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Abstract

Facial image editing demands high fidelity and semantic
precision due to its impact on identity perception, yet exist-
ing benchmarks fall short in evaluating these unique chal-
lenges. We propose FEBench, a comprehensive benchmark
tailored for text-guided facial editing. FEBench covers a di-
verse set of editing tasks—including nasal bridge augmen-
tation, chin and jawline reshaping, shadow removal, and
emotion modification—across multiple editing paradigms:
mask-based, prompt-based, and instruction-based. It in-
troduces a multi-dimensional evaluation framework encom-
passing editing fidelity, non-target consistency, and overall
image quality supported by multiple metrics. Through ex-
tensive experiments with four representative editing models,
we demonstrate FEBench’s effectiveness in enabling holis-
tic and comparative analysis of facial editing capabilities.

1. Introduction

Facial image editing has emerged as a crucial task in vari-
ous domains such as beauty enhancement, cosmetic surgery
simulation, and digital entertainment, due to the demand for
high-fidelity and user-controllable facial transformations.
Among the approaches proposed to address this task, text-
guided editing methods [1-3] have garnered increasing in-
terest due to their intuitive and user-friendly interfaces, en-
abling users to express desired edits through natural lan-
guage descriptions.

While text-guided editing provides a convenient inter-
face, facial image editing inherently demands a high de-
gree of precision. Even minor alterations can significantly
affect a person’s perceived identity—potentially resulting
in the edited face appearing as a different individual alto-
gether(e.g. Change in skin texture or skin tone) [4]. Such
discrepancies may lead to misidentification in digital enter-
tainment, thereby disrupting viewer immersion; cause crit-
ical misunderstandings in cosmetic surgery planning; and
reduce user satisfaction even in casual or recreational use
cases.

Therefore, achieving high accuracy and precision in fa-

cial image editing is essential, as it entails challenges that
fundamentally differ from those encountered in general im-
age editing tasks. Such challenges highlight the necessity
for dedicated benchmarks tailored to the specific demands
of facial editing. Nevertheless, existing benchmarks [5-8]
have primarily focused on general text-guided image edit-
ing, and to date, no benchmark has been specifically tailored
to the unique challenges of face-specific editing.

Consequently, there remains a significant gap in the de-
velopment of dedicated evaluation protocols tailored to fa-
cial editing, a task which demands higher granularity and
semantic precision. The absence of such benchmarks limits
the ability to rigorously evaluate and compare the perfor-
mance of facial editing models in a consistent and repro-
ducible manner.

Therefore we introduce FEBench, a benchmark de-
signed explicitly for evaluating text-guided facial edit-
ing models. Unlike prior benchmarks, FEBench supports
diverse types of editing models—including mask-based
editing, target prompt editing, and instruction-based edit-
ing—thereby enabling a more holistic assessment across
various editing scenarios. Our benchmark evaluates facial
edits that are commonly desired in everyday life, and em-
ploys several metrics specifically tailored for assessing face
editing, that have not been used in previous benchmarks.

2. Related Works

Image Editing Models. Image editing models aim to gen-
erate modified images based on user-defined conditions
such as text prompts, masks, or sketches. Early GAN-
based [9] approaches like StyleGAN [10] focusing mainly
on holistic style transfer, while models like MaskGan [11],
BrushNet [12] performed inpainting in the masked region
by fooling both local and global discriminators into classi-
fying the composite output as real. With the advent of diffu-
sion models [13, 14], fine-grained and semantically control-
lable editing became possible. Techniques like ControlNet
[15] extended diffusion-based methods by enabling struc-
tured conditional inputs (e.g., pose, edge maps, or masks).
Moreover, the emergence of CLIP [16] enabled alignment
between image content and natural language, facilitating
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Figure 1. Example of editing tasks evaluated in our benchmark. (a) Nasal bridge augmentation. (b) Chin reduction. (c) Jawline
reduction. (d) Shadow removal. (¢) Emotion change. Top row indicates original image and bottom row indicates edited images.

semantically rich, text-driven editing. Most recent editing
methods like Prompt-to-Prompt [1] adopt an inversion-and-
generation strategy, where an image is first mapped to a
latent noise space before editing is applied through new
prompts [17]. Few methods like instructPix2Pix [18] and
MagicBrush [19] fine-tune generation models to edit by re-
ceiving instruction prompt as an input. FlowEdit [20] takes
this further by eliminating the inversion step, allowing more
direct and efficient edits.

Facial Editing Models. Facial image editing presents
unique challenges compared to general image editing, due
to the need for high precision and identity preservation.
Even subtle modifications may compromise the perceived
identity, which is critical in applications such as digi-
tal avatars, beauty retouching, or virtual try-ons. In the
2D domain, various model families have been proposed
based on different forms of user guidance. ManiClip [21]
and CA-Edit [4] are models specifically designed for 2D
facial editing. However, other models, such as Brush-
Net [12], Prompt-to-Prompt [1], FlowEdit [20], and Mag-
icBrush [19], were originally designed for general image
editing but can also be effectively adapted for facial edit-
ing tasks. While these approaches have shown promise, the
absence of standardized evaluation protocols makes it diffi-
cult to objectively compare their performance. In particular,
facial editing demands specific evaluation criteria that ac-
count for semantic alignment, regional fidelity, and identity
preservation to ensure the quality of edits while maintaining
the integrity of the subject’s appearance.

Image Editing Benchmarks. A number of benchmarks
have been proposed to evaluate the performance of image
editing models. EditBench [6] focuses solely on mask-
guided inpainting tasks, offering a controlled setup for
evaluating models based on spatially localized user input.

I2EBench [7], in contrast, targets instruction-based edit-
ing scenarios, where models are guided by free-form nat-
ural language commands. While these benchmarks have
advanced research in general-purpose image editing, their
evaluation scope remains limited—each supports only a
narrow subset of editing paradigms. Consequently, they
are ill-suited for assessing the increasing diversity of edit-
ing models, particularly those that operate outside their pre-
defined task formats. Recent efforts such as HATIE [8]
have aimed to align evaluation more closely with human
perception. By aggregating multiple metrics and automat-
ically generating editing instructions using VQA annota-
tions [22] and large language models [23], HATIE pro-
vides a more comprehensive and perception-aligned bench-
mark. However, it remains focused on general image
content and does not explicitly account for the semantic
constraints and evaluation challenges unique to facial im-
age editing. These limitations point to the need for a
dedicated benchmark that supports diverse facial editing
paradigms—including mask-based, description-based, and
instruction-based methods—while incorporating evaluation
criteria that reflect both perceptual consistency and identity
preservation.

3. FEBench

Our benchmark targets to evaluate everyday facial retouch-
ing tasks, including structural editing, shadow removal,
emotion change. We provide a detailed definition of our
evaluated editing tasks in Sec. 3.1, used metrics for eval-
uation in Sec. 3.2, and overall evaluation framework in
Sec. 3.3.

3.1. Task Definition

Facial Structural Edits. To develop a benchmark specif-
ically tailored for facial analysis, we focused on structural



changes in the face. These structural changes were catego-
rized into three distinct types, as detailed below:

* Nasal Bridge Augmentation: As a centrally positioned
facial feature, the nose plays a pivotal role in human fa-
cial recognition and perception. Due to its prominence,
it is also among the most frequently targeted regions for
facial modification, both in personal use and commercial
applications. To reflect this demand, our benchmark in-
cludes a nasal bridge augmentation task, designed to as-
sess a model’s capability to perform fine-grained and se-
mantically precise facial edits.

¢ Chin Reduction: Chin reduction is a facial editing task
of decreasing the vertical length or anterior projection of
the lower face. This modification is typically applied to
elongated or protruding chins, with the aim of adjusting
the overall vertical proportions of the face and alleviat-
ing the perceived visual imbalance associated with a long
lower face. From an aesthetic perspective, an excessively
long chin can influence perceived facial attractiveness and
gender recognition. As such, chin reduction is frequently
requested to enhance facial harmony and achieve a more
balanced appearance.

* Jawline Contouring: Jawline contouring involves mod-
ifying the width or angularity of the mandibular angle to
create a smoother and more refined jaw contour. This task
is typically applied in cases where the lower jaw appears
wide or angular, with the aim of producing a narrower,
more tapered facial shape—commonly referred to as a
“V-shaped facial contour”. A prominent jawline can con-
tribute to a wide facial impression, and preferences for
jaw shape are often influenced by cultural and aesthetic
standards.

Emotion Change. Emotion change refers to a facial image
editing technique aimed at altering a subject’s expression to
convey a desired emotional state. For instance, this method
may transform a squinting face—caused by strong sun-
light—into a smiling face, or convert a neutral expression
into a surprised look. Such techniques have gained growing
attention in both personal and commercial domains, with
applications ranging from social media content generation
and advertisement portrait enhancement to the aesthetic re-
finement of family photograph.

Shadow Removal. Everyday facial photographs often con-
tain shadows due to the position of the light source or oc-
clusion by objects. Shadow removal refers to the editing
process that adjusts the skin tone in shadowed regions to
match that of the illuminated areas, effectively eliminating
the appearance of shadows on the face. Shadow removal
is also in high demand for producing ID photos, where the
face is expected to appear evenly lit without any shadows.

We abbreviate each task for simplicity in the following sec-
tions, nasal bridge augmentation as NOSE, chin reduction
as CHIN, jawline reduction as JAWLINE, emotion change as
EMOTION and shadow removal as SHADOW.

3.2. Metrics

CLIP Similarity. CLIP computes the similarity between
an image and a text prompt by projecting both into a shared
semantic embedding space. This capability makes it a natu-
ral choice for evaluating how well an edited image reflects a
given textual description. In our context, it serves as a mea-
sure of semantic alignment between the intended prompt
and the visual outcome.

Image Quality Measurement. We use various metrics to
assess the overall quality of the generated images, ensuring
that they closely resemble the natural appearance of real-
world images.

* Fréchet Inception Distance (FID [24]):The Fréchet In-
ception Distance (FID) evaluates the quality of generated
images by comparing their feature distributions to those
of real images. A lower FID indicates that the generated
images are more similar to the real dataset in terms of
both content and diversity.

* Q-ALIGN [25]: Q-ALIGN teaches Large Multi-
modality Models (LMMs) to assess image quality by
mimicking how humans rate images using discrete text-
defined levels (e.g., “good,” “poor”) instead of exact nu-
merical scores. During inference, the LMM predicts
probabilities for each level, and the final image quality
score is obtained by computing a weighted average of
these probabilities.

Non-target Preservation. To evaluate visual consistency
across different regions of an image—excluding areas of in-
tended modification—we employ several metrics:

* DINO [26], LPIPS [27]: Both DINO and LPIPS assess
image similarity using deep feature representations rather
than raw pixels, enabling evaluation at a higher perceptual
and semantic level. DINO, a self-supervised vision trans-
former, captures semantic and structural aspects of the
image through its learned embeddings. LPIPS (Learned
Perceptual Image Patch Similarity) measures perceptual
similarity by comparing intermediate features from deep
neural networks, aligning closely with human visual per-
ception.

» L2 Distance: L2 distance measures the pixel-wise differ-
ence between two images.

These metrics together offer a comprehensive assessment
of how well the edited image preserves non-target re-
gions—capturing both high-level semantic/perceptual fi-
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Figure 2. Verification of our selected texture metrics. We compare similarity to the original image under texture (blue) and structure
(green) changes. CW-SSIM increases and GMSD decreases as texture becomes more realistic, while remaining stable under structural
shifts, confirming their sensitivity to texture changes and robustness to geometry.

Figure 3. Example of utilizing facial landmarks for structural edit evaluation. (a) Evaluation of nasal bridge augmentation. (b)

Evaluation of chin reduction. (c) Evaluation of Jawline reduction.

delity (via DINO and LPIPS) and low-level pixel differ-
ences (via L2 distance).

Identity Preservation. To ensure that the underly-
ing identity of a person remains recognizable after edit-
ing—regardless of changes in facial structure, style, or
lighting—we use FaceID models.

* FaceNet [28], Keypoint Regression with Perceptual
Embedding (KPRPE) [29]: These models encode facial
images into identity-preserving embeddings. The simi-
larity between two embeddings indicates how likely the
faces belong to the same individual. KPRPE, in partic-
ular, is designed to be robust to pose changes, making it
well-suited for evaluating identity consistency under di-
verse editing conditions.

In our work, we use FacelD similarity to assess how well
the core identity of the person is preserved after editing.
This is crucial because a visually appealing facial edit is not
meaningful if the resulting image is no longer recognizable
as the same person.

Texture Realism Preservation. Facial editing often leads
to subtle yet perceptible changes in skin or hair tex-
tures—such as unnaturally uniform smoothness or loss of
fine surface variation—that can evoke a sense of visual dis-
sonance or uncanniness, even when the overall structure ap-
pears intact. To assess whether these delicate textures are
faithfully retained after editing, we employ texture-sensitive
metrics.

* GMSD, CW-SSIM: We use Gradient Magnitude Simi-
larity Deviation (GMSD) and Complex Wavelet Struc-
tural Similarity Index (CW-SSIM), both of which are
sensitive to subtle texture changes while being robust to
larger structural transformations which can also be seen
in Fig. 2. GMSD focuses on local gradient patterns, cap-
turing distortions in fine textures such as skin pores or
hair strands. CW-SSIM, built on wavelet transforms, em-
phasizes localized phase consistency and is particularly
suited for detecting structural inconsistencies in texture
without being affected by global shape changes.

We conducted a verification experiment on these two
metrics as in Fig. 2, by evaluating the reconstructed im-
ages of same person, degraded gradually by decreasing
the number of generation steps in diffusion process. The
results show our metrics successfully captures the preser-
vation of texture realism. Example of measuring CW-
SSIM can be also found in Fig. 4.

Figure 4. Examples of texture realism preservation measure-
ment. We measure CW-SSIM similarity between the edited and
original images. (a) shows texture changes by altering number of
generating steps in reconstruction, using diffusion model.



Head Pose Consistency. To evaluate head pose consis-
tency, we estimate the 3D head orientation (yaw, pitch,
and roll) for both the original and edited images using fa-
cial landmarks and the RANSAC-based Perspective-n-Point
(PnP) algorithm with a predefined 3D facial model [30].
The resulting rotation vectors are converted to Euler an-
gles, and angular differences are computed along each axis.
These differences are normalized based on typical human
head rotation ranges and aggregated into a similarity score
ranging from O (identical pose) to 1 (maximally different).
Lower scores reflect higher pose consistency.

Original Image Model-Transformed Images

Figure 5. Examples of head pose consistency measurement. In
all images, green dots indicate facial landmarks, red dots represent
the subset used for facial pose consistency evaluation, and the blue
line denotes the estimated facial orientation. Lower value indicates
good head pose consistency.

Facial Geometry Change Measurement. We utilized the
68-point facial landmark model [30] to quantify changes in
the nose, chin, and jawline regions. The corresponding eval-
uation metrics for each region are defined as follows:

* NOSE: To evaluate nasal bridge augmentation, we mea-
sure the angle formed at landmark 27 (the top of the nasal
bridge) with respect to landmark 30 (the base of the nose)
and landmark 51 (the top of the upper lip). An increase
in this angle compared to the original image indicates a
more elevated or prominent nasal bridge.

e CHIN: We assess changes in chin length by calculating
the ratio formed by three facial landmarks: point 27 (the
top of the nasal bridge), point 57 (the bottom of the lower
lip), and point 8 (the lowest point on the chin). A reduc-
tion in this ratio compared to the original image indicates
a decrease in perceived chin length.

* JAWLINE: To quantify jawline slimming, we measure
angular changes between lateral jaw landmarks (4, 5 on
the left and 11, 12 on the right) and reference points such
as 3 and 13 (angles near the ears) and 8 (chin bottom).
An increased average angle in the edited image indicates
a more tapered jawline, reflecting a slimmer and sharper
mandibular contour.

Shadow Removal Measurement. We use three metrics
to evaluate shadow removal quality. Face symmetry dif-
ference measures the mean absolute difference between the
luminance of a face and its mirrored version, after align-
ing the face using landmarks. Retinex illumination range
computes the standard deviation of the log-reflectance, es-

Sym-diff drop: 69.7% Sym-diff drop: -5.2%
llum-range drop: 25.4% lllum-range drop: -15.4%  lllum-range drop: -18.2%
Edg trast drop: 56.0% Edg trast drop: 17.6% Edg trast drop: 17.3%

Sym-diff drop: 3.8%
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Figure 6. Example of shadow removal measurement. High per-
centage value indicates good shadow removal.

timating local brightness uniformity—higher variation in-
dicates shadow presence. Shadow edge contrast detects
strong dark-to-bright transitions via Canny and Laplacian
filters, then compares average gradient magnitudes across
these regions in the original and edited images. Example of
evaluation can be seen in Fig. 6.

Emotion Classification Confidence Measurement. We
assess the fidelity of the intended emotional expression in
the edited image. The evaluation encompasses seven emo-
tion categories: Neutral, Happy, Sad, Surprise, Fear, Dis-
gust, Anger, and Contempt. Emotion classification is con-
ducted using LibreFace [31], a deep learning-based Facial
Expression Recognition (FER) model, which outputs con-
fidence scores for each class. Based on these confidence
values, a normalized score ranging from O to 1 is computed
to quantify how accurately the target emotion is reflected in
the edited output.

3.3. Evaluation Framework

Dataset Selection. Due to the presence of facial edit-
ing models requiring masks as an input, we select
CelebAMask-HQ [11] as our base dataset. CelebAMask-
HQ contains 30,000 human facial images with 512x512
sized masks, each annotated with 19 classes including fa-
cial attributes and accessories (e.g. skin, lips, hair, earrings,
hat).

Annotation Generation. For each editing task, we produce
an annotation bundle comprising: the original image, the
target region mask, original emotion, a caption of the orig-
inal image, a description of the desired edited image, and a
editing instruction. We created caption of the original im-
age with llama-3-vision [32], which is a VLM. Then we uti-
lized GPT-40-mini [23] to generate a description of desired
edited image, by requesting to model to modify the original
caption. By this process, we created 20 annotations for each
editing task, resulting in total 100 annotations. Each model
then edits the image following the created annotation.
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Figure 7. Evaluation workflow of FEbench. The top row
presents the original image and its corresponding target and non-
target segments, while the bottom row presents those of the edited
image. Metrics shown in black are commonly computed across
all editing tasks, while metrics shown in white are specific to the
corresponding editing task. Bidirectional diagram calculates the
metric by comparing the original and edited image, unidirectional
diagram calculates the metric with only edited image.

Evaluation. After the edited images are obtained, var-
ious metrics are aggregated to evaluate the model’s face
editing capability by aggregating multiple diverse metrics
explained in Sec. 3.2. Overall framework is described in
Fig. 7. We categorize the metrics used for evaluation into
following three groups:

* Fidelity: We categorize fidelity as how well the edited
image reflect the editing request. We compute CLIP [16]
alignment between edited image and the target descrip-
tion. Additionally, for each type of tasks, correspond-
ing fidelity metric is computed together. Facial geometry
change measurement and shadow removal measurement
is computed between original image and edited image,
emotion classification confidence is measured from edited
image.

» Consistency: We categorize consistency as how well the
edited image preserves the non-target properties. We in-
vert the target segment mask to extract the non-target re-
gion from both the edited image and the original image,
then measure their similarity using LPIPS [27], L2 dis-
tance, and DINO [26] features. Moreover, we measure
the facelD similarity and face pose similarity between
original and edited image. Then measure texture simi-
larity between segmented skin.

* Quality: We measure overall quality of the edited image
by assessing global realism with FID [24] and Q-ALIGN-
Quality [25].

4. Experimental Results

We conduct facial editing with four models, covering all the
aforementioned types of facial editing models. We select
BrushNet [12] as a mask-based model, Prompt-to-Prompt
[1] and FlowEdit [20] as a description-based model, and
MagicBrush [19] as an instruction based model. CA-edit [4]
and ManiCLIP [21] are facial editing-specific models, but
due to CA-edit being unavailable and ManiCLIP’s inability
to edit real images, we opted to evaluate general-purpose
editing models.

We show our quantitative benchmark evaluation results
in Tab. 1 and Tab. 2 each aggregated by task types and score
criteria. To avoid an excessively narrow range of scores,
spreading is first applied. Then, the results were aggregated
by averaging multiple evaluation metrics. As a result, Tab. |
shows that BrushNet was the best in NOSE, and FlowEdit
was the best in remaining tasks. In terms of score criteria,
BrushNet was the best in satisfying high editing fidelity and
overall image quality. FlowEdit was the best in preserving
non-target consistency. Qualitative results of edited images
is presented in Fig. 8. As seen in Fig. 8, most of the mod-
els fail in editing CHIN, JAWLINE, SHADOW. BrushNet
attempts to edit the facial geometry, but largely alters the
identity of the person. Note that due to the different editing
paradigms of each model, we avoid which model is superior
among the models.

Models NOSE CHIN JAWLINE SHADOW EMOTION
BrushNet 0.878 0.673 0.688 0.585 0.627
Prompt-to-Prompt  0.751  0.780 0.792 0.670 0.757
FlowEdit 0.844  0.839 0.858 0.689 0.780
MagicBrush 0.786  0.790 0.725 0.658 0.751

Table 1. Comparison of facial editing results across editing task
types.

Models Fidelity Consistency Quality
BrushNet 0.441 0.709 0.871
Prompt-to-Prompt ~ 0.422 0.841 0.768
FlowEdit 0.430 0911 0.791
MagicBrush 0.381 0.838 0.778

Table 2. Comparison of facial editing results across score cri-
teria.

5. Conclusion and Limitations

In this paper, we present FEBench, an unprecedented multi-
dimensional facial editing benchmark that focuses on eval-
uating everyday facial edits. Evaluation was conducted by
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Figure 8. Examples of edited outputs by four editing models.

combining various metrics, which we categorized into fi-
delity, consistency and quality according to their purposes.
FEBench can be easily scaled by utilizing VLM and LLM
for generating prompts needed as an input for editing mod-
els.

There are few limitations of our work. First, our first
aim was to follow the idea of HATIE [8], so we should also
fit the coefficients of aggregating the multiple metric scores
to better align with the human perception. Second, valida-
tion on some metrics we used is insufficient. The suitability
of the shadow removal measurement, head pose consistency
and facial geometry change measurement was empirically
confirmed on a small number of samples. These limitations
will be resolved in our future work.
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