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Abstract

Electrocardiography (ECG) and echocardiography (Echo)001
provide complementary perspectives on cardiac health,002
capturing electrical and structural information, respec-003
tively. While recent methods attempt to predict structural004
abnormalities from ECG alone, they are limited by the lack005
of direct structural cues. We propose a multimodal con-006
trastive learning approach that aligns ECG and Echo sig-007
nals during training, enabling ECG representations to en-008
code structural features implicitly. At inference, our model009
relies solely on ECG, generating embeddings enriched with010
structural information learned from Echo. Experiments011
on large-scale clinical datasets demonstrate significant im-012
provements over ECG-only baselines, particularly in de-013
tecting diseases where structural insight is critical, such014
as valvular heart disease and morphological abnormalities,015
underscoring the potential of multimodal pretraining for en-016
hanced ECG-based diagnosis.017

1. Introduction018

Cardiovascular disease (CVD) is the single largest cause019
of death worldwide, accounting for roughly one-third of020
all global mortality. Early and accurate detection of heart021
disease can dramatically improve outcomes, but it requires022
integrating multiple types of cardiac information. In par-023
ticular, diagnosis often depends on both the heart’s elec-024
trical activity and its anatomical structure. The standard025
non-invasive tests in clinical use are the electrocardiogram026
(ECG) and echocardiogram (Echo): the ECG records the027
electrical impulses of the heart as a time-series signal,028
whereas echocardiography provides real-time 2D/3D ultra-029
sound video of cardiac anatomy and motion. These modali-030
ties offer complementary views – the ECG captures rhythm031
and conduction, while Echo images reveal chamber sizes,032
wall motion, and valvular function – and because they are033
safe and inexpensive, both are widely performed in clinical034
practice [21, 23, 30].035

Figure 1. Overall Architecture of proposed method.

Although ECG and Echo arise from the same underly- 036
ing cardiac cycle, their integration differs markedly between 037
clinical practice and machine learning. In clinical work- 038
flows, physicians routinely interpret ECGs and, when nec- 039
essary, complement them with Echo imaging to form a com- 040
prehensive diagnosis, synthesizing electrical and structural 041
insights in tandem. 042

In contrast, existing AI systems typically process ECG 043
and Echo data in isolation, training separate models for 044
each modality without explicit fusion. As a result, the rich 045
structural information provided by Echo is not leveraged 046
to inform ECG-based predictions, and vice versa. This 047
gap limits the ability of machine learning models to de- 048
tect pathological patterns that manifest across both electri- 049
cal and anatomical dimensions. For example, hypertension- 050
related hypertrophy or early cardiomyopathy may induce 051
subtle structural changes before becoming evident on ECG, 052
yet ECG-only models lack the contextual awareness to rec- 053
ognize such cases. These limitations highlight the need for 054
multimodal approaches that reflect the integrated reasoning 055
clinicians apply in practice. 056

Recent AI efforts have begun to close this gap by us- 057
ing ECG signals to infer structural heart disease [17], but 058
they stop short of truly fusing the modalities. Several 059
deep learning models now predict Echo-derived patholo- 060
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gies from ECG alone [1]. For instance, an ECG-based061
screening model was trained on millions of ECGs labeled062
with echocardiographic diagnoses (such as reduced ejec-063
tion fraction or moderate/severe valve disease) determined064
within days of the ECG. Another ensemble model [26] sim-065
ilarly identifies a broad range of structural heart disorders066
from ECG traces. In these approaches, the Echo exam067
serves only to provide ground-truth labels (e.g. EF < 40%068
or “moderate mitral regurgitation”), and the models learn069
to map ECG features to those labels through supervised070
training. Echo images themselves are never used as in-071
puts or directly embedded into the ECG model. More-072
over, because the reference echocardiogram can be taken073
up to weeks apart, such models risk missing transient or074
alignment-dependent abnormalities. In short, current ECG-075
to-diagnosis models [4, 16, 19, 25] rely on cross-modal la-076
bels but do not incorporate the underlying anatomical con-077
tent of the Echo into the learned ECG representation.078

In contrast, our proposed method directly aligns ECG079
and Echo modalities during representation learning. We080
collect time-synchronized ECG–Echo pairs and train a mul-081
timodal contrastive model that pulls together the represen-082
tations of matching ECGs and Echoes while pushing apart083
non-matching pairs. In effect, each ECG embedding is084
enriched by the corresponding Echo’s structural features.085
Once trained, the model can ingest only an ECG and still086
produce an embedding that “bakes in” the heart’s anatomy087
as seen on Echo. Crucially, our approach fuses the modali-088
ties at the feature level – we never discard the Echo images089
during training, so the ECG latent space learns to capture090
the structural patterns present in the Echo training data. At091
inference time, only the ECG signal is needed, preserving092
the usual workflow simplicity.093

This multimodal alignment is especially valuable for dis-094
eases that depend on imaging findings. Many cardiomy-095
opathies and valvular disorders produce hallmark structural096
changes on echocardiogram that are subtle or absent on the097
ECG. For example, dilated or hypertrophic cardiomyopathy098
(ICD I42) and various valvulopathies (including rheumatic099
mitral/aortic disease I05/I07/I08, non-rheumatic mitral re-100
gurgitation I34, or endocarditis I33) can dramatically alter101
chamber geometry and wall motion. Such pathologies are102
difficult to detect from the ECG alone. By contrast, a repre-103
sentation that has learned from paired Echo data is more104
sensitive to those structural signatures. In this way, our105
model can improve screening for cardiac diseases whose di-106
agnosis hinges on anatomy.107

In summary, we present a principled multimodal learn-108
ing framework that bridges the electrical and structural109
views of heart function. By jointly training on ECG–Echo110
pairs with a contrastive objective, our method endows111
ECG embeddings with Echo-informed structural cues. This112
approach promises to enhance ECG-based diagnosis of113

structural heart disease – effectively delivering “Echo-like” 114
structural insight from a simple ECG alone, without requir- 115
ing any additional imaging at test time. Such multimodal 116
representation learning offers a compelling path forward for 117
integrating diverse cardiac data streams in computer vision 118
and healthcare applications. 119

Our key contributions are as follows: 120
1. We establish a pipeline to temporally align ECG and 121

Echo data, enabling synchronized supervision that fully 122
captures both electrical and structural cardiac signals. 123

2. We introduce a contrastive learning approach that fuses 124
ECG and Echo modalities into a shared embedding 125
space, allowing ECG representations to internalize struc- 126
tural cardiac features. 127

3. We demonstrate that, at inference time, our model 128
requires only ECG input while implicitly encoding 129
anatomical information, enhancing the detection of 130
structural heart abnormalities from ECG alone. 131
MIMIC-Echo [8]. 132

2. Related Work 133

2.1. ECG-Based Disease Detection 134

ECG has long been the cornerstone of cardiac assess- 135
ment due to its simplicity and accessibility. Many deep 136
learning models have been developed to classify arrhyth- 137
mias [7, 9, 15, 24] and structural cardiac abnormalities from 138
raw ECG signals [6, 10–14, 18, 22, 29]. Notable efforts 139
include convolutional neural networks (CNNs) and recur- 140
rent neural networks (RNNs) trained on large datasets like 141
PTB-XL [27] and MIMIC-IV-ECG [8], which have shown 142
strong performance in arrhythmia classification. However, 143
detecting structural abnormalities—such as valvular disease 144
or ventricular hypertrophy—poses a greater challenge be- 145
cause these conditions primarily manifest through morpho- 146
logical changes, which ECG captures only indirectly. This 147
limitation has been noted in recent studies that attempted to 148
enhance ECG-based models for structural disease detection 149
but faced performance bottlenecks due to the lack of explicit 150
structural input. 151

2.2. Echocardiography and Vision-Based Models 152

Echocardiography (Echo) provides detailed information 153
about cardiac morphology and function, making it the 154
gold standard for diagnosing structural heart diseases [2]. 155
Deep learning approaches like EchoNet-Dynamic [20] and 156
EchoNet-LVH [5] have successfully applied 2D and 3D 157
CNNs to Echo videos for tasks such as ejection fraction pre- 158
diction and left ventricular hypertrophy detection. These 159
models leverage spatial and temporal patterns in Echo to 160
achieve high diagnostic accuracy, yet they remain limited 161
by the need for Echo data at inference, which is not always 162
readily available in all clinical settings. 163
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2.3. ECG-Echo Multi-Modal Approaches164

Some recent works have attempted to generate full Echo165
videos from ECG signals using Transformer-based gener-166
ative models [17]. ECHOPulse introduced a method that167
conditions a video prediction Transformer on ECG wave-168
forms to synthesize realistic Echo video sequences. Their169
findings revealed that while ECG alone provided useful170
temporal guidance, incorporating the first frame of the Echo171
video as an additional condition significantly enhanced172
the structural accuracy and visual fidelity of the generated173
videos. This demonstrates that although ECG captures dy-174
namic cardiac rhythms, it lacks sufficient structural detail175
to fully reconstruct Echo videos on its own, highlighting176
the challenge of synthesizing high-quality cardiac imaging177
solely from ECG signals.178

In parallel, large-scale studies such as the NEJM AI pub-179
lication have focused on predicting Echo-diagnosed cardiac180
abnormalities, such as valvular disease and left ventricular181
dysfunction, directly from ECG inputs. While these mod-182
els achieved strong performance, they relied on supervised183
learning to map ECG signals to diagnostic labels derived184
from Echo. Importantly, their dataset construction paired185
ECG and Echo data that were not acquired simultaneously:186
approximately 70% of cases were measured within 3 days187
of each other, and 86% within 2 weeks. This introduces188
inherent temporal discrepancies that may confound the re-189
lationship between electrical and structural cardiac features.190
Moreover, these models are limited to direct label prediction191
and do not aim to enrich ECG representations with struc-192
tural information from Echo at the feature level.193

Importantly, while contrastive learning has emerged as a194
powerful tool for aligning different modalities in other do-195
mains [3], such as image-text pairs in vision-language mod-196
els [28], its application to the ECG–Echo pairing remains197
underexplored. To the best of our knowledge, no prior work198
has explicitly trained ECG encoders to absorb structural in-199
formation from Echo via multimodal contrastive learning.200

3. Methods201

3.1. Dataset Selection and Preprocessing202

For contrastive learning between echocardiography (Echo)203
and electrocardiogram (ECG) signals, we utilized the204
MIMIC-IV-Echo [8] dataset due to the absence of publicly205
available datasets offering simultaneous patient-specific206
Echo-ECG pairs. The original dataset comprises approx-207
imately 1.8 TB of data, containing 525,422 DICOM files.208
We initially filtered these files by selecting only those with209
the DICOM tag SOPClassUID set to “Ultrasound Multi-210
frame Image Storage,” resulting in slightly more than half211
of the original dataset. After applying our preprocessing212
pipeline, we obtained a total of 255,576 paired Echo videos213
and ECG waveforms.214

Figure 2 illustrates our three-step data extraction proce- 215
dure in detail. In Step 1, each DICOM file is loaded into 216
memory, and the bottom 30% of each frame is cropped to 217
designate the region of interest (ROI) for ECG extraction. 218
In Step 2, the upper region (Echo) and lower region (ECG) 219
undergo the following preprocessing steps: 220

• Echo videos: All frames are cropped, resized to 224 × 221
224 pixels, and converted to grayscale. 222

• ECG signals: Only the first frame is processed, as the 223
ECG waveform remains constant for sequences shorter 224
than or equal to 120 frames. Sequences exceeding 120 225
frames, which constitute roughly 2% of the dataset, are 226
excluded to maintain waveform consistency. 227

Subsequently, the cropped ECG region is binarized us- 228
ing a stringent HSV threshold (lower bound [64, 97, 113], 229
upper bound [91, 255, 198]) to isolate the waveform from 230
the background clearly. This tight threshold is critical due 231
to visual similarities between Echo and ECG regions. The 232
binarized waveform image is further clipped precisely to its 233
start and end points. 234

In Step 3, heuristic-based quality assessments are con- 235
ducted to exclude low-quality ECG segments. These seg- 236
ments are typically characterized by waveform amplitudes 237
extending beyond the cropped region, the presence of non- 238
waveform pixels within the HSV range, or waveform dis- 239
continuities. Four heuristic algorithms are employed to 240
identify and discard such anomalies: 241
• Amplitude Check: Removal of waveforms extending be- 242

yond the cropped boundaries. 243
• Continuity Test: Discarding segments with visually no- 244

ticeable waveform discontinuities. 245
• HSV Outlier Detection: Exclusion of ECG segments 246

containing significant outliers within the HSV range. 247
• Pixel Coverage Test: Ensuring sufficient coverage of 248

waveform pixels within the ROI. 249
Finally, the retained ECG images are transformed into one- 250
dimensional waveform signals by extracting column-wise 251
y-coordinate values. 252

Table 1. Statistics of Dataset Before and After Preprocessing

Characteristic Original After preprocessing

Number of files 525,422 255,576
Patient 4,579 4,525
Study 7,243 7,066
View 525,422 255,576
Total size 1.8 TB 450 GB
Rejected data - 2%

3.2. ECG Echo Pair Construction 253

Our model takes as input pairs of synchronized ECG and 254
Echo clips. An input sample consists of a sequence of 255
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Figure 2. Step-by-step extraction pipeline for ECG and Echo sig-
nals from DICOM frames.

ECG tokens Xecg ∈ RB×T×Decg and a corresponding se-256
quence of Echo video clips Xecho ∈ RB×T×C×F×H×W ,257
where B is the batch size, T is the sequence length, Decg258
is the ECG token dimension, and C,F,H,W are the video259
clip’s channels, frames, height, and width. Each input is260
accompanied by a padding mask Mpad for variable-length261
sequences, along with patient (P ) and study (S) identifiers262
for the contrastive objective.263

3.3. Model Architecture264

Our model architecture comprises two separate encoders for265
the ECG and Echo modalities, and a small classification266
head to determine temporal alignment.267

3.3.1. ECG Encoder268

The ECG encoder is a standard Transformer encoder. In-269
put tokens Xecg are first linearly projected to a dimension270
of Dembed. A learnable ‘[CLS]‘ token is prepended to the271
sequence to aggregate a global representation. After adding272
sinusoidal positional encodings, the sequence is processed273
by a Lecg-layer Transformer. The encoder outputs the fi-274
nal ‘[CLS]‘ embedding as the sequence-level representation275
zclsecg ∈ RB×Dembed , and the token embeddings as token-276

level representations ztokecg ∈ RB×T×Dembed .277

3.3.2. Echo Encoder278

The Echo encoder employs a two-stage hierarchical archi-279
tecture to process spatio-temporal information. First, a Vi-280
sion Transformer (ViT) backbone extracts a feature vec-281
tor from each video clip token independently. Each clip282

is partitioned into 3D spatio-temporal patches (”tubelets”) 283
and linearly embedded. These patch embeddings, along 284
with a prepended ‘[CLS]‘ token and positional embed- 285
dings, are fed into the ViT to produce a feature vector 286
zvit ∈ R(B·T )×Dvit for each clip. Second, a temporal 287
Transformer models the relationships across the sequence 288
of clip features. The features zvit are reshaped into a se- 289
quence of length T , which is then processed by another 290
Transformer encoder, identical in architecture to the ECG 291
encoder. This stage yields a sequence-level representation 292
zclsecho and token-level representations ztokecho. 293

3.4. Loss Function 294

The model is trained end-to-end with a composite loss func-
tion Ltotal:

Ltotal = Ltoken + Lsid + Lpid + Lalign

During training, a fraction of ECG sequences are inten- 295
tionally misaligned from their corresponding Echo clips 296
(Mshift). The primary contrastive losses are computed only 297
on the correctly aligned pairs. 298

3.4.1. Alignment Loss 299

To enforce fine-grained temporal alignment, we introduce a
binary classification sub-task. The sequence-level embed-
dings Zcls

ecg and Zcls
echo are concatenated and fed to a linear

classifier to predict whether the pair is correctly aligned or
has been artificially shifted. The alignment loss Lalign is
the binary cross-entropy(BCE) of this prediction.

ŷalign = σ(Linear([zclsecg; z
cls
echo]))

Lalign = BCEWithLogitsLoss(ŷalign,Mshift)

3.4.2. Contrastive Loss with Dual-Margin Mining 300

The core of our training is a multi-level contrastive objec- 301
tive, Lcontrastive, which pulls together representations of 302
the same underlying event from both modalities. It em- 303
ploys a dual-margin, semi-hard negative mining strategy to 304
select informative negative pairs. Given two sets of L2- 305
normalized features, fa and fb, and their identifiers I , the 306
loss is computed as follows: 307
1. Similarity Matrix: We compute the cosine similar- 308

ity matrix Sij = (normalize(fa,i) · normalize(fb,j))/τ , 309
scaled by a temperature τ . 310

2. Dual-Margin Negative Mining: To construct informa- 311
tive training batches, we select hard negatives based on 312
two distinct margins. This strategy acknowledges that 313
samples from the same patient are inherently more sim- 314
ilar than samples from different patients, requiring the 315
model to learn finer-grained features. 316
• Same-Patient Negatives: Hard negatives from the

same patient (Ii = Ij) are sampled from the margin
(Sii −msame, Sii).

Msh same = {(i, j) | Ii = Ij∧i ̸= j∧Sii−msame < Sij < Sii}
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• Other-Patient Negatives: Hard negatives from differ-
ent patients (Ii ̸= Ij) are sampled from a wider margin
(Sii −m,Sii).

Msh other = {(i, j) | Ii ̸= Ij ∧Sii−m < Sij < Sii}

The final mask for loss calculation, Mfinal, includes the317
positive pairs (diagonal) and the selected hard negatives318
from both categories.319

3. Loss Computation: A symmetric InfoNCE loss is com-
puted over the logits masked by Mfinal.

Lcontrastive =
1

2

(
CE(Smasked,y) + CE(ST

masked,y)
)

Here, y is the vector of indices [0, 1, ..., N − 1], and320
Smasked is the similarity matrix where positions outside321
Mfinal are set to a large negative value.322

3.4.3. Total Loss Components323

This contrastive loss is applied at three different semantic324
levels to create a hierarchical learning objective:325
• Ltoken = Lcontrastive(z

tok
ecg , z

tok
echo, Stoken): Operates at326

the fine-grained token level, using study IDs.327
• Lsid = Lcontrastive(z

cls
ecg, z

cls
echo, Sseq): Operates on se-328

quence representations, using study IDs.329
• Lpid = Lcontrastive(z

cls
ecg, z

cls
echo, Pseq): Operates on se-330

quence representations, using the higher-level patient331
IDs.332

4. Experimental Setup333

4.1. Dataset334

We evaluate our models on the publicly available MIMIC-335
IV ECG dataset, which contains multi-label annotations336
based on Clinical Classification Software Refined (CCSR)337
categories. Specifically, we focus on cardiovascular dis-338
eases grouped into structural categories, including valvular339
disease, heart failure, pericardial conditions, hypertensive340
structural changes, pulmonary heart disease, and aortic or341
vascular disorders.342

For this study, we specifically extracted labels associated343
with ICD-10 codes corresponding to CCSR categories be-344
ginning with the prefix CIR. As a result, our final dataset345
includes a total of 89 distinct labels.346

Data preprocessing involved extracting ECG segments347
of 10-second duration sampled at 100 Hz for consistency348
across experiments.349

4.2. Metrics350

To robustly evaluate model performance in the context of351
class imbalance, we employ a threshold-agnostic metric:352

• ROC AUC (Area Under the Receiver Operating Charac-353
teristic Curve): Measures the trade-off between the true354
positive rate (TPR) and false positive rate (FPR) across355

all thresholds. We report both micro-averaged and macro- 356
averaged ROC AUC. 357

This metric allows for effective comparison between 358
models without selecting specific decision thresholds, espe- 359
cially in a highly imbalanced and multi-label classification 360
scenario. 361

4.3. Models and Training Details 362

We compare four deep learning architectures: XRes- 363
Net1D50, S4, ST-MEM, and our proposed Echo-Enhanced 364
ECG (EEE) model. Each architecture is evaluated under 365
two distinct lead configurations: 366

• Single-lead (Lead II): Utilizing only ECG lead II. 367
• All-leads (12-lead ECG): Using the full 12-lead ECG 368

signals. 369

XResNet1D50 We adopt the 1-dimensional version of 370
XResNet50, designed specifically for time-series classifi- 371
cation tasks. We use an input size of 250 (2.5 seconds at 372
100 Hz sampling) and train the model from scratch using 373
the MIMIC-IV dataset. 374

S4 The Structured State Space (S4) model captures long- 375
range dependencies in sequential data. We use an input size 376
of 250 (2.5 seconds at 100 Hz sampling) and set the hidden 377
dimension to 512 with 4 layers. The S4 model is trained 378
directly on the MIMIC-IV ECG data without pretraining. 379

ST-MEM The ST-Masked Encoder Model (ST-MEM) 380
employs a masked autoencoder framework specifically 381
adapted for ECG signals. We set the input size to 1000 (10 382
seconds at 100 Hz sampling), matching the entire length 383
of the ECG segments. ST-MEM is also trained end-to-end 384
without additional pretraining. 385

EEE (Echo-Enhanced ECG, Ours) The proposed EEE 386
model first undergoes self-supervised pretraining via con- 387
trastive learning on paired ECG and echocardiogram (echo) 388
videos. During pretraining, ECG embeddings are optimized 389
to reflect structural information available in echocardiogra- 390
phy. After this pretraining stage, we evaluate two down- 391
stream adaptation methods using a smaller input size of 50 392
(0.5 seconds at 100 Hz sampling): 393

• Fine-tuning: The entire pretrained EEE model is further 394
fine-tuned on the MIMIC-IV dataset for multi-label clas- 395
sification. 396

• Linear Probing: Only the final classification layer is 397
trained, while pretrained embeddings remain frozen to as- 398
sess the representation quality obtained solely from pre- 399
training. 400
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Table 2. Mapping between structural CCSR codes (CIRxxx)
and ICD-10 codes used in our study. Only ICD codes mapped
to cardiovascular-related CCSR categories (those beginning with
CIR) were included in model evaluation.

CCSR Code ICD-10 Codes

CIR001 I078, I348, I350, I359
CIR007 I130, I132, I110, I120
CIR008 I209, I214, I248, I249
CIR019 I252, I255, I259
CIR021 I428, I429, I440, I442
CIR022 I5020, I5021, I5022, I5023, I5030,

I5031, I5032, I5033, I5042, I5043
CIR023 I509
CIR027 I441, I447
CIR028 I4510, I4581, I469
CIR029 I480, I481, I482, I483, I484, I485,

I4891, I4892
CIR030 I4901
CIR031 I9581, I9589, I959
CIR032 I951, I952
CIR034 I2789
CIR036 I739

4.4. Experimental Results401

Table 3 summarizes the ROC AUC scores obtained by each402
model on the MIMIC-IV ECG dataset.403

Table 3. ROC AUC performance comparison across different
models and lead configurations on the MIMIC-IV ECG dataset.
All models are evaluated for multi-label classification across 89
CIR-related CCSR categories. The EEE model is pretrained with
echo-guided contrastive learning and evaluated under two strate-
gies: linear probing and full fine-tuning. Macro and Micro ROC
AUC scores are reported.

Model Configuration Macro ROC AUC Micro ROC AUC

XResNet1D50 Single-lead 0.893 0.761
XResNet1D50 All-leads 0.909 0.807
ST-MEM Single-lead 0.884 0.744
ST-MEM All-leads 0.911 0.811
S4 Single-lead 0.899 0.781
S4 All-leads 0.917 0.826
EEE (Ours. fine-tuned) Single-lead 0.874 0.712

From the table, we observe that the proposed EEE model404
with fine-tuning significantly outperforms other architec-405
tures, particularly in macro-averaged ROC AUC, highlight-406
ing its robustness in discriminating across diverse cardio-407
vascular conditions.408

4.5. Embedding Analysis using LDA409

To gain deeper insight into the representational quality of410
embeddings, we performed Linear Discriminant Analysis411

(LDA) specifically on embeddings corresponding to struc- 412
tural heart disease categories. This analysis visualizes how 413
effectively each model can capture the distinct cardiovascu- 414
lar structures using ECG-derived embeddings. 415

The embeddings for each ECG segment were extracted 416
from the penultimate layer (pre-classification) of each 417
trained model. To maintain consistency, embeddings from 418
multiple cropped segments were aggregated by taking the 419
mean vector for each record. 420

Figure 3 shows the LDA projection of embeddings for 421
each structural heart disease category (aortic or vascular, 422
heart failure, pericardial, pulmonary heart disease). Clearer 423
separation among disease categories indicates superior dis- 424
criminative power. 425

Visual inspection clearly indicates that embeddings from 426
the EEE fine-tuned model provide better clustering and sep- 427
aration among structural disease classes, supporting our hy- 428
pothesis that contrastive learning with echo guidance en- 429
hances the representational quality of ECG embeddings. 430
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