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Abstract

Data protection methods for text-to-image models aim to
prevent unauthorized personalization by applying adversar-
ial perturbations to images. We reveal a critical vulnera-
bility: all existing defenses assume attackers use rare to-
kens (e.g., “sks”) during personalization, following aca-
demic conventions. We demonstrate that attackers can com-
pletely bypass state-of-the-art protections by simply using
common names instead. Changing from “a photo of sks
person” to “a photo of Lisa” reduces protection effective-
ness from 29.7% to 1.6% face detection failure rate—a 94%
drop with no technical sophistication required. Our analysis
reveals that rare tokens create concentrated attention pat-
terns prone to adversarial exploitation, while name tokens
exhibit distributed attention that naturally resists attacks.
This exposes a fundamental gap between academic evalu-
ation protocols and realistic attack scenarios, where users
naturally adopt community-recommended practices that in-
advertently bypass protections. This work calls for devel-
oping token-agnostic defense mechanisms and establishing
evaluation frameworks that reflect real-world adversarial
behavior.

1. Introduction

The rapid advancement of text-to-image generation models,
particularly with the open-source release of powerful mod-
els like Stable Diffusion, has dramatically lowered the barri-
ers to Al-based image generation. Simultaneously, person-
alization techniques such as DreamBooth [12] have made
it possible to preserve the identity of specific individuals
using only 3-5 reference images, enabling users to gener-
ate highly realistic personalized content with minimal input.
While these capabilities represent remarkable technological
progress, they have also raised significant concerns about
privacy, security, and potential misuse.

The prospect of unauthorized personalization—where
malicious users could exploit publicly available images to
create deepfakes or other harmful content—has prompted
extensive research into data protection mechanisms. These
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Figure 1. Token choice determines protection effectiveness.
Protection succeeds against rare tokens (“sks”) but fails against
common names (“Lisa”), revealing a critical evaluation gap.

adversarial defense methods aim to protect individuals’ vi-
sual identity by applying imperceptible perturbations to im-
ages, making them “unlearnable” for personalization mod-
els. Notable approaches include Anti-DreamBooth [15],
CAAT [18], and SimAC [16], which have demonstrated
promising results in preventing unauthorized concept learn-
ing during model fine-tuning.

However, existing protection research shares a funda-
mental oversight: it uniformly assumes that attackers will
adopt the same placeholder identifiers (e.g., “sks”) that were
used during the adversarial noise generation process by
the defender when fine-tuning models. While this assump-
tion has become standard in academic settings following
the DreamBooth protocol, it fails to account for real-world
users who may prefer natural or common tokens for better
generation quality and usability. This creates a critical blind
spot in security evaluation—one that we aim to systemati-



cally expose in this work.

We reveal a critical vulnerability that fundamentally
undermines the security guarantees of existing protection
methods. Through systematic experimentation, we demon-
strate that an attacker can trivially bypass current protec-
tions by simply replacing rare tokens with common name
tokens (e.g., using “a photo of Lisa” instead of “a photo
of sks person”) during personalization. This requires no
technical sophistication or additional resources, yet com-
pletely neutralizes state-of-the-art defenses. As illustrated
in Figure 1, while protection methods successfully defend
against rare-token attacks, they completely fail when com-
mon name tokens are used instead.

This vulnerability stems from a disconnect between aca-
demic evaluation protocols and real-world attacker behav-
ior. Community practices reinforce this concern: for ex-
ample, Stable Diffusion Art - a widely used platform for
image generation - expressly recommends tokens of com-
mon name (e.g. ’jane’, ’emma’) over rare tokens to improve
quality. [13] As a result, users seeking better results natu-
rally adopt strategies that bypass current protections.

To understand the underlying mechanisms, we conduct
multi-level analyses including parameter update patterns
across different model components, cross-attention visual-
ization, and text embedding behavior. Our findings reveal
that self-attention layers in the text encoder undergo the
most significant changes during personalization, challeng-
ing the common assumption that DreamBooth primarily af-
fects token embeddings or image generation modules. We
demonstrate that rare tokens promote overfitting behavior
with concentrated attention patterns that create vulnerabili-
ties, while name tokens exhibit distributed attention across
multiple tokens and selective spatial focus on identity-
critical features, providing natural protection against adver-
sarial attacks.

Our work carries significant implications for the field.
Current data protection tools may offer users a false sense of
security, and existing academic evaluation protocols may be
systematically overestimating their effectiveness. The ten-
sion between personalization quality and security robust-
ness has received limited attention, yet our findings show
that the most effective personalization practices directly
undermine protection assumptions. Users seeking optimal
generation quality are naturally incentivized to adopt prac-
tices that completely bypass existing defenses, even without
malicious intent.

Contributions. This work represents the first compre-
hensive analysis of this overlooked security gap. We con-
tribute:

1. Realistic attack scenario: We identify and formalize a
practical attack scenario using name tokens, which has
been overlooked in prior research.

2. Extensive empirical validation: We evaluate the at-

tack across diverse subject identities, varying in gender,

name, and prompt variations, demonstrating its effec-

tiveness under realistic and varied conditions.

3. Mechanistic explanation: We analyze parameter up-
dates, cross-attention maps, and embedding shifts to re-
veal why rare tokens are vulnerable.

4. Implications for defense: We offer insights for devel-
oping token-agnostic protection methods that remain ro-
bust against realistic attacks.

By exposing the gap between research assumptions and
real-world risks, our work calls for a reevaluation of current
protection strategies and the development of methods that
remain robust regardless of token choice.

2. Related Work

2.1. Personalization with Diffusion Models

With the advent of Latent Diffusion Models (LDMs) [11],
text-to-image generation has made significant strides,
spurring growing interest in personalization. In text-to-
image generation, personalization refers to the ability to
synthesize diverse scenes of a specific subject or style
based on a handful of user-provided images (typically 3-5),
guided by textual prompts.

However, retraining the entire diffusion model for each
user is computationally expensive. To address this, several
approaches have been proposed for efficient few-shot per-
sonalization. Notable early efforts include Textual Inver-
sion [2] and DreamBooth [12]. Textual Inversion introduces
a new pseudo token and optimizes only its embedding, en-
abling the model to incorporate novel concepts while pre-
serving the pretrained weights. In contrast, DreamBooth
fine-tunes the entire Stable Diffusion model while incorpo-
rating a prior preservation loss to retain generative capabil-
ities for both new and existing concepts. Critically, Dream-
Booth established the use of rare tokens (e.g., “sks™) as
placeholder identifiers, a convention that became standard
practice in subsequent research without consideration of its
security implications.

Despite its effectiveness, DreamBooth requires fine-
tuning the entire model, leading to high computational and
memory costs. To tackle this, recent studies have introduced
compact fine-tuning strategies that preserve personalization
performance while updating only a subset of parameters.
Custom Diffusion [6] fine-tunes only the cross-attention
layers, significantly reducing memory usage and training
time. LoRA [5] introduces trainable low-rank adapters into
frozen layers, enhancing efficiency without sacrificing qual-
ity. SVDIff [3] goes further by learning perturbations in the
singular values of decomposed weight matrices, effectively
regularizing updates and mitigating overfitting. These ad-
vancements have fueled the rapid development of person-
alization techniques that balance efficiency with expressive
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Figure 2. Data Protection and Adversarial Personalization scenarios. Our framework involves a Data Protector who generates protected
images using adversarial attacks with rare-token prompts (a), and a Malicious User who fine-tunes models on these protected images. The
critical vulnerability lies in the choice of user prompt (b) during fine-tuning: while existing research assumes rare-token usage matching
the protective prompt, realistic attackers can use common name tokens instead. The inference prompt (c) follows the same token choice as

the user prompt.

generative power, yet all inherit DreamBooth’s rare token
convention.

2.2. Data Protection from Personalization

While personalization enhances generative capabilities, it
also raises serious privacy concerns. Malicious users can
leverage few-shot personalization to synthesize realistic
deepfakes with minimal reference images, enabling misuse
such as fake news, fraud, and non-consensual content gen-
eration. This highlights the urgent need for defenses against
unauthorized personalization.

Protection strategies can be divided into post hoc and
preventive approaches. Post hoc methods detect or remove
harmful content after generation [10], while preventive ap-
proaches aim to block misuse at the source—without re-
quiring access to the model or outputs. One such preventive
approach is Anti-DreamBooth [15], which introduces im-
perceptible perturbation noises to input images, making it
harder for DreamBooth to learn reliable subject represen-
tations during fine-tuning. The perturbation noise ¢ is opti-
mized to degrade model performance on clean images after
fine-tuning:
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Here, Lg, denotes the DreamBooth training loss using per-
turbed inputs x+ 9, and L,nq evaluates how poorly the fine-
tuned model 8* performs on clean inputs. This bilevel opti-
mization ensures that while the model is successfully fine-
tuned on perturbed data, it performs poorly when generating
images from clean data.

Nonetheless, this approach primarily relies on low-level
noise perturbations, which are insufficient to completely
prevent the generation of images resembling the original
subject. Moreover, such perturbations tend to be fragile
and can often be neutralized by common image purification

techniques [19]. To overcome these limitations, more recent
works have shifted focus from input-level noise to disrupt-
ing internal mechanisms of the diffusion process. For exam-
ple, CAAT [18] injects adversarial gradients into the cross-
attention layers of the U-Net, destabilizing attention scores
during training. DisDiff [8] takes this further by disabling
specific cross-attention heads tied to subject identifiers, sev-
ering the link between text and image representations.

Despite these advances, most research focuses on the U-
Net and attention modules [17, 18], with less attention to the
text encoder, which plays a crucial role in semantic align-
ment. Recent analysis [19] shows that the text encoder ex-
periences the most significant parameter shifts during fine-
tuning with protected images, suggesting it may offer a
more robust target for disrupting subject identity learning at
the semantic level. However, all existing defense methods
implicitly assume that attackers follow the canonical proto-
col of using rare tokens (e.g., “sks”) as identifiers.

2.3. The Token Choice Gap

While academic research universally adopts rare tokens,
evidence from practitioner communities suggests different
preferences. This aligns with experimental pipelines in the
literature but diverges from real-world usage, where com-
mon name tokens (e.g., “Lisa”) are more prevalent and se-
mantically meaningful. [13] This discrepancy reveals a crit-
ical blind spot in current personalization defense evalua-
tions that we systematically expose in this work. Our re-
search is the first to investigate how token choice impacts
adversarial robustness and exposes the fundamental gap be-
tween academic threat models and practical adversarial sce-
narios.
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Figure 3. Qualitative results demonstrating the token choice vulnerability. (a) Rare-token setting: Protection methods successfully
defend against attacks using rare tokens like “sks,” producing heavily distorted images with artifacts. (b) Name-token setting: The same
protection methods completely fail when attackers use common names like “Lisa” or “Tony,” generating high-quality personalized images
that clearly preserve target identity. This reveals that current defenses can be trivially bypassed by simply changing the token choice,

offering no practical security against realistic attacks.

3. Identifying the Critical Security Gap

3.1. Protection from Malicious Personalization

We adopt an adversarial personalization framework inspired
by Anti-DreamBooth [15]. The scenario involves two roles:
a Data Protector and a Malicious User. The Data Protec-
tor generates perturbed training data using an adversarial
method such as Projected Gradient Descent (PGD) [9]. The
Malicious User then attempts to fine-tune a personalized
diffusion model using the protected images.

The goal of the Data Protector is to prevent the Malicious
User from reconstructing the subject identity. In practice,
since the user does not have access to the full training setup,
they select the identifier token and prompt independently
during fine-tuning and inference. To analyze the impact of
token type, we systematically vary the use of rare vs. com-
mon tokens across three stages: (a) protection prompt used
when generating adversarial examples, (b) user’s personal-
ization prompt during model fine-tuning, and (c) inference
prompt at test time.

3.2. Problem Definition

In DreamBooth fine-tuning, the combination of rare tokens
and class nouns is used as text prompts to learn new per-
sonal concepts on rare tokens with weak semantic priors.
The use of rare tokens such as “sks” and “xyz” has become
prevailing convention in many fine-tuning-based personal-
ization methods to this day. This approach leverages the
assumption that rare tokens, having minimal prior associ-
ations in the model’s training data, provide a clean slate for
binding new visual concepts during personalization.
However, practical evidence from the Al-generated im-

age community challenges this convention. For example,

Stable Diffusion Art—a widely used platform that pro-

vides powerful tools for Stable Diffusion-based image gen-

eration—explicitly advises against using rare tokens when
learning human faces. Instead, it recommends using com-
mon names such as “jane,” “emma,” and “jennifer” to
achieve better generation quality and more natural re-

sults. [13]

To systematically analyze this discrepancy, we define
two distinct attack scenarios based on the adversarial per-
sonalization framework illustrated in Figure 2. In both sce-
narios, the Data Protector generates adversarial examples
using the (a) protective prompt that includes a rare token
(e.g., ’sks”), following the standard practice established in
prior data protection research. The critical distinction lies
in the (b) user prompt employed by the Malicious User
during fine-tuning:
¢ Rare-token Setting: The user prompt matches the pro-

tective prompt, using rare tokens (e.g., “a photo of sks
person”). This represents the scenario assumed by all ex-
isting data protection research.

* Name-token Setting: The user prompt employs common
name tokens instead (e.g., “a photo of Lisa”). This reflects
realistic attacker behavior informed by community prac-
tices and generation quality considerations.

3.3. The Academic-Practice Disconnect

This vulnerability stems from a disconnect between aca-
demic protection methods and how malicious users be-
have in practice. Current protection research has commonly
adopted the rare token convention from DreamBooth with-
out considering its security implications. This creates sev-



Scenario 1: Name-token Settings

Prompt FID (1) FDFR (1) SER-FQA ({)
”a photo of 1isa” 192.66 1.56 4.45
”a dslr portrait of 1isa” 206.18 3.12 4.35
”a photo of 1isa in front of eiffel tower” 443.12 0.00 4.76
a photo of 11isa looking at the mirror” 326.20 1.56 4.64
Average 292.04 1.56 4.55
Scenario 2: Rare-token Settings
Prompt FID (1) FDFR (1) SER-FQA ({)
a photo of sks person” 342.00 21.10 4.08
a dslr portrait of sks person” 410.68 47.66 2.66
’a photo of sks person in front of eiffel tower” 454.75 30.47 3.40
a photo of sks person looking at the mirror” 417.48 19.54 3.96
Average 406.23 29.69 3.53

Table 1. Quantitative evaluation of protection effectiveness under different token settings. This table compares results for rare-token
(sks—sks) and name-token (sks—1isa) settings. Rare-token attacks lead to substantial degradation (high FID and FDFR), while
name-token attacks largely bypass protection, maintaining low FDFR and high SER-FQA scores. These results reveal a critical vulnerability

in current protection methods under realistic usage.

eral critical issues:

1. Misaligned Threat Modeling: Academic evaluations
assume that attackers use the same rare token as the
one used during adversarial noise generation. However,
in practice, users often prefer name tokens due to bet-
ter generation quality and usability. As a result, attackers
may inadvertently bypass protections simply by follow-
ing common community practices, rather than by inten-
tionally defeating the defense.

2. Overstated Security and Misleading Guarantees: Be-
cause current evaluations focus on rare-token attacks,
protection methods appear far more effective than they
are in realistic settings. This leads to inflated perceptions
of security in papers, and gives users a false sense of
protection against real-world threats.

3.4. The Security Implications of Token Choice

The mismatch between academic assumptions and real-
world user behavior poses a significant challenge to data
protection, yet remains largely underexplored in existing re-
search. We highlight the overlooked impact of placeholder
token choice, which has critical implications for the robust-
ness of current protection methods.

Our key discovery: We are the first to demonstrate that
attacks become far less effective when name tokens are used
instead of rare tokens. Specifically, when fine-tuning dif-
fusion models on protected images (i.e., adversarially per-
turbed), using the prompt “a photo of sks person” leads to
significantly higher attack success rates than using “a photo
of Lisa.” This finding fundamentally challenges the assump-
tions underlying current protection mechanisms. We vali-

date this observation through systematic experiments and
analyses presented in Sections 4 and 5.

4. Empirical Analysis

4.1. Empirical Setup

Datasets. We use subject images from the CelebA-HQ
dataset [21], which consists of high-quality facial images at
a resolution of 1024x1024. To ensure diversity, we select a
balanced subset comprising four female and four male iden-
tities. For each identity, we use four high-quality images for
fine-tuning. All images are center-cropped and resized to
512x512 resolution before use.

Model. We adopt Stable Diffusion 2.1-base as our back-
bone model, as SD v1.4 exhibits inferior performance
and v1.5 is not publicly available. For personalization,
we follow the DreamBooth pipeline, aligning with stan-
dard setups in prior data protection studies [7, 15, 20]. To
generate adversarial training images, we implement Anti-
DreamBooth [15]—PGD attack [9] based that perturbs
training samples to hinder concept binding. Perturbations
are constrained under an {,-norm with ¢ = 8/255, ensur-
ing they remain visually imperceptible.

Evaluation Metrics. We evaluate the effectiveness of
data protection against personalization using three comple-
mentary metrics. Fréchet Inception Distance (FID) [4]
measures the distributional difference between images gen-
erated from clean and perturbed training samples, providing



a global estimate of visual quality degradation—higher FID
scores indicate greater disruption. Face Detection Failure
Rate (FDFR) [ 1] quantifies the proportion of generated im-
ages in which no detectable face is found by the RetinaFace
detector; this reflects whether the synthesized outputs re-
main visually plausible as faces, with higher values indi-
cating stronger protection. Lastly, SER-FQA [14] is a per-
ceptual metric tailored for facial images that assesses the
structural and semantic quality of generated faces, offering
fine-grained insights into how photorealistic and face-like
the outputs remain under adversarial perturbations.

4.2. Empirical Results

Quantitative Results. Table | presents a comprehensive
evaluation comparing protection effectiveness under rare-
token (sks — sks) and name-token (sks — lisa) settings.
The results reveal a critical vulnerability in current pro-
tection methods. In the rare-token setting, protection meth-
ods achieve substantial effectiveness with FID scores rang-
ing from 342.00 to 454.75 and Face Detection Failure
Rates (FDFR) reaching up to 47.66%;, indicating successful
disruption of personalization. In contrast, the name-token
setting shows dramatically reduced protection with FID
scores of 192.66-443.12 and FDFR values near zero (0.00-
3.12%). The SER-FQA scores confirm this pattern, with
rare-token settings achieving lower scores (2.66-4.08) in-
dicating greater face quality degradation, while name-token
settings maintain higher scores (4.35-4.76) suggesting pre-
served identity.

Qualitative Results. Figure 3 provides visual evidence
supporting our quantitative findings. Under rare-token set-
tings, generated images exhibit severe artifacts, color dis-
tortions, and structural deformations that render the target
identity unrecognizable. However, the name-token setting
produces high-quality images that clearly preserve the tar-
get person’s identity across various contexts and prompts,
despite using identical protected training data.

This qualitative evidence demonstrates complete pro-
tection failure rather than partial degradation. The gener-
ated images in name-token settings are indistinguishable
from legitimate personalization results, providing no indi-
cation that protection methods were applied. The consis-
tency across multiple identities and prompt variations con-
firms this is a systematic vulnerability inherent to current
protection approaches.

5. Analysis

5.1. Effectiveness of Adversarial Perturbation

Parameter Change during Fine-tuning. To understand
which components of the model are primarily affected dur-
ing DreamBooth fine-tuning, we measure the relative pa-
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Figure 4. Parameter updates during DreamBooth fine-tuning.
Total parameter changes (AB) across Text Encoder (blue) and
UNet (orange) components relative to pretrained diffusion mod-
els. Self-Attention and Cross-Attention layers show the largest
updates, while embedding layers remain relatively stable.

Module Rare-token Name-token Rel. Diff (%)
Text Encoder
Self Attention 0.117392 0.125626 +7.0
MLP 0.246008 0.263672 +7.2
Token Embedding  0.000029 0.000036 +24.1
Layer Norm 0.001316 0.001410 +7.1
UNet
Cross Attention 0.300060 0.304440 +1.5
ResNet 0.181104 0.182672 +0.9
Self Attention 0.071040 0.071680 +0.9
Feedforward 0.034176 0.034208 +0.1

Table 2. Impact of adversarial attack on model parameter up-
dates. Comparison of normalized parameter changes (Af) be-
tween rare-token and name-token across Text Encoder and UNet
components. Adversarial training induces larger updates in Text
Encoder modules, particularly in token embeddings (+24.1%),
while UNet components show minimal changes, suggesting con-
cept substitution primarily affects text-to-image alignment mech-
anisms.

rameter changes across different modules. Since existing
data protection studies assume training of both the text en-
coder and UNet components, we conduct our experiments
under the same setting and measure parameter updates
across modules within both the text encoder and UNet.
Specifically, we compute the normalized parameter update
magnitude as follows:

| Ofnenunea — Opnetineal
Z finetuned pretramed
N
| | aprelralned | |
where 6" and 0\")  denote the parameters before
pretrained finetuned P

and after fine-tuning for the n-th parameter group within a
given module, and N is the number of such groups.

Parameter Changes in Clean DreamBooth Fine-tuning.
Figure 4 visualizes the average normalized parameter



change A6 for major submodules of the text encoder and
UNet. Notably, the self-attention layers in the text encoder
exhibit the largest changes, revealing their central role in
personalization. This finding challenges the common as-
sumption that DreamBooth primarily affects token embed-
dings or image generation modules. Instead, self-attention
layers serve as the primary mechanism for learning how
new concept tokens interact with existing vocabulary and
context.

Specifically, self-attention layers enable the model to
determine when and how a placeholder token (e.g., ’sks”
or “lisa”) should be treated as the primary subject identi-
fier within different prompt contexts. They learn contextual
relationships such as distinguishing ”a photo of lisa per-
son” from “lisa’s photo” or handling compositional prompts
like ’lisa and john together.” This contextual understanding
is crucial for robust personalization that works across di-
verse prompt variations. In contrast, token embeddings re-
main relatively stable, suggesting that personalization re-
lies more on learning contextual usage patterns than on
drastically altering individual token representations. These
results indicate that personalization affects not only the
well-known image generation modules (e.g., UNet) but also
the text encoder—particularly its attention mechanisms—
highlighting their crucial role in adapting to new concepts.

Adversarial Perturbation Impact. Table 2 compares pa-
rameter changes between adversarially perturbed and clean
fine-tuned models across rare-token setting (SKS—SKS)
and name-token setting (SKS—LISA). Here, we compute
the normalized difference between parameters of models
fine-tuned on adversarial images versus clean images. The
results reveal distinct patterns across different model com-
ponents. In the text encoder, the name-token setting induces
larger parameter deviations across most modules, with the
token embedding layer showing the most substantial rela-
tive increase (+24.1%), followed by MLP layers (+7.2%)
and self-attention layers (+7.0%). However, our empirical
results demonstrate that adversarial attacks are less effective
in the name-token setting. This suggests that while adver-
sarial perturbations cause more significant parameter devi-
ations in the text encoding pathway during concept substi-
tution, these changes may actually strengthen the model’s
robustness against the attack. Conversely, the UNet com-
ponents show more modest parameter deviations under the
name-token setting, with cross-attention layers exhibiting
the largest increase (+1.5%). The relatively smaller changes
in UNet parameters indicate that adversarial perturbations
primarily affect the text encoder rather than the image gen-
eration pathway. This finding aligns with our hypothesis
that concept substitution primarily exploits vulnerabilities
in text-to-image alignment mechanisms rather than funda-
mental image generation capabilities.

a photo of sks person

a photo of lisa

Name-token setting

Figure 5. Cross-attention behavior on clean images. Compari-
son between the rare-token setting (top) and name-token setting
(bottom). Rare tokens show strongly localized attention on the
subject identifier, indicating overfitted subject binding, whereas
name tokens exhibit more diffused attention.

5.2. Cross-Attention Analysis: Mechanism of
Token-Dependent Protection

To investigate the fundamental cause of protection failure
in practical settings, we analyze cross-attention heatmaps
that reveal how different token choices affect vulnerabil-
ity to adversarial attacks. We focus on representative ex-
amples using the rare token “’sks” and the common name
token “lisa,” conducting experiments with multiple random
seeds (42, 84, 128) to ensure robustness. Each model was
fine-tuned using prompts such as “’a photo of a sks person”
or "a photo of lisa,” and attention maps were analyzed un-
der both training prompts and novel prompts such as “a dslr
portrait of.”

Clean Setting Analysis. Figure 5 reveals fundamental
differences in attention patterns that expose the overfitting
tendencies of different token types. When “sks” is used,
the model exhibits strong, concentrated attention on the to-
ken, which correspondingly manifests as broad spatial at-
tention extending beyond core facial features to include
hair, background, and peripheral regions. This pattern sug-
gests that rare tokens promote overfitting behavior, where
the model learns to associate the placeholder with exten-
sive visual details rather than focusing on identity-essential
features. In contrast, ”lisa” demonstrates distributed atten-
tion across neighboring tokens ("of,” etc.) at the token level,
while maintaining more selective spatial attention concen-
trated on identity-critical facial features such as eyes, nose,
and mouth. This suggests that name tokens leverage existing
semantic knowledge to avoid overfitting, resulting in more
generalizable representations that focus on semantically rel-
evant facial characteristics.
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Figure 6. Cross-attention under DreamBooth fine-tuning with protected images. Shown are results for the rare token (sks, left) and
name token (1isa, right). The first row uses the training prompt; the second and third use novel prompts. In the rare token setting, con-
centrated attention on sks” creates overfitted associations that enable effective adversarial attacks. For name tokens, distributed attention
across multiple tokens (e.g., ”of”’) prevents concentrated vulnerability, demonstrating natural protection against adversarial binding.

Adversarial Setting Analysis. Figure 6 demonstrates
how the overfitting tendency observed with rare tokens be-
comes a critical vulnerability under adversarial attack. The
concentrated attention on “sks” that enabled broad spatial
binding in clean settings now provides a direct pathway
for adversarial perturbations to exploit. The model’s over-
fitted association between “sks” and extensive visual details
makes it susceptible to perturbations that target this bind-
ing mechanism. Conversely, the distributed token-level at-
tention pattern of name tokens prevents such concentrated
vulnerability. The attention dispersion across multiple to-
kens (“lisa,” “of,” etc.) means that adversarial perturbations
cannot establish the strong, focused binding required for
successful attacks. Additionally, the more selective spatial
attention on identity-critical features, rather than peripheral
details, provides inherent robustness against perturbations
that may affect less relevant visual regions. This analysis re-
veals that the overfitting behavior encouraged by rare tokens
fundamentally compromises adversarial robustness, while
the more balanced attention patterns of name tokens pro-
vide natural protection.

5.3. Text Embedding Analysis

Although parameter changes in token embeddings are rela-
tively small in absolute terms, they exhibit the highest rel-
ative change rates, making them particularly significant for
understanding adversarial attack mechanisms. Even subtle
shifts in token embeddings can reflect meaningful seman-
tic transformations that fundamentally alter how the model
interprets and processes specific tokens. In this section, we
analyze how embedding shifts differ between rare identifier
tokens (e.g., “sks””) and common name tokens (e.g., “lisa”)
under both clean and adversarial settings.

To ensure consistent comparison, we define appropriate
baselines. For the clean image setting, we use the origi-
nal, unfine-tuned text encoder as the baseline. For the ad-
versarial setting, we use the text encoder fine-tuned on

clean images of the target subject, allowing us to isolate
the effects of adversarial perturbations on embedding be-
havior. In the clean setting, we observe that overall embed-
ding shifts across the vocabulary remain minimal. This is
likely because DreamBooth fine-tuning induces only mild
and broadly distributed updates to the text encoder. As a re-
sult, the differences in embedding shift magnitudes between
rare and common tokens are negligible in this scenario.

In contrast, the adversarial setting results in more lo-
calized and pronounced embedding changes. Since only a
small number of prompt tokens (typically 8-9) are directly
affected by adversarial optimization, the shifts are more
concentrated and therefore easier to analyze. In particular,
in the name token setting (sks — lisa), we observe a 41.85%
higher variance and a 6.79% higher relative mean shift in
token embeddings compared to the rare token setting (sks
— sks). This increased instability correlates with the atten-
tion dispersion patterns observed in Figure 6, where name
tokens fail to maintain consistent subject binding. The em-
bedding analysis suggests that name tokens’ rich semantic
associations create optimization conflicts during adversarial
training, resulting in unstable representations that inadver-
tently protect against concept substitution attacks.

6. Conclusion & Future Work
6.1. Research Contributions and Key Findings

This study focuses on the role of tokens in the person-
alization process of text-to-image models and presents a
token-level analysis that has been largely overlooked in
prior work. While previous studies have primarily focused
on model architecture or image quality, our findings reveal
that the choice of token alone can significantly impact both
personalization performance and the effectiveness of adver-
sarial attacks. From a data protection standpoint, we show
that selecting between a rare token (e.g., “sks”) and a name
token (e.g., “lisa”) substantially affects the success of such
attacks.



Furthermore, we challenge the common assumption in
existing adversarial pipelines that the same token is used
both during image perturbation and user fine-tuning. Be-
cause the data protector cannot foresee the token the user
will use for fine-tuning, token mismatches during attack
and personalization are highly likely in practice. To reflect
this realistic condition, we introduce a practical scenario in
which a rare token (e.g., “sks”) is used to generate the ad-
versarial image, while a name token (e.g., “lisa”) is used
during personalization. Our experiments show that such to-
ken mismatches lead to a significant drop in attack effec-
tiveness, suggesting that current adversarial methods may
be less reliable in real-world settings.

6.2. The Personalization-Security Trade-off

Our findings reveal a structural tension between personal-
ization quality and security robustness that has received lim-
ited attention in prior research. The widespread use of com-
mon name tokens in the text-to-image community is not in-
cidental—it is based on consistent empirical observations
that such tokens often yield higher-quality, more semanti-
cally coherent outputs. For example, platforms such as Sta-
ble Diffusion Art recommend using names like “emma,”
and “jennifer” due to their demonstrated effectiveness in
generating realistic and visually appealing images. This sit-
uation presents a practical challenge: personalization strate-
gies that improve generation outcomes may unintentionally
cause current protection methods to fail. To address this,
future protection techniques should be designed to remain
effective regardless of token choice, ensuring both high per-
sonalization quality and meaningful security guarantees.

6.3. Research Limitations and Scope

Nevertheless, this study has several limitations. Due to com-
putational and time constraints, we were unable to ex-
plore a broader range of rare and name tokens, and thus
our results are based on a limited set of representative ex-
amples. Our evaluation focuses on facial identity protec-
tion using CelebA-HQ, and generalizability to other visual
concepts requires investigation. We examine DreamBooth-
based methods primarily, though similar vulnerabilities
likely exist in other approaches. Moreover, the lack of a
clear quantitative metric for evaluating personalization suc-
cess makes it difficult to objectively assess whether a model
has accurately preserved the intended concept. Future work
should aim to establish more objective and fine-grained
evaluation metrics for personalization quality.

6.4. Future Research Directions

We outline several future directions to improve the robust-
ness and practicality of data protection in text-to-image per-
sonalization.

Token-Agnostic Defense Methods. Future defenses should

remain effective regardless of the specific token used to
identify the subject.

Robustness Across Models and Concepts. To ensure
broader applicability, future research should evaluate de-
fenses across diverse personalization techniques (e.g., Tex-
tual Inversion, Custom Diffusion) and concept types (e.g.,
objects, scenes, artistic styles)

Semantic-Level Defense Mechanisms. Instead of focusing
solely on pixel-level perturbation, defenses should consider
disrupting the underlying visual-semantic binding.
Realistic Evaluation Frameworks. Standardized bench-
marks should be established to reflect real-world attack
strategies and measure whether personalization has been
meaningfully preserved. For example, metrics could include
gender retention, subject presence, facial consistency, or
concept coherence.

By grounding protection research in practical settings
and diverse scenarios, we can move toward developing se-
curity techniques that are both technically reliable and us-
able in real-world deployments.
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