose a multi-
label discrepancy-aware knowledge-distillation learning ap-
proach. This method enhances the detection of unseen data
by controlling inconsistencies between the teacher network
with general knowledge for classifying seen data and stu-
dent networks, which learn specific characteristics about
partially and completely generated images. For each im-
age, we obtain image features f = E(x) using a pre-
trained feature extractor. These features f are then uti-
lized in the subsequent training of the teacher, students,
and generalizer networks. We denote the real image fea-
tures as fR = E(xR), the partially fake image features
as fPF = E(xPF ), and the fully fake image features as
fFF = E(xFF ), where xR represents a real image, xPF a
partially fake image, and xFF a fully fake image.

At first, we train the teacher network NT on the training
set using the cross-entropy loss function. The teacher net-
work can classify the in-domain images as corresponding
labels. After training NT , we then freeze NT and train two
student networks, NS1 and NS2 , using three discrepancy
loss functions under the guidance of the teacher network.
The two student networks are designed to minimize discrep-
ancies with the teacher network when processing real im-
ages and to maximize discrepancies when processing par-
tially or fully fake images. By doing so, the student net-
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Figure 1. Comprehensive overview of our proposed framework. The architecture broadly consists of two parts: discrepancy-aware
knowledge-distillation network and CNN-transformer fusion network.

works can learn both general information of real images and
specific knowledge of partially and fully fake images.

For training with real images, we feed the real feature
fR into the teacher network to obtain the output zRT =
NT (f

R), and we also input fR into both student networks
to obtain the outputs zRS1

= NS1(f
R) and zRS2

= NS2(f
R).

When real images are provided as input, the discrepancy
between NT and NSi=1,2

should be minimized. The loss
functions for real images are defined as:

LR
Si
(zRT , z

R
Si
) =

1

B

B∑
b=1

(zRT − zRSi
)2

=
1

B

B∑
b=1

(NT (f
R)−NSi(f

R))2

(1)

where i denotes the indices of student networks, and B de-
notes the batch size. We freeze the teacher network and
train the student networks to minimize these losses for real
image inputs.

When partially fake images are provided as input, the
goal is to maximize the discrepancy between NT and NS2

,
while minimizing the disparity between NT and NS1

to
reflect their specificity towards the type of fake content.
Therefore, the loss functions for partially fake images are
modified to include a minimization term for NS1 :

LPF
S2

(zPF
T , zPF

S2
) =

1

B

B∑
b=1

[M − (zPF
T − zPF

S2
)2]+

=
1

B

B∑
b=1

[M − (NT (G
PF (fPF ))−NS2

(GPF (fPF )))2]+

(2)

LPF
S1

(zPF
T , zPF

S1
) =

1

B

B∑
b=1

(zPF
T − zPF

S1
)2

=
1

B

B∑
b=1

(NT (f
PF )−NS1(f

PF ))2

(3)

where [.]+ = max(., 0), zPF
T = NT (G

PF (fPF )), and
zPF
S2

= NS2(G
PF (fPF )). We employ a regularization

hyperparameter, denoted as margin M , which represents a
desired minimum disparity that should be maintained be-
tween the augmented images and existing fake images for
student models. If the gap exceeds M , the loss is reduced
to zero, and learning no longer occurs. During training, fea-
tures of manipulated images are augmented to enhance abil-
ity to discriminate and incorporate more plausible bound-
aries. This loss function aims to preserve significant output
discrepancies between teacher and student networks when
fake images are used as input.

Likewise, in the case of entirely fake images, the discrep-
ancy between NT and NS1

should be maximized, while the
discrepancy between NT and NS2 should be minimized:

LFF
S1

(zFF
T , zFF

S1
) =

1

B

B∑
b=1

[M − (zFF
T − zFF

S1
)2]+

=
1

B

B∑
b=1

[M − (NT (G
FF (fFF ))−NS1

(GFF (fFF )))2]+

(4)
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LFF
S2

(zFF
T , zFF

S2
) =

1

B

B∑
b=1

(zFF
T − zFF

S2
)2

=
1

B

B∑
b=1

(NT (f
FF )−NS2

(fFF ))2

(5)

where zFF
T = NT (G

FF (fFF )), and zFF
S2

=

NS2
(GFF (fFF )). By training the student networks

with these loss functions, we ensure that they can effec-
tively learn and generalize the differences between real,
partial fake, and complete fake images. This method is
designed so that the overall performance of the detection
system is robust even when dealing with unseen generative
models.

3.3. Adversarial Feature Generalizer.

Existing works [39, 44] have demonstrated that employing
adversarial learning techniques can lead to better general-
ization across various tasks. Inspired by this, we integrate
adversarial feature generalization into our framework to en-
hance the robustness of our model against unseen domains.
Specifically, we propose two feature generalizers, GPF for
features of partial fake images and GFF for features of fully
fake images. Generalizer networks aims to capture and aug-
ment the generalization capabilities of the student models.
By adversarially learning the extent to which fake features
are available, this approach not only effectively adapts to
unseen data but also strengthens its ability to identify be-
tween different types of manipulated images.

Training the Feature Generalizers. To train the adver-
sarial feature generalizers, we modify the teacher NT and
student NS1

and NS2
networks. The objective is to min-

imize the discrepancy between the outputs of the teacher
and each corresponding student network for fake images,
thereby making it more challenging for the generalizers to
augment features similar to those already seen.

Partially Fake Features. For the partial fake features,
the training process involves using the discrepancy between
the teacher and student outputs as adversarial guidance.
When this discrepancy is large, it indicates that the gen-
erated features are similar to those already encountered by
the existing generators in the training set. To encourage the
generation of new, diverse features, we train GPF to pro-
duce input features that minimize this discrepancy.

The loss function for training GPF is defined as follows:

LPF
GPF (z

PF
T , zPF

S1
, zPF

S2
)

=
1

B

B∑
b=1

([M − (zPF
T − zPF

S1
)2]+ + (zPF

T − zPF
S2

)2)

=
1

B

B∑
b=1

([M − (NT (G
PF (fPF ))−NS1

(GPF (fPF )))2]+

+ (NT (G
PF (fPF ))−NS2(G

PF (fPF )))2)

(6)

Here, zPF
T , zPF

S1
, and zPF

S2
denote the outputs of the

teacher and student networks when partially fake image fea-
tures fPF are inputted into the networks. By minimizing
this loss, GPF is trained to generate features that reduce
the discrepancy between the teacher and student networks,
thus making it difficult to maintain large output discrepan-
cies when partially fake images are inputted.

Fully Fake Features. Similarly, for the fully fake fea-
tures, we train GFF with a loss function that minimizes the
discrepancy between the teacher and student networks. The
loss function for training GFF is defined as follows:

LFF
GFF (z

FF
T , zFF

S1
, zFF

S2
)

=
1

B

B∑
b=1

([M − (zFF
T − zFF

S2
)2]+ + (zFF

T − zFF
S1

)2)

=
1

B

B∑
b=1

([M − (NT (G
FF (fFF ))−NS2

(GFF (fFF )))2]+

+ (NT (G
FF (fFF ))−NS1

(GFF (fFF )))2)

(7)

Here, zFF
T , zFF

S1
, and zFF

S2
denote the outputs of the teacher

and student networks when fully fake image features fFF

are inputted into the networks. By minimizing this loss,
GFF is trained to generate features that reduce the discrep-
ancy between the teacher and student networks for fully
fake images.

Classification Process. After training the feature gen-
eralizers, the discrepancies between the teacher and student
networks, derived from both real and fake images, are uti-
lized to further enhance a CNN-Transformer stream classi-
fier. This integrated classifier receives robustness informa-
tion from the discrepancies, enriching its capabilities to dis-
criminate between real, partially fake, and fully fake images
with enhanced precision. During classification, the input
images are first processed through the teacher and student
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networks to compute these discrepancies:

ŷ = NC(concat((NT (E(x))−NS1(E(x)))2,

(NT (E(x))−NS2
(E(x)))2))

(8)

This classifier setup, combined with the initial discrepancy-
based analysis, provides a comprehensive and robust frame-
work for image manipulation detection. By employing
these adversarial feature generalizers and integrating ro-
bustness information into the CNN-Transformer fusion net-
works, our framework achieves improved generalization
and robustness, allowing it to effectively detect manipulated
images even when dealing with unseen generative models.

3.4. CNN and Transformer Fusion

Convolutional Neural Networks (CNNs) excel at capturing
local features effectively, while Transformer-based archi-
tectures are adept at extracting global semantic informa-
tion across all patches through self-attention mechanisms.
To leverage the strengths of both architectures, we propose
a dual-stream framework that integrates CNN and Trans-
former branches for effective manipulation localization. We
integrated the framework of existing work [20], based on
Conformer architecture [26].

CNN Branch. The CNN branch is structured to effi-
ciently capture local features through a series of convolu-
tional operations. It comprises 12 layers, each consisting
of a 1x1 down-projection convolution, a 3x3 spatial convo-
lution, and a 1x1 up-projection convolution, connected via
residual links. This hierarchical approach allows the model
to incrementally gather detailed local features from the in-
put images. The CNN branch is particularly effective at
identifying local inconsistencies and fine-grained details in
manipulated regions, such as texture anomalies and subtle
pixel-level artifacts.

Transformer Branch. The transformer branch is de-
signed to capture global representations using multi-head
self-attention (MHSA) modules and multi-layer percep-
trons (MLPs). Unlike conventional vision transformers, po-
sitional embeddings are omitted as the CNN branch already
provides sufficient spatial information, allowing the Trans-
former to focus on global context. The transformer branch
excels at identifying broader semantic inconsistencies, such
as mismatched shadows or irregularities in object relation-
ships, by leveraging its ability to capture long-range depen-
dencies and global context.

Feature Fusion. To effectively combine the strengths
of CNN and Transformer branches, we introduce a com-
prehensive feature fusion mechanism. This mechanism ad-
dresses dimensionality differences and facilitates continu-
ous fusion of local and global features across multiple layers
of the network. The fusion mechanism tackles the dimen-
sion differences between CNN feature maps (C ∗ H ∗ W )

and Transformer patch embeddings ((K + 1) ∗ E). Down-
sampling using 1x1 convolutions and LayerNorm aligns the
CNN features to the Transformer’s dimension, while up-
sampling using 1x1 convolutions and BatchNorm aligns the
Transformer embeddings back to the CNN’s dimensions.
This alignment process ensures effective fusion of local
and global features. Beyond aligning feature dimensions,
the fusion mechanism facilitates continuous interaction be-
tween local features from the CNN and global represen-
tations from the Transformer. This bidirectional flow en-
sures that both branches enhance each other’s capabilities,
resulting in a robust and comprehensive model. By com-
bining detailed local cues and broader contextual informa-
tion, our approach effectively captures the complexity of
manipulated images. By integrating CNN and Transformer
branches in a dual-stream framework with a robust feature
fusion mechanism, our approach captures both local details
and global context. This enhances the model’s robustness
and generalizability, making it well-suited for complex ma-
nipulation localization tasks in a weakly-supervised setting.

3.5. Localization

To effectively localize manipulated regions within images
in a weakly-supervised setting, we combine the distinct
strengths of CNNs and Transformers through an integrated
approach leveraging both CNN activation maps and Trans-
former attention maps. This integration allows us to capital-
ize on the complementary capabilities of each architecture
to enhance detection accuracy.

CNN Activation Maps. Class Activation Maps (CAMs)
from the CNN branch represent discriminative image re-
gions used by the CNN to identify specific classes. These
maps highlight the most distinguishing features of an object
but often suffer from the partial activation problem due to
the CNN’s local receptive field. This issue results in the em-
phasis of only the most salient parts of an object, potentially
missing subtler, yet crucial, manipulated areas.

Transformer Attention Maps. In contrast, the Trans-
former branch generates attention maps that capture rela-
tionships and dependencies across all image patches, pro-
viding a broader view of global image context. These maps
excel at identifying areas with semantic inconsistencies or
abnormal interactions, which might not be as apparent in
the local-focused CNN outputs.

Map Integration for Enhanced Localization. To ad-
dress the limitations of partial activation in CNNs and to
utilize the global sensitivity of Transformers, we merge the
output from the CAM layer of the CNN with the attention
maps from the Transformer. The CAM layer is configured
to ensure that its output dimensions align with the num-
ber of patch tokens processed by the Transformer, facili-
tating an effective combination of both maps. The final seg-
mentation is achieved by multiplying the CNN’s activation
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maps with the Transformer’s attention maps. This opera-
tion integrates the locally-focused, discriminative features
highlighted by the CNN with the globally-aware, semantic
correlations identified by the Transformer. By emphasizing
areas that are suspicious in the CNN’s view and corrobo-
rated by the Transformer’s analysis, this method allows us
to effectively pinpoint manipulated regions within the im-
age. This integrated approach not only overcomes the in-
herent deficiencies of each individual model but also lever-
ages their combined strengths to achieve a more accurate
and robust localization of image manipulations in a weakly-
supervised framework.

3.6. Inference

During the inference phase, our system effectively employs
both the teacher-student and CNN-Transformer fusion net-
works to classify images. Importantly, the generalizers uti-
lized for training the student’s robustness are not included in
the inference, ensuring a more streamlined and efficient pro-
cess. Initially, the classifier determines whether an image is
real, partially fake, or fully fake. If the image is classified
as partially fake, the framework then proceeds to generate
a prediction map specifically for the manipulated regions.
Thus, after classifying an image’s authenticity, our system
uses the combined strengths of the CNN and Transformer
models to produce a comprehensive prediction map.

4. Experiments
4.1. Experimental Settings

Datasets. In manipulated image detection tasks,
CASIAv2.0 [8], CASIAv1.0 [7] are the most commonly
used benchmarks. However, they consist of simple copy-
move and splicing manipulations, fundamentally limiting
their adaptability for comprehensive evaluation. Dolos [45],
designed for generated manipulated localization, offers a
diverse range of novel manipulation methods, including
various generative models like LaMa [33], LDM [29], P2
[3] and Pluralistic [42] on large-scale CelebAHQ [17] and
FFHQ [18] datasets, making it well-suited for our task. The
proposed method in the paper also validates its performance
in a weakly-supervised setting using this dataset. The de-
tailed description of the datasets are shown in table 1. Au-
toSplice [16] serves as a novel resource for task of manip-
ulated localization by generative models. This has not been
extensively utilized in existing works, making it ideal for
evaluating the robustness of different models through com-
parison. However, the data could not been evaluated since
it was not approved by the authors. Therefore, we evalu-
ated on different unseen generative methods of the dolos
data. Furthermore, for generated fake image detection, we
intend to utilize recently created datasets with large-scale
data, ArtiFact [28], a fully synthesized datasets with gener-

Table 1. Detailed dataset descriptions

Dataset Authentic Tampered Copy-Move Splicing

CASIAv2 [8] 7,491 5,063 3,235 1,828
CASIAv1 [7] 800 920 459 461

Dataset Authentic Full Fake-DMs Local Fake-DMs Local Fake-Others

Dolos [45] 20,700 20,000 85,300 21,600
ArtiFact [28] 964,989 1,531,749 - -

ative models.
Implementation Details. The architecture of the stu-

dent, teacher, and generalizer networks is based on trans-
former block. Each transformer block consists of 4 layers
and 384 embedding dimension, and 6 attention heads. The
structure of transformer blocks in CNN-transformer fusion
networks consist of 12 layers and 384 embedding dimen-
sion, and 6 attention heads. The learning rate for training is
set to 5e-5, with a weight decay of 5e-4 and epsilon value
of 1e-8. AdamW optimizer is exploited. For feature ex-
traction, we utilize pre-trained CLIP:ViT [27]. To ensure
robust generalization and fair comparison across tasks, we
set the margin hyperparameter M to 4. This margin helps
balance the range of losses among labels, preventing any
single loss from becoming dominant. The training process
rotates through five stages sequentially.

4.2. Comparative Analysis

4.2.1 Effectiveness on generalization

To evaluation the generalization capabilities of our pro-
posed, we compared it against several baseline models
across both in-domain and cross-domain settings. All ex-
periments are conducted using the default settings to ensure
consistency and fairness in evaluation.

Table 2. Evaluation results using the F1 score metric on in-domain
and cross-domain of dolos dataset [45]. All methods are trained on
Dolos-repaint-P2 dataset.

Dataset Wang et al. [36] TAR [19] Ours

Dolos-Lama [45] 0.64 0.54 0.68
Dolos-LDM [45] 0.83 0.50 0.71

Dolos-Pluralistic [45] 0.80 0.53 0.69
Dolos-repaint-P2 [45] 0.92 0.82 0.81

Dolos-P2 [45] 0.68 0.41 0.72

In-domain and Cross-domain evaluation. Although
our framework did not achieve the highest performance
across all datasets, it exhibited a significantly smaller per-
formance drop when applied to different datasets compared
to other baselines. While the models by Wang et al. [36] and
TAR [19] are designed for binary classification, our model
is tailored for multi-label classification. Despite the in-
creased complexity, our results remain highly competitive.
Specifically, when trained solely on partially fake data, the
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Figure 2. The leftmost column shows the input images, the second
column from the left displays the prediction maps generated by our
model, the third column from the left shows the binary prediction
maps with a threshold of 0.5, and the rightmost column illustrates
the ground truth segmentation maps.

performance of other models significantly declined when
tasked with detecting fully fake data. In contrast, our model
maintained a relatively stable performance, demonstrating
its robustness and effectiveness in diverse scenarios. This
robustness and consistency across different types of fake
data underscore the potential and reliability of our approach
in real-world applications where the nature of the data may
vary.

4.2.2 Visualization

Prediction map result. In Figure 2, the images in the
leftmost column demonstrate how the input images are so
intricately manipulated that it is difficult to identify the gen-
erated regions with the naked eye. Despite this, our model,
which is trained solely on image-level labels, produces pre-
diction maps (second column from the left) that closely re-
semble the ground truth (rightmost column). Furthermore,
the binary prediction maps (third column from the left) with
a threshold of 0.5 also show high accuracy. Our model
does not arbitrarily predict facial or hair regions; instead,
it focuses on identifying the genuinely manipulated areas.
This is evident as the model demonstrates high accuracy in
predicting the actual manipulated regions, even when the
modifications are minimal and localized. This capability
highlights the effectiveness of our model in detecting and
segmenting manipulated parts, making it robust for various
real-world scenarios.

Distribution plot. Figure 3 illustrates the impact of
different types of image inputs on the distance between
the output features of the student module and the teacher

Figure 3. Distribution plot difference before and after training.
Density distribution of full generated image at the top, partially
manipulated image at the middle, and real data at the bottom.

module during the initial and final stages of training in the
knowledge distillation process. This is depicted through the
distribution of the absolute differences in feature distances
using Kernel Density Plots. From top to bottom, the rows
labeled p2, repaint-p2-9k, and dolos correspond to scenar-
ios where a full fake image, partial fake image, and real
image are used as inputs, respectively. The columns d1 and
d2 represent the feature distance differences between stu-
dent 1 and the teacher, and student 2 and the teacher, re-
spectively. During each stage of training, for the full fake
image input scenario, student 1 was adversarially trained to
diverge from the teacher, while student 2 was trained to con-
verge towards the teacher. Conversely, for the partial fake
image input scenario, student 1 was trained to converge to-
wards the teacher, while student 2 was trained to diverge.
Lastly, when a real image was used as input, both students
were trained to mimic the teacher. Figure 3 demonstrates
the intended outcomes, after training, compared to the ini-
tial stages where the feature distance differences between
the students and the teacher were significant, the distribu-
tion of d1 for the full fake image scenario is positioned fur-
ther along the x-axis than d2. For the partial fake image, the
opposite is observed, and for the real image, both d1 and d2
are close to zero, indicating that the students successfully
mimic the teacher.

T-SNE visualization. Figure 4 examines the practical
impact of the knowledge distillation module on the CNN-
transformer module at the feature level. The first plot is a
TSNE representation of the feature distribution when the
dolos data is trained on TransCAM. Technically, in this
figure, it is not possible to make a direct comparison in
an entirely identical environment since it includes different
dataset [28], but it was referenced in the evaluation by in-
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Figure 4. T-SNE visualization result of TransCAM [20] trained
with dolos[45], our model just after feature extraction with
CLIP:ViT[27], final feature distribution of ours after training

cluding the same dataset. It shows that the features are well
clustered, however, the boundaries between them are not
clearly defined. The second plot shows the TSNE result af-
ter feature extraction using our method with a few epochs of
training. As observed, the features of real and full fake im-
ages are well separated, but the features of real and partial
fake images are not distinctly differentiated. This is because
most partial fake images retain unmodified real image char-
acteristics, leading to similar feature properties. In contrast,
the final feature distribution plot in rightmost of Figure 4,
after sufficient training, shows that the partial fake image
features are also well separated from the real image fea-
tures. This demonstrates that with adequate support of the
knowledge distillation module, the image representation at
the feature level continues to improve.

5. Conclusion
In this work, we propose a novel and intricate paradigm for
detection and localization of regions within images manipu-
lated by generated models with weakly-supervised settings
on fully- and partially synthesized datasets [45]. We pre-
cisely designed to address the challenges of domain gen-
eralization and limited supervision in real-world scenarios,
where manipulation detection proves especially challeng-
ing. Our framework combines a multi-label discrepancy-
aware knowledge distillation approach with adversarial
learning, enhancing the model’s ability to adapt to un-
seen data. The integration of CNN-based and Transformer-
based techniques for manipulation localization allows for
precise detection of manipulated regions, even in weakly-
supervised settings. By leveraging self-supervised learning
mechanisms, we aim to enhance the generalization capa-
bilities while reducing the reliance on extensive supervi-
sion of intricate annotation requirements. Through compre-
hensive experimentation, we demonstrate that our frame-
work detects real, partially fake, and fully fake images ro-
bustly but also segment the manipulated region within im-
ages in various settings with only image-level labels. This
makes our approach highly effective for real-world appli-
cations where sophisticated generative techniques contin-

uously emerge. While our proposed framework leverages
various techniques effectively, we will focus on further en-
hancing the adaptability and efficiency of our framework,
exploring additional network architectures and more wide-
ranging dataset for future work. Still, our work will mark a
significant progress in the field of media forensics, paving
the way for more adaptive and reliable solutions to pro-
tect authenticity while detecting contents manipulated with
generative models in trustworthy digital media verification
landscapes.
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