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Abstract

Decoding dynamic visual perception from EEG has re-
cently drawn increasing attention, driven by the release of
new datasets and benchmarks. However, current EEG-to-
video reconstruction approaches lack systematic validation
frameworks for cross-subject generalization, a critical re-
quirement for practical applications. To address this lim-
itation, we introduce a comprehensive three-stage valida-
tion framework that systematically evaluates cross-subject
EEG-to-video reconstruction across critical dimensions.
First, we perform dataset integrity assessment through sta-
tistical analyses including linear mixed-effects models and
mutual information analysis to validate EEG-video paired
data consistency. Second, we evaluate encoder robust-
ness by testing existing architectures under cross-subject
conditions and propose two alternative encoder designs:
CBraMod [33] and triplet loss-based contrastive learning
encoders specifically designed for subject-invariant repre-
sentations. Third, we conduct reconstruction fidelity vali-
dation through step-by-step module assessment of existing
EEG-to-video approaches. Our framework reveals signifi-
cant cross-subject performance variations and establishes
systematic evaluation protocols for future EEG-to-video re-
search. These results highlight the importance of compre-
hensive validation in neural decoding and provide a foun-
dation for developing more robust cross-subject reconstruc-
tion systems.

1. Introduction

Human perceptions become both mirrors and mosaics,
when we gaze upon the same scene. On one hand, the
rhythms of our neural activity echo each other-our brains
light up in harmonious patterns as we process the world’s
images [9]. Yet, within this shared symphony, each mind
weaves its own melody, layering personal memories, emo-
tions, and association atop the common neural score [22].

This universality and uniqueness of human visual percep-
tion often hampers the generalization of neuroscience re-
search findings across participants.

This study seeks to enhance cross-subject generalizabil-
ity in decoding dynamic visual experiences from EEG sig-
nals. Decoding, in this context, refers to the prediction or re-
construction of sensory information-such as visual stimuli-
from brain signals [15]. Vision is one of the most funda-
mental senses for humans [10]. Dynamic visual environ-
ments have played a crucial role in human evolution, as the
ability to rapidly encode and interpret changing scenes was
essential for survival. Videos, as stimuli, are particularly at-
tractive for decoding studies because they closely reflect the
dynamic nature of real-world visual experiences.

To capture brain responses while viewing dynamically
changing videos, functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG) can be used.
While both of them are non-invasive, fMRI captures hemo-
dynamic flow while EEG captures electrical signals gener-
ated in the brain. While fMRI has been widely used for
vision decoding [2, 5, 26] [27], its low temporal resolu-
tion (typically around 0.5 Hz) limits its ability to capture
rapid changes in visual perception. In contrast, EEG of-
fers millisecond-level temporal resolution (up to 1000 Hz),
making it well-suited for decoding fast, dynamic visual pro-
cesses [16, 19]. Recent advances have begun to address
the challenges of EEG-based video decoding. Notably,
Liu et al. [19] introduced the SEED-DV dataset and the
EEG2Video model, initiating the first exploration on recon-
structing dynamic visual experiences from EEG data. How-
ever, current EEG-based decoding models face several sig-
nificant limitations across three critical dimensions:

First, regarding dataset integrity challenges, a critical
gap remains in validating whether EEG-video datasets can
establish meaningful connections between EEG signals and
visual content at the fundamental level. Without demon-
strating that EEG-vision relationships can be reliably cap-
tured for basic visual stimuli, the validity of dynamic video
reconstruction approaches remains questionable.



Second, encoder robustness limitations persist as poor
cross-subject generalization continues to affect perfor-
mance, where models trained on one participant’s data ex-
hibit substantial performance degradation when applied to
others due to individual neural differences.

Third, reconstruction validation gaps exist as current ap-
proaches lack end-to-end architectural design coupled with
insufficient validation of individual modular components,
making it difficult to identify bottlenecks and optimize per-
formance systematically.

This study aims to establish a systematic validation
framework for cross-subject EEG-to-video reconstruction
by (1) assessing dataset validity of EEG-video paired
datasets, (2) evaluating existing encoder architectures and
proposing alternative designs to improve cross-subject ro-
bustness, and (3) validating reconstruction quality through
comprehensive performance assessment. Through this
comprehensive validation approach, we seek to establish
reliable evaluation protocols and identify key factors that
influence cross-subject generalization in EEG-to-video re-
construction.

2. Related Works

2.1. EEG Decoding
EEG-conditioned visual decoding has evolved along two
main lines: the imagination-driven generation—where sub-
jects merely imagine a concept—and the stimulus-driven
reconstruction—where an external image is observed.

In the imagination regime, ThoughtViz [32] achieves
strong Top-1 accuracies on three 10-class datasets, substan-
tially outperforming random baselines. EEG2Image [28]
improves IS by 25% over ThoughtViz and doubles k-means
cluster purity. GWIT [20] scales to 40 classes with signifi-
cant accuracy improvements over BrainVis.

Stimulus-driven pipelines leverage explicit visual input
and show more impressive results. NeuroGAN [21] re-
constructs ImageNet subsets with improved IS and tighter
class-diversity. BrainDecoder [3] attains high Top-1 accu-
racy on 50-class datasets, far exceeding random baselines.
BrainDreamer [34] injects language guidance via triple
contrastive learning, achieving substantial EEG classifica-
tion improvements. LowDensityEEG [6] demonstrates that
eight-channel headsets can achieve reasonable classifica-
tion accuracy but performance drops significantly on un-
seen classes. Recent work extends to 3D object reconstruc-
tion [7] and large-scale zero-shot recognition [30].

Modern approaches like ATM-CLIP [15], Percep-
togram [4], and DVRM [23] employ CLIP alignment and
diffusion models to bridge the neural–visual gap. These de-
signs echo the two-step structure of our own inflated 3-D
diffusion UNet for video.

Performance varies significantly across datasets: models

that excel on small, stimulus-rich benchmarks often under-
perform on complex imagination corpora. Some studies
showcase convincing visuals yet yield modest quantitative
metrics, exposing the gap between perceptual plausibility
and semantic fidelity.

Nevertheless, the maturity of single-frame decoding sug-
gests that tackling temporally coherent video reconstruction
is a natural next step. Building on these insights, our work
extends diffusion-based decoders to EEG-to-video synthe-
sis, addressing the temporal dimension that has remained
largely unexplored in neural signal decoding.

Recent EEG-to-video approaches have shown promising
initial results. EEG2Video [19] introduced the first EEG-
to-video generation model using a Seq2Seq-based architec-
ture with dynamic noise adding, achieving reasonable se-
mantic accuracy on the SEED-DV dataset. NEVER [12]
proposed a dual-branch encoder with perception and se-
mantic understanding modules, explicitly addressing cross-
subject generalization challenges by demonstrating perfor-
mance drops when tested across subjects. However, these
early approaches remain limited in their cross-subject gen-
eralization capabilities, highlighting the need for more ro-
bust architectures that can effectively transfer knowledge
across different individuals.

2.2. Cross-subject generalization Efforts
Various decoding models, regardless of modality have ex-
plored ways to closely align neural signals from different
participants. GLFA [14] proposed a global-local functional
alignment framework that maps fMRI signals into a shared
latent space. This alignment, combined with spatiotempo-
ral attention and latent diffusion decoding, improves de-
coding performance across subjects, enabling limited cross-
subject generalization. In EEG domain, adaptive deep fea-
ture representation learning (ADFR) [17] was suggested as
a method to enhance cross-subject generalization perfor-
mance by adopting EEG feature representation substanti-
ated with regularization technique. The purpose of intense
regularization, used in this framework, is to minimize the
discrepancy in the distribution between EEG signals from
different individuals.

3. Methods

3.1. Preliminaries
EEG-to-video reconstruction fundamentally relies on the
assumption that EEG signals contain sufficient informa-
tion to decode visual content. However, the inherently low
signal-to-noise ratio (SNR) of EEG presents challenges in
establishing reliable brain-vision relationships, particularly
when generalizing across different individuals.

Cross-subject variability represents one of the most sig-
nificant challenges in EEG-based brain-computer interfaces



and neuroscience research. This phenomenon occurs when
brain signals recorded from different individuals exhibit
substantial differences despite observing identical stim-
uli. These differences arise from anatomical variations
in brain structure, electrode positioning discrepancies, and
individual-specific neural processing patterns [11, 18].

To evaluate cross-subject generalization capabilities,
Leave-One-Subject-Out (LOSO) cross-validation is com-
monly employed. In LOSO, models are trained on data
from all subjects except one, which serves as the test set.
This process is repeated with each subject serving as the
test set once, enabling comprehensive assessment of gener-
alization performance across individuals.

Lastly, we try reconstructing video via EEG2Video
framework. Formally, the problem of EEG-based video re-
construction can be defined as learning a mapping function
f : X → Y , where X ⊂ RC×T represents the EEG signal
space with C channels and T time samples, and Y repre-
sents the target video space. The challenge lies in making
this mapping robust to cross-subject variations.

3.2. Dataset Integrity Assessment
3.2.1. Statistical Analysis
To evaluate the suitability of SEED-DV dataset for EEG-
to-video reconstruction task, statistical analysis was per-
formed using Linear Mixed-Effects (LME) modeling with
post-hoc pairwise comparisons. Feature extraction was per-
formed using Principal Component Analysis (PCA) of 10
principal components. LME models were fitted with video
labels as fixed effects and participants as random effects
accounting for individual variability: Neural Response ∼
Video Label + (1 | Subject) This structure allows us to
generalize category-related effects across participants while
controlling for repeated measures within subjects. Post-hoc
pairwise comparisons between all label combinations were
conducted using independent t-tests, with effect sizes calcu-
lated using Cohen’s d. N classification resulted in compar-
ison of

(
N
2

)
pairs. Multiple comparison corrections were

applied using both Bonferroni and False Discovery Rate
(FDR) methods to control for Type I error inflation across
the large number of statistical tests. Statistical significance
was assessed at α = 0.05 for FDR-corrected comparisons.

3.2.2. Mutual Information
To further evaluate the adequacy of the SEED-DV dataset
for EEG-to-video reconstruction, we employed the Mu-
tual Information Neural Estimation (MINE) framework [1],
which estimates a lower-bound on the mutual information
(MI) between two high-dimensional random variables. MI
quantifies the amount of shared information between vari-
ables, and thus serves as a principled measure of cross-
modal dependency. To contextualize the absolute MI val-
ues, we further computed a normalized mutual information

(NMI) score, defined as the ratio of estimated MI to the
maximum differential entropy of the involved modalities.
This normalization provides a scale-invariant measure that
allows us to assess the relative amount of information in
EEG signals that is predictive of the corresponding video
content. Together, MI and NMI offer a quantitative lens
for examining whether the EEG and video modalities in
the dataset are sufficiently correlated to support downstream
tasks such as generative modeling or reconstruction.

3.3. Encoder Robustness Evaluation

To systematically evaluate cross-subject generalization ca-
pabilities, we establish a comprehensive testing framework
that can assess any EEG encoder architecture across differ-
ent subject conditions. This framework provides standard-
ized protocols for measuring cross-subject performance
degradation and identifying architectural factors that influ-
ence generalization. We demonstrate the framework’s util-
ity by evaluating multiple encoder architectures: 1) GLM-
Net from the original EEG2Video framework [19], which
combines global and local feature processing, 2) CBraMod
encoder [33], and 3) our proposed Cross-Subject Con-
trastive Learning Encoder. Through systematic com-
parison across subject conditions using consistent evalua-
tion metrics, we establish validity measurements for cross-
subject robustness and provide a reusable evaluation proto-
col that can be applied to future encoder designs.

3.3.1. CBraMod encoder

The CBraMod encoder [33] is a foundation model architec-
ture specifically designed for EEG signal processing. Un-
like traditional EEG encoders that treat all EEG channels
equally or separate them into predefined groups, CBraMod
employs a criss-cross transformer architecture that mod-
els spatial and temporal dynamics separately through two
parallel attention mechanisms. This approach captures
the heterogeneous nature of EEG signals more effectively.
CBraMod was pre-trained on the Temple University Hospi-
tal EEG Corpus (TUEG), the largest publicly available EEG
dataset, using a masked EEG reconstruction objective. De-
spite the original model being trained on 19-channel clin-
ical EEG data, it demonstrates strong transfer capabilities
to diverse downstream tasks, varying in channel number,
task type and length. CBraMod is expected to show supe-
rior cross-subject generalization ability since it was trained
on a diverse population of subjects, learning to extract fun-
damental EEG patterns that are consistent across individ-
uals. We evaluate the effectiveness of CBraMod as an
encoder by employing transfer learning-freezing the pre-
trained weights and fine-tuning only the final layers on the
SEED-DV dataset to adapt to the video reconstruction task.



Figure 1. EEG2Video framework overview.

3.3.2. Cross-Subject Contrastive Learning Encoder
EEG signals are inherently subject-dependent, exhibiting
significant inter-subject variability even when responding
to the same visual stimulus. This poses a major chal-
lenge in cross-subject EEG classification tasks, where mod-
els trained on one set of subjects often fail to generalize to
unseen individuals.

To mitigate this issue, we propose a contrastive learning
strategy based on the triplet loss [25], designed to encourage
the learning of subject-invariant and semantically meaning-
ful EEG embeddings. Specifically, for each anchor EEG
sample xa, we construct a triplet (xa, xp, xn), where:
• xp is a positive sample from a different subject but with

the same class label as xa,
• xn is a negative sample from the same subject but with a

different class label.
The triplet loss is formulated as:

Ltriplet =
∑

(xa,xp,xn)∈T

[
∥f(xa)− f(xp)∥22

− ∥f(xa)− f(xn)∥22 + α
]
+

(1)

where f(·) is the EEG encoder, α is the margin, and [·]+ de-
notes the hinge function. This formulation promotes align-
ment of cross-subject embeddings sharing the same label
while encouraging separation between embeddings from
the same subject with different labels, effectively disentan-
gling subject-specific noise from task-relevant features.

To ensure accurate classification while enforcing this
structured embedding space, we jointly optimize a standard
cross-entropy classification loss Lcls alongside the triplet
loss. The total loss is given by:

Ltotal = Lcls + λ · Ltriplet (2)

where λ controls the contribution of the contrastive regu-
larization. This combined objective enables the model to
retain strong discriminative ability while improving gener-
alization across subjects.

3.4. Reconstruction Fidelity Validation
To assess reconstruction fidelity, we employ the
EEG2Video framework [19] as a representative recon-
struction pipeline for systematic evaluation. Specifically,
the framework includes an EEG Encoder combined with a
Seq2Seq model, a semantic predictor, a dynamic predictor,
and a Denoising UNet.

EEG Encoder and Seq2Seq model are trained to gen-
erate latent representations (ẑ0) from EEG signals. These
representations are aligned with the corresponding video
embeddings (z0) obtained via a pretrained VAE encoder
applied to the target video. The training objective mini-
mizes the discrepancy between EEG-derived embeddings
and video embeddings to ensure meaningful representa-
tion alignment. The pretrained Denoising UNet is fine-
tuned on the SEED-DV dataset videos, enabling it to ef-
fectively reconstruct realistic video sequences during the
diffusion-based generation process. Additionally, the se-
mantic predictor, implemented as a simple multilayer per-
ceptron (MLP), is trained to predict semantic embeddings
(êt) from EEG data. The target semantic embeddings (et)
are obtained from text descriptions processed by a pre-
trained text encoder. The semantic predictor’s training ob-
jective minimizes the difference between EEG-derived em-
beddings and text embeddings, thus providing semantic
guidance to the video reconstruction pipeline. The dynamic
predictor, employing a GLMNet architecture, estimates the
Optical Flow Score (OFS) from EEG signals. It is trained



to produce OFS values closely matching the true optical
flow derived from the corresponding videos. During gen-
eration, this dynamic predictor modulates the latent noise
in accordance with the desired video dynamics, enabling
control over the temporal realism of the generated videos.
Ultimately, these trained and fine-tuned components col-
lectively facilitate EEG-driven video generation: the EEG
Encoder and Seq2Seq model produce initial latent repre-
sentations for the diffusion process, the semantic predictor
informs semantic aspects within the Denoising UNet, and
the dynamic predictor dynamically adjusts latent noise, cul-
minating in temporally and semantically coherent video re-
constructions.

4. Experiments
4.1. Dataset and Benchmark
We utilize the SEED-DV (SJTU EEG Dataset for Dynamic
Vision) and the EEG-VP benchmark [19] for video recon-
struction and visual perception classification tasks.

4.1.1. SEED-DV
EEG signals were recorded from 20 healthy participants
(10 males and females, mean age 21.75 years) using a 62-
channel EEG cap, sampled at 200 Hz. During the experi-
ments, subjects watched a series of color video clips while
their EEG signals were recorded simultaneously. Each
recording session consisted of 7 video blocks, where each
block contained 200 two-second video clips spanning 40
semantic classes (5 clips per class). In total, the dataset in-
cludes 1,400 two-second video clips. Each video clip is ad-
ditionally paired with a BLIP-generated text caption to sup-
port vision-language modeling. The SEED-DV dataset em-
ploys three types of EEG representations. Raw EEG signals
consist of 62 channels over 400 timepoints (2-second seg-
ments at 200Hz), bandpass filtered (0.1–100Hz), and down-
sampled from 1000Hz. These are fed directly into temporal-
spatial models without feature extraction. Power Spectral
Density (PSD) features are computed using the autoregres-
sive Burg method with a 256-sample Hamming window
(1.28s, 50% overlap), capturing power in five frequency
bands—delta (1–4Hz), theta (4–8Hz), alpha (8–12Hz), beta
(12–31Hz), and gamma (31–99Hz)—across 62 channels
and multiple windows per segment. Differential Entropy
(DE) features, extracted using Butterworth bandpass filter-
ing and Shannon entropy, also characterize these same five
bands, providing a compact measure of signal complexity.

4.1.2. EEG-VP
The EEG-VP benchmark is designed to evaluate two main
tasks:
• EEG Visual Perception (EEG-VP) Classification

Benchmark: Seven classification tasks were established

to probe different levels of visual information decoding
from EEG signals: 40c: 40-class classification of the fine-
grained concept of the video clip; 9c : 9-class classifi-
cation of the course concept of the video clip; Color:
6-class classification of which color of the main object
in the video clip; Fast/Slow: Binary classification dis-
tinguishing fast versus slow on the OFS; Numbers: 3-
class classification of the number of the main objects in
the video clip (one, two, or many); Human Face: Binary
classification detecting the presence of a human face; Hu-
man: Binary classification detecting the presence of a hu-
man

• EEG-to-Video Reconstruction Benchmark: This task
aims to reconstruct two-second video clips from EEG
signals. The reconstructed outputs are evaluated using
both frame-based and video-based metrics to assess vi-
sual quality and temporal coherence.

4.2. Implementation Detail
For all experiments, we followed the protocols established
in [19] for fair comparison. Models were trained using
the Adam optimizer with a learning rate of 0.001 for clas-
sification tasks and 0.0001 for contrastive learning. Train-
ing was performed for 100 epochs with early stopping (pa-
tience=10). Batch size was set to 256 for classification.
For contrastive learning, the triplet loss margin and the loss
weight was set to α = 0.2 and λ = 0.1, respectively.
To comprehensively evaluate the model’s performance, we
conducted two types of experiments: within-subject and
cross-subject. For within-subject experiments, we used a
5/1/1 split of the 7 sessions per subject (cross-validated over
6 folds). For cross-subject (LOSO) evaluation, models were
trained on 19 subjects and tested on the held-out subject, re-
peated for all 20 subjects.

4.3. Result
4.3.1. Dataset Integrity Assessment
Statistical Analysis Tab. 1 shows result of LME models
applied to DE and PSD. Columns in the table; Sig., FDR
Sig., Bonf Sig. denotes the number of comparisons be-
tween conditions(e.g. 40c: video category 1 vs. video cat-
egory 2) that was significant. False Discovery Rate(FDR)
is calculated as FDP (%) =

SigUncorrected−SigFDR
SigUncorrected

× 100. While
Linear Mixed-Effects models suggested significant neural
discrimination across multiple stimulus categories(40c, 9c,
color, numbers in DE and 40c, 9c, color, numbers, human in
PSD), rigorous pairwise comparisons with FDR correction
revealed almost no statistically significant differences for
any task after controlling for multiple comparisons. While
some task categories remained significant after Bonferroni
correction, it can hardly be considered as meaningful find-
ing taking effect size(Cohen’s d) into account. All effect
sizes were negligible (Cohen’s d < 0.1), with the largest



Table 1. Result of Linear Mixed Effect model and Pair-wise comparison Differential Entropy (DE); Power Spectral Density (PSD);
Uncorrected Significance (Unc. Sig.) ; Significance (FDR Sig.); Bonferroni Significance (Bonf. Sig.); False Discovery Rate (False Dis.
Rate)

DE PSD

Task Classes Unc. FDR Bonf. Max False Unc. FDR Bonf. Max False
(Comparisons) Sig. Sig. Sig. Cohen’s d Dis. Rate Sig. Sig. Sig. Cohen’s d Dis. Rate

40c 40 (780) 193 61 0 0.099 16.9% 67 0 0 0.059 100%
9c 9 (36) 15 9 0 0.040 16.7% 5 0 0 0.025 100%
color 7 (21) 8 2 0 0.061 28.6% 1 0 0 0.018 100%
numbers 3 (3) 2 2 2 0.025 0% 1 0 0 0.013 100%
fast slow 2 (1) 0 0 0 0.005 - 0 0 0 0.007 -
human 2 (1) 0 0 0 0.007 - 1 1 1 0.014 0%
face human 2(1) 0 0 0 0.006 - 0 0 0 0.009 -

Table 2. Average classification accuracy (%) and std across all subjects under within-subject setting For each subject, five sessions
were used for training, one for validation, and one for testing.

Methods 40-c top-1 40-c top-5 9-c top-1 9-c top-3 Color Fast/Slow Numbers Human Face Human
Chance level 2.50 12.50 11.11 33.33 20.57 50.00 65.64 62.25 71.43

Raw EEG Signals
DeepNet [24] 3.37/0.76 14.83/1.76 14.13/1.87 40.04/2.86 18.31/3.54 50.80/1.73 59.89/4.39 77.26/2.92 64.79/2.94
TSConv [31] 3.53/0.73 15.62/1.91 14.74/1.52 39.87/2.35 19.32/2.41 51.20/1.84 55.80/1.87 75.58/1.18 63.77/1.96
EEGNet [13] 2.87/0.47 13.96/0.96 13.55/0.99 38.29/1.33 18.70/2.57 50.40/1.75 55.91/0.99 73.98/1.24 62.79/1.34
ShallowNet [24] 4.07/0.94 17.31/2.58 16.09/2.25 43.68/3.73 19.46/2.84 52.82/2.22 57.59/2.34 76.56/1.33 65.52/1.94
Conformer [29] 2.71/0.54 12.87/1.29 12.89/0.93 37.44/1.50 19.35/2.89 50.26/1.00 53.14/3.00 71.92/3.11 60.67/2.56
GLMNet [19] 2.84/0.39 13.58/0.96 13.14/1.18 37.53/2.34 17.96/2.86 50.51/1.38 55.69/1.63 75.76/1.01 63.34/1.93
CBraEnc (Ours) [33] 2.49/0.0 12.50/0.0 17.50/0.0 42.73/0.88 20.82/0.69 51.40/0.12 65.64/0.0 82.14/0.0 71.42/0.0

PSD Features
MLP 4.27/2.66 17.18/5.14 15.81/3.04 41.68/4.68 20.43/2.80 51.39/1.20 54.92/1.93 63.93/3.02 75.49/2.11
GLMNet [19] 3.83/1.72 16.45/3.91 15.39/2.57 40.55/3.91 19.99/2.51 51.51/1.38 54.89/1.71 75.01/1.52 63.34/1.93

DE Features
MLP 4.38/2.60 17.63/5.63 15.99/3.50 42.27/5.03 20.89/2.95 51.43/1.34 56.31/1.85 65.67/2.49 77.26/1.37
GLMNet [19] 4.10/1.82 16.65/4.00 15.39/2.57 41.02/4.01 20.38/2.30 51.53/1.22 56.23/1.25 77.19/0.97 65.15/1.81

effect observed in the 40-class task (d = 0.099 in DE and
0.059 in PSD). Uncorrected pairwise tests showed apparent
significance in 1-193 comparisons per task, but almost no
pairs exhibited significance after correction with high FDR.
These results can be interperetated as either neural discrim-
ination is below the detection threshold of this methodol-
ogy, or the PCA features fail to capture task-relevant neural
patterns, or the dataset is not sufficient to retain vision rep-
resentation of EEG.

Mutual Information. We trained MINE [1] models to es-
timate the mutual information between EEG and video la-
tent embeddings for each of the 20 subjects in the SEED-
DV dataset. EEG signals were encoded using a pre-trained
EEGNet [13], and video clips were processed through a pre-
trained R3D-18 [8] network. The resulting latent vectors
were concatenated and fed into MINE, which was trained
to distinguish joint (aligned) from marginal (shuffled) pairs.
The best mutual information (MI) lower-bound achieved
across subjects averaged 0.72 bits, with values ranging from
0.59 to 0.86 bits. To assess the relative informativeness, we

computed the normalized mutual information (NMI) by di-
viding the estimated MI by the maximum of the differential
entropies of the EEG and video representations. The aver-
age NMI across all subjects was 0.43%, with none exceed-
ing 0.52%.

These values indicate that the EEG and video modalities
in SEED-DV share only a negligible amount of mutual in-
formation. Such low cross-modal dependency suggests that
the two modalities may not be semantically or temporally
aligned in a way that supports effective joint modeling. This
concern is reinforced by our downstream results: the lack
of mutual information coincides with poor performance in
both EEG-to-video reconstruction and video classification
from EEG signals. These observations collectively question
the validity of SEED-DV as a benchmark dataset for multi-
modal generation and recognition tasks involving EEG and
video.

4.3.2. Encoder Robustness Evaluation

We report results on the EEG-VP benchmark, focusing on
the ability of different EEG encoders to extract semantic



Table 3. Average classification accuracy (%) and std across all subjects under the Leave-One-Subject-Out (LOSO) setting

Methods 40-c top-1 40-c top-5 9-c top-1 9-c top-3 Color Fast/Slow Numbers Human Face Human
Chance level 2.50 12.50 11.11 33.33 20.57 50.00 65.64 62.25 71.43

Raw EEG Signals
DeepNet [24] 6.42/1.71 24.82/4.56 18.03/1.69 46.65/2.43 22.50/2.90 50.96/1.44 64.82/0.34 81.95/0.00 71.31/2.06
TSConv [31] 5.01/1.12 20.34/3.12 17.83/1.75 45.74/2.02 22.80/2.78 51.09/1.36 64.71/0.37 81.85/0.22 71.46/0.96
EEGNet [13] 5.94/1.24 23.00/3.43 17.47/1.58 46.15/2.14 23.06/3.55 52.22/2.10 64.99/1.60 81.97/0.42 71.14/1.10
ShallowNet [24] 5.87/1.32 22.67/3.51 18.33/1.88 46.23/2.81 25.70/2.36 49.98/0.00 64.11/2.41 81.46/1.68 71.53/1.14
Conformer [29] 4.20/1.10 18.10/2.08 17.30/0.61 44.67/0.79 20.50/2.25 51.31/1.43 64.86/0.19 81.92/0.09 71.76/0.13
GLMNet [19] 2.90/0.52 13.78/1.18 16.17/1.26 43.24/1.95 20.26/2.60 50.17/1.01 64.74/1.48 81.71/1.18 70.66/1.28
GLMNet w/ CL (Ours) 4.63/0.97 19.65/2.66 17.43/0.84 45.28/1.74 20.86/2.25 50.98/1.23 64.64/1.27 81.95/0.01 71.72/0.42
CBraEnc (Ours) [33] 2.50/0.18 12.54/0.42 17.43/0.00 42.35/2.15 20.31/0.0 50.03/0.30 64.92/0.0 81.95/0.0 71.82/0.0

PSD Features
MLP 3.19/0.36 14.63/0.75 16.34/1.27 43.21/2.22 21.19/1.46 51.25/1.10 65.20/0.62 82.03/0.22 70.68/1.72
GLMNet [19] 3.19/0.55 15.02/1.43 16.45/1.25 43.34/1.67 22.05/2.17 51.40/1.61 65.34/0.70 82.03/0.29 71.32/0.17

DE Features
MLP 3.20/0.43 14.64/0.88 15.79/1.19 42.35/1.30 21.76/1.80 51.33/1.34 65.44/0.32 82.10/0.12 71.26/0.42
GLMNet [19] 2.99/0.49 14.54/1.31 16.02/1.05 43.49/1.56 21.37/1.59 51.62/1.38 65.58/0.14 81.96/0.78 71.41/0.04

Table 4. Average classification accuracy (%) and std of Latent Classification

Methods 40-c top-1 40-c top-5 9-c top-1 9-c top-3 Color Fast/Slow Numbers Human Face Human
DE Features

Chance level (6th block) 2.50 12.50 17.50 45.00 26.00 54.00 69.00 80.50 71.50
Seq2Seq model 2.62/0.92 12.62/1.48 16.70/1.40 43.67/1.62 17.80/1.40 51.23/3.02 69.00/0.00 80.50/ 0.00 71.50/0.00

Chance level (7th block) 2.50 12.50 17.50 45.00 23.20 53.00 67.00 79.50 75.50
Semantic Predictor 2.80/0.65 13.03/2.09 16.26/1.85 42.30/2.30 18.79/4.97 57.15/7.84 79.79/0.44 87.21/0.73 86.74/1.14

and perceptual information from EEG signals. We evalu-
ated each model using the three aforementioned types of
EEG input representations: raw EEG signals, PSD features,
and DE features. CBraMod encoder was only evaluated
with raw EEG input, as it does not accept preprocessed fea-
tures such as PSD or DE. GLMNet trained with contrastive
learning(GLMNet w/ CL) was only tested under the LOSO
protocol given its design for learning subject-invariant rep-
resentations.

Tab. 2 shows classification performance of each EEG en-
coders across different classification tasks and EEG input
representations. CBraMod encoder showed higher perfor-
mance than GLMNet in all tasks excluding 40 class classi-
fication. CBraMod encoder showed below or equal chance
level performance for 40 classs classification task for top1
accuracy and top5 accuracy. However, in 9class classi-
fication, CBraMod encoder showed 33.18% increase in 9
class top1 accuracy and 13.85% increase in top3 accuracy
comapred to GLMNet. While not exceeding chance level
significantly for Color, Fast/Slow, Numbers, and Human
classification, classification performance of Human Face
exhibited 31.94% increase compared to chance level and
8.42% increase compared to GLMNet classification perfor-
mance.

In order to assess the reproducibility of GLMNet under
the within-subject setting, the model was re-implemented

and evaluated using the same task configurations with pre-
vious EEG2video. While the overall trend in relative
model performance was consistent with the ones reported
in EEG2Video [19], our reproduced results demonstrated
a general degradation in absolute accuracy. It is notewor-
thy that the model exhibited substandard performance in
a range of conditions, including multi-class classification
and semantic binary tasks such as Color, Fast/Slow, and
Numbers. The performance decline frequently exceeded
5%, and in certain instances, it exceeded 10%. Conversely,
the Human Face category was the sole condition in which
our model exhibited consistent superiority over the origi-
nal implementation across all feature types, demonstrating
enhancements exceeding 10%. Intriguingly, this gain was
accompanied by a decline in performance for the closely
related Human category, suggesting a potential issue with
label alignment or category separation. While not all re-
produced results exceeded the corresponding chance levels,
the model generally maintained meaningful performance
across most conditions, reaffirming its architectural valid-
ity. When tested with PSD and DE features, the overall
performance seemed higher compared to when tested with
raw EEG signals. This might be due to adequate feature
extraction method used to filter useful and meaningful as-
pects of EEG data that might convey proxy of core vision
perception, effectively managing noise in EEG data.



In the Leave-One-Subject-Out (LOSO) condition, the re-
sults in Table 3 reveal that contrastive learning marginally
improves multi-class classification with raw EEG signals.
GLMNet w/ CL outperforms its vanilla counterpart in 40-
class and 9-class tasks, yet it does not achieve the high-
est accuracy in any individual metric. Instead, baseline
models deliver surprisingly strong results across several
tasks. These results suggest that achieving more pro-
nounced cross-subject generalizability may require addi-
tional techniques beyond the use of a simple triplet loss.
CBraMod encoder, while not so remarkably showing per-
formance compared to GLMNet w/ CL, exhibited supe-
rior performance in Human classification task. However,
GLMNet which was expected to extract visual and whole
brain activities didn’t show robust superiority over MLP
both in within-subject condition and LOSO condition, cast-
ing doubt on its capability as an optimal EEG encoder.

Contrary to our initial expectations, the standard devia-
tion of the results in LOSO condition(i.e. performance vari-
ability across subjects’ model) was not always large com-
pared to within-subject condition. Unlike within-subject
condition that trained a seperate model for each individual,
LOSO condition trains a single model using data from all
participants except one, who is held out for testing. As a re-
sult, the model may not have specialized in individual-level
prediction, but rather learned a general representation that
reflects group-level trends. This suggests that the model is
likely optimizing toward the group mean rather than captur-
ing person-specific nuances-an interpretation that may be
more appropriate given the current results.

4.3.3. Reconstruction Fidelity Validation
Latent Prediction As illustrated in Table 4, freezing the
reconstruction-oriented encoders and training only a shal-
low classifier leaves performance essentially at chance.
On the 40-class benchmark the Seq2Seq latent model at-
tains 2.62% top-1 accuracy, whereas the Semantic predictor
reaches 2.80%; both are close to the 2.50% chance level,
and the corresponding top-5 scores improve by less than
one percentage point. Accuracy on Color decreases from
26% to 17.8% for Seq2Seq and 18.8% for the Semantic
predictor, while Fast/Slow drops from 54% to 51.2%. In
contrast, the Semantic predictor shows marked gains for at-
tributes that rely on coarse conceptual cues: Numbers im-
proves to 79.79%, Human Face to 87.21%, and Human to
86.74%. These findings indicate that mapping EEG signals
into a text-embedding space can capture high-level seman-
tics, yet the resulting representations remain insufficiently
separable for fine-grained object categorization. Directly
re-using the frozen features in the diffusion decoder may
therefore propagate semantic ambiguity during video recon-
struction, although the text-style embedding strategy itself
appears promising and warrants further study through joint
optimization or partial fine-tuning.

Table 5. Quantitative evaluation of reconstructed videos on the
SEED-DV dataset. We report Top-1 accuracy (%) for 2-way and
40-way classification at both image and video level, and SSIM for
perceptual similarity.

Metric Mean Std Type

Image-Level 2-way Acc 72.30% 23.05% ViT
Image-Level 40-way Acc 9.77% 23.02% ViT
Video-Level 2-way Acc 78.00% 21.19% VideoMAE
Video-Level 40-way Acc 11.69% 23.08% VideoMAE
Image SSIM 0.0782 0.0345 Structural Similarity

Quantitative Results We evaluate the fidelity and seman-
tic consistency of reconstructed videos using both vision-
language-based classification metrics and perceptual simi-
larity scores. Following prior work, we report 2-way and
40-way top-1 accuracy under both frame-level and video-
level settings using ViT and VideoMAE classifiers, respec-
tively. Additionally, we report SSIM to assess pixel-wise
similarity between generated and ground truth frames.

The high 2-way accuracy (78.00% video-level, 72.30%
image-level) suggests that the generated videos preserve
coarse semantic information from EEG. However, perfor-
mance drops significantly in the 40-way setting (11.69%
and 9.77%), indicating difficulty in capturing fine-grained
class distinctions. The low SSIM (0.0782) further reflects
limited visual similarity. This gap likely arises from relying
solely on semantic embeddings, without latent-level condi-
tioning, which was disabled due to instability.

Qualitative Results We present several qualitative exam-
ples in Figure 2. While some reconstructions capture the
general scene layout or motion patterns, the semantic align-
ment with ground truth is mostly imperfect. In particular,
object identity, textures, or scene context may diverge no-
ticeably from the original video. This highlights the limi-
tations of relying solely on EEG-derived semantic embed-
dings for guiding the generation.
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A. Additional Results

B. Supplementary Figures



Figure 2. Qualitative reconstruction results from EEG. Each triplet shows 3 sampled frames from a video clip: the top row is ground truth
(GT), and the bottom row shows the model output (Ours).

Figure 3. Inter-Subject variability in neural signals: EEG Amplitudes extracted from SEED-DV dataset at same timepoint while watching
identical stimuli
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