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Abstract

Contemporary text-to-video systems often conflate appear-
ance and motion cues, yielding videos that omit fine-grained
visual details or exhibit unrealistic actions. To address this
issue, we present a controllable text-to-human video gen-
eration framework that explicitly decomposes motion and
appearance in the textual domain. Given a natural lan-
guage prompt, a large language model first splits the sen-
tence into a motion phrase and an appearance phrase. A
text-to-motion (T2M) model converts the motion phrase into
a 2D pose sequence, while a text-to-image (T2I) model ren-
ders a reference image that captures fine-grained visual at-
tributes. These two modality-specific cues serve as modular
conditions for a pre-trained image-to-video (I2V) genera-
tor, which synthesizes a temporally coherent video in which
the reference appearance follows the motion trajectory.

This factorized pipeline offers three key advantages: (1)
interpretability and fine-grained control, as motion and
appearance can be manipulated independently; (2) archi-
tectural modularity, providing plug-and-play compatibil-
ity with off-the-shelf T2M, T2I, or I2V backbone models
without requiring retraining; and (3) improved fidelity, re-
sulting in more detailed frames and more realistic motion
than single-stream baselines. Extensive experiments show
that our method outperforms strong alternatives in both
qualitative studies and quantitative metrics (FVD, FaceSim-
Arc, FC, and AX-NDCG). These results demonstrate the
effectiveness of semantic decomposition in enabling con-
trollable, high-fidelity human video synthesis without ad-
ditional training.

1. Introduction
Text-to-video (T2V) generation is an emerging task in gen-
erative AI that aims to synthesize temporally coherent video
sequences from natural language descriptions. This task
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requires interpreting the semantics of the input text and
translating it into a sequence of visual frames that ac-
curately reflect the described content. Recognizing that
videos are fundamentally composed of temporally coher-
ent image sequences, early studies in T2V have explored
the potential of diffusion-based architectures to generate
high-fidelity videos from text prompts [23–25, 45, 54].
These early methods predominantly addressed simple ob-
ject movements or static scene changes. In contrast, re-
cent studies have focused on generating temporally coher-
ent videos that reflect complex human behaviors and fine-
grained appearance details [31, 34, 36, 51].

Despite notable progress in T2V generation [38, 44, 50],
current models often struggle to faithfully reflect the full in-
tent of user instructions. This is especially evident when the
prompts contain both appearance (e.g., clothing, physical
traits) and motion (e.g., running, jumping). For example, a
prompt such as “a man in a red jacket is sprinting” requires
an accurate depiction of both the outfit and dynamic human
motion. However, existing models frequently focus on one
aspect at the expense of the other, or fail to capture either
correctly. As a result, the generated motions are often static
or misaligned with the intended action, and fine-grained ap-
pearance details are frequently omitted.

To address these challenges, we propose an approach
that explicitly disentangles motion and appearance in the
textual modality, offering both interpretability and control-
lability over each factor in the video generation process.
By decomposing textual instructions into appearance- and
motion-specific components, our framework employs ded-
icated pre-trained modules to process each modality inde-
pendently: a text-to-image (T2I) model synthesizes a ref-
erence image from the appearance prompt, while a text-
to-motion (T2M) model generates a motion sequence from
the motion prompt. These outputs are subsequently inte-
grated as modular conditions into a pre-trained image-to-
video (I2V) generator. This explicit factorization enables
finer control over visual attributes and temporal dynamics,
resulting in improved appearance fidelity and more realis-



tic human motion in the generated video. In addition, our
framework enables the flexible reuse of existing pre-trained
models, reducing training cost while maintaining high gen-
eration quality. This paradigm not only enhances the fidelity
in T2V generation, but also opens up new possibilities for
digital human creation and multimodal content editing.

Our key contributions can be summarized as follows:

• We propose a novel training-free text-to-human video
generation pipeline based on semantic decomposition as
shown in Figure 1, where an input text prompt is explic-
itly split into two distinct components: motion and ap-
pearance prompts. This separation enables a more accu-
rate reflection of human characteristics by allowing the
model to interpret and utilize motion and appearance at-
tributes independently.

• The decomposition enhances controllability and inter-
pretability by enabling the model to process spatial (ap-
pearance) and temporal (motion) features separately. This
reduces interference between visual factors and facilitates
the generation of semantically consistent and diverse hu-
man videos.

• Our framework adopts a modular two-stage pipeline that
leverages pre-trained modules to extract motion and ap-
pearance representations independently. This design pro-
motes both the efficiency and reusability of existing high-
quality generative models.

• The decomposed motion and appearance features are then
fused in an I2V module to synthesize coherent video se-
quences, ensuring that both dynamic motion and human
appearance remain aligned with the original text prompt.

2. Related Works

2.1. Text to video generation
T2V generation has rapidly progressed with the emergence
of diffusion-based generative models, which significantly
outperform earlier GAN[21] or autoregressive methods in
both visual fidelity and temporal coherence.

Early diffusion-based models such as CogVideo [25]
and ModelScope-T2V [45] directly conditioned the gen-
erative process on CLIP-based text embeddings [37], em-
ploying spatial-temporal architectures to synthesize coher-
ent short video clips. ModelScope-T2V, in particular, intro-
duced a two-stage diffusion pipeline with text encoding and
spatio-temporal attention modules, achieving high realism
in short-duration sequences. Video-LDM [12] extended the
latent diffusion framework to 3D video space by incorpo-
rating temporal convolution and cross-frame conditioning,
which enabled scalable training on high-resolution videos.
VideoCrafter2 [16] overcomes the lack of large-scale, high-
quality video data by disentangling appearance and motion
at the feature level to attain superior picture quality and

temporal coherence without high-quality video supervision.
These models exemplify a broader trend toward modular-
ized frameworks, where pretrained components are recom-
bined for efficiency and flexibility.

Despite these advancements, several limitations remain.
Current models struggle with accurately capturing com-
plex object interactions, long-term motion dynamics, and
scene transitions, especially in crowded or ambiguous set-
tings [30]. Even state-of-the-art systems like Sora [13]
occasionally exhibit intermittent object disappearance and
physically implausible motion, indicating a disconnect be-
tween the linguistic understanding embedded in large lan-
guage models and the rendering capabilities of visual dif-
fusion backbones. Efforts such as FlowZero [33], Video-
Drafter [32], and SceneScape [20] aim to address these
gaps by integrating LLM-guided prompt understanding,
depth-aware generation, and dynamic scene decomposi-
tion. However, achieving physically consistent, semanti-
cally grounded, and temporally coherent video generation
remains a key open challenge in the T2V domain.

2.2. Text to human video generation

Early work on text-conditioned human video synthesis
mapped linguistic cues to explicit pose trajectories and then
rendered photorealistic frames. SignSynth [40] introduces a
two-stage gloss-to-pose and pose-to-video pipeline for sign-
language production that learns continuous 3D signing mo-
tions from weakly labeled glosses and renders them with a
GAN. Follow Your Pose [36] presents a pose-guided diffu-
sion framework that extracts reference skeletons from hu-
man videos and fuses them with text embeddings in a dif-
fusion backbone, producing anatomically plausible move-
ments without manual pose annotation. Text2Performer
[27] decomposes the VQ-VAE latent space into appear-
ance and pose codebooks and introduces a continuous VQ-
diffuser with motion-aware masking, thereby generating
high-resolution human videos from text while preserving
identity and producing temporally coherent motion.

In addition, HumanSD [28] fine-tunes stable diffusion
with skeleton heat maps to strengthen pose adherence with-
out catastrophic forgetting, while ID-Animator [22] injects
a reference-image adapter into AnimateDiff to achieve zero-
shot, identity-preserving animation from a single portrait.
SignLLM [19] treats pose prediction as multilingual se-
quence generation, directly emitting 3D key points from
text with a large transformer and a priority-learning chan-
nel. Despite these advances, current models still struggle
with fine-grained appearance retention during large articu-
lations, scalable high-quality motion synthesis, and physi-
cally consistent multi-person interactions. Bridging these
gaps remains a central challenge for next-generation text-
to-human video generators.
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Figure 1. Overview of our controllable human video generation framework. Given an input text, a large language model (LLM)
decomposes it into an appearance prompt and an action prompt. The appearance prompt is fed into a T2I module to synthesize a reference
image, from which a pose skeleton is extracted via DWpose. The action prompt is used by a T2M module to generate a full-body motion
sequence in SMPL-X format. To ensure visual consistency between motion and appearance, a scale alignment process adjusts the skeletons.
Finally, the appearance image and aligned motion sequence are fused in an image-to-video module to produce the output video.

2.3. Pose to human video generation

Recent pose-conditioned generators extend latent diffusion
backbones to improve identity fidelity and temporal range.
DreamPose [29] adapts stable diffusion with a CLIP–VAE
adapter plus subject-specific fine-tuning, yielding realistic
cloth dynamics yet requiring per-identity retraining. Ani-
mate anyone [26] fused stable diffusion with ReferenceNet
and a lightweight pose guider, enabling arbitrary charac-
ter images to be animated into temporally consistent, high-
fidelity videos without per-identity tuning. MagicAnimate
[48] inflates a 2D diffuser into a spatio-temporal model with
an appearance encoder and sliding-window fusion, while
MagicPose [15] disentangles appearance and skeletal con-
trol through multi-source self-attention for zero-shot pose-
and-expression retargeting.

A complementary target of recent research is the scal-
ability and editability of the generated frames. Mimic-
Motion [52] introduces confidence-aware pose maps and
progressive latent fusion to stitch arbitrary-length action
videos, whereas MotionFollower [41] frames motion edit-
ing as score-guided diffusion with two compact controllers,
drastically reducing memory cost. UniAnimate [46] uni-
fies reference image, pose stack, and noisy video in a single
3D UNet augmented by first-frame conditioning and state-
space temporal layers, enabling minute-long, appearance-
consistent synthesis. Unlike these pose-guided approaches,

our method dispenses with reference skeletons altogether
and generates accurate human videos from text alone.

3. Methodology

This section describes our method for generating a video
aligned with a given text prompt U. The pipeline consists of
four main stages: (1) decomposition of the input prompt U
using a large language model L, (2) generation of a motion
sequence {Qt}Tt=1 based on the motion-related text Umot,
(3) generation of a reference image I from the appearance-
related text Uapp, and (4) final video generation V condi-
tioned on the generated skeletons {Kt}Tt=1 and image I.

3.1. Prompt decomposition using LLM
Given a natural language prompt U that describes a person
or object performing an action (e.g., “a man in a red coat
jumps and spins”), our method first decomposes the prompt
into two distinct components: motion-related text Umot and
appearance-related text Uapp. This decomposition is per-
formed using a large language model L that is prompted
to identify and separate phrases corresponding to physical
movement (e.g., “jumps and spins,” mapped to Umot) and
those corresponding to appearance or attributes (e.g., “a
man in a red coat,” mapped to Uapp). This structured de-
composition enables specialized downstream components
to focus on their respective generation tasks [10].



Table 1. Notation.

Symbol Description

U Text prompt
L Large Language Model (LLM)
Umot Motion-related text prompt
Uapp Appearance-related text prompt
J Number of body joints
T Number of frames
M Text-to-motion model, M : T →(RJ×3)T

Qt ∈ RJ×3 3D skeleton at frame t
S Parametric body model, e.g., SMPL-X
θt Full-body SMPL-X parameter vector at frame t
θbody,t Body-specific SMPL-X parameters at frame t
ψhand,t Retrieved hand SMPL-X parameters at frame t
ψface,t Retrieved face SMPL-X parameters at frame t
ECLIP CLIP text encoder model
DMX Motion-X reference dataset
Π 3D→2D projection operator
Kt ∈ RJ×2 2D skeleton at frame t
I Text-to-image model, I : T →RH×W×3

I Reference image
V Video generator
V Output video, V = {It}Tt=1

(
Umot, Uapp

)
= L(U) (1)

Instructions. We design our text instructions for the LLM
with three components: task specification, supporting de-
tails, and a strict output format. We leverage the LLaMA-
3.1-8B-Instruct model to perform sentence decomposition
via in-context learning. The model receives a task instruc-
tion followed by several annotated examples. A full de-
scription of the instruction is presented in the Appendix A.

We retain the full original contents in the appearance
prompt to provide the T2I module with rich contextual
grounding. This helps prevent ambiguity, such as those
arising from homonyms or underspecified entities. To en-
sure the generation of a full-body image, we enforce a fixed
prompt format that begins with “Full-body image of [orig-
inal contents]”.

In our preliminary experiments, we observed that the
LLM, guided by a well-defined instruction and a few repre-
sentative examples, reliably followed the constraints with-
out hallucinating appearance-related content. However,
when the appearance prompt was passed to the T2I mod-
ule without details and additional contextual cues—such as
motion or background—it occasionally led to unrealistic
generations (e.g., humans appearing unclothed). To miti-
gate this, we chose to always include motion-related con-
tent (e.g., body posture or activity) alongside appearance
descriptions and permitted the model to infer plausible and
commonly expected attributes only when necessary, strictly

based on the given context.

In-context Learning. Following the task instructions, we
present the LLM with several in-context examples to rein-
force the intended prompt structure and reduce ambiguity.
We use the LLaMA-3.1-8B-Instruct model, which is specif-
ically optimized for instruction-following tasks, to perform
sentence decomposition via in-context learning. Its align-
ment with human-style prompts allows it to robustly follow
task descriptions and adhere to structured output formats.
The complete set of examples used during inference is also
provided in the Appendix A.

By exposing the model to concrete demonstrations, we
encourage it to generalize the expected formatting pat-
terns and semantic cues necessary for the task. Prior
works in T2V generation, including OpenSora[53] and
VideoCrafter[16], have shown that in-context learning,
when supported with sufficient contextual signals, can sig-
nificantly enhance the quality of generation within DiT-
based architectures[49].

3.2. Appearance image generation
Simultaneously, the appearance-related text Uapp is fed into
a T2I generation model I (e.g. Stable Diffusion, FLUX) to
produce a single image I that visually represents the object
or character described in the prompt [2, 6, 8]. The gen-
erated image preserves key visual cues including clothing,
colors, and object identity. This image serves as a static vi-
sual reference for the appearance of the character or object
throughout the video.

I = I
(
Uapp

)
(2)

3.3. Motion sequence generation
The motion-related text Umot is passed to a T2M model M
(e.g. T2M-GPT or MotionDiffuse) that translates the de-
scription into a temporal sequence of 3D human skeletons
{Qt}Tt=1 [1, 3, 7]. Each skeleton frame consists of the 3D
coordinates (X,Y, Z) of the J key body joints. For further
processing, this 3D motion is projected into a 2D viewpoint
space using an estimated affine transformation P described
on subsection 3.6, yielding a time-series of 2D key-point
skeletons {Kt}Tt=1 suitable for image-based rendering.

{Qt}Tt=1 = M
(
Umot

)
, Kt = P

(
Qt

)
, t = 1, . . . , T. (3)

3.4. Hand and Face Motion Retrieval
The base T2M model QBody primarily generates expres-
sive body motion, but it only produces coordinate values
for the torso and major body joints, completely neglect-
ing detailed, high-fidelity hand and facial articulation. To
address this, we leverage a large-scale, high-quality mo-
tion dataset, Motion-X, which contains rich hand and face



SMPL-X parameters. Instead of generating these complex
motions from scratch, we employ a retrieval-based strategy.

First, we encode the input motion description Umot into
a feature vector using a pre-trained CLIP text encoder. This
vector is then compared against a pre-computed database
of CLIP embeddings for all textual descriptions within the
Motion-X dataset. We identify the Motion-X entry with
the highest cosine similarity to our input prompt. From
this best-matching data point, we retrieve its correspond-
ing hand and facial SMPL-X parameter sequences, denoted
as

{ψhand,t}Tt=1 and {ψface,t}Tt=1,

respectively. To ensure temporal synchronization with the
generated body sequence of length T , these retrieved se-
quences are resampled using linear interpolation, and then
used as the definitive hand and facial articulations in our
final output.

3.5. Parametric Body Model Fitting for Coherent
Merging

To create a cohesive full-body motion, we must merge the
generated body skeleton sequence {QBody

t }Tt=1 with the re-
trieved hand and face parameters. A direct fusion is chal-
lenging, as the data representations are incompatible (i.e.,
absolute joint coordinates vs. parametric rotations). We
considered converting the retrieved hand/face parameters
into joint coordinates and attaching them to the body skele-
ton, but this often leads to anatomical inconsistencies (im-
proper joint angles, disconnected limbs).

Therefore, we adopt a more robust strategy: convert the
body skeleton sequence into the same parametric SMPL-X
format as the retrieved data. This conversion is achieved
via an optimization process known as Inverse Kinematics
(IK) using the SMPL-X model [43]. We seek the body-
specific parameters {θbody,t}Tt=1 (global orientation, body
pose, translation) that best reconstruct the target skeleton:

{θ∗body,t}Tt=1 = argmin
{θbody,t}T

t=1

T∑
t=1

∥∥S(θbody,t)joints −Qt

∥∥2
2
,

(4)
where S(θbody,t)joints denotes the 3D joint locations pro-
duced by SMPL-X given parameters θbody,t. Finally, to en-
sure a natural and fluid motion, a Gaussian filter is applied
temporally across this sequence to mitigate high-frequency
jitter.

3.6. Motion–image skeleton alignment
When the 3-D motion skeleton decoded from the motion
prompt is not geometrically consistent with the 2-D appear-
ance skeleton detected in the image, the video generator ei-
ther hallucinates implausible backgrounds or fails to con-
vey the intended action. To enforce consistency, we align
the two skeletons by estimating an affine camera that maps

each 3-D joint to its 2-D counterpart and then selecting the
best-matching frame of the generated motion.

Let J be the number of body joints and T the number of
generated 3D motion frames. For frame t ∈ {1, . . . , T},
we denote the homogeneous 3-D joint matrix by Q̃t =
[q̃1,t, . . . , q̃J,t]

⊤ ∈ RJ×4 with q̃j,t = [Xj,t, Yj,t, Zj,t, 1]
⊤,

and the 2-D appearance skeleton by Y = {yj}Jj=1 ∈ RJ×2

with yj = [xj , yj ]
⊤.

Affine matrix estimation via direct linear transform.
For a given frame t we seek P ∈ R2×4 such that yj ≈
P q̃j,t. Stacking the J correspondences yields

q̃⊤1,t 0
0 q̃⊤1,t
...

...
q̃⊤J,t 0

0 q̃⊤J,t


︸ ︷︷ ︸

D∈R2J×8

p =


x1
y1
...
xJ
yJ


︸ ︷︷ ︸

b

, (5)

where p = vec(P) is the row-major vectorization of P.
The reprojection loss is given as below:

L(P) =

J∑
j=1

∥∥P q̃j,t − yj

∥∥2
2
= ∥Dp− b∥22. (6)

Minimising (6) gives the ordinary least-squares solu-
tion p⋆ = (D⊤D)−1D⊤b, reshaped to P⋆ =
reshape(p⋆, 2, 4).

Similarity decomposition. With the estimated affine ma-
trix P⋆ = [S | t ] with S ∈ R2×3, we factorize S
into a single isotropic scale s, a row-orthonormal rotation
R ∈ SO(2, 3), and obtain

s = 1
2∥S∥F , R = (S/s)

[
(S/s)(S/s)⊤

]−1/2
.

The 2-D prediction becomes ŷj = sRXj,t + t, preserving
the limb ratios of the human body.

Best-frame selection. Applying the above to ev-
ery generated motion frame produces parameter sets
{(st,Rt, tt)}Tt=1, we choose the best frame as the one with
the smallest mean reprojection error with

t⋆ = argmin
t

1

J

J∑
j=1

∥∥ŷj,t − yj

∥∥
2
, (7)

where ŷj,t = stRtXj,t + tt.
Because all operations—least-squares solve, polar de-

composition, and error evaluation—are closed-form and
differentiable, the alignment module provides an efficient
and numerically stable alignment block.



3.7. Video generation with motion conditioning
In the final stage, we use a video generation model V that
conditions on both the reference image I and the sequence
of 2D skeletons {Kt}Tt=1. The model learns to generate a
video V in which the appearance from the reference image
is animated to follow the poses defined by the 2D skeleton
sequence [4, 5, 9, 11]. The output is a temporally coherent
and visually consistent video that aligns with both the mo-
tion and appearance semantics of the original text prompt.

V = V
(
I, {Kt}Tt=1

)
(8)

4. Experiments
4.1. Setup
We use a modular zero-shot pipeline composed of four pre-
trained components: LLaMA- 3.1-8B-Instruct for prompt
decomposition, MotionDiffuse and T2M-GPT for T2M,
FLUX and Stable Diffusion XL (SDXL) for T2I, and Ani-
mate anyone[26] for I2V synthesis.

The Animate anyone model is used with 512×512 res-
olution and 30 sampling steps. The sequence length (-L)
is dynamically set based on the generated motion skele-
ton, typically ranging from 32 to 128 frames. All exper-
iments are conducted on 4 × NVIDIA RTX 3090 GPUs.
N = 50, C = 10

4.2. Evaluation metrics
We evaluate the quality of the generated videos using three
metrics: Fréchet Video Distance (FVD), CLIPScore, and
Mean Per-Joint Position Error (MPJPE).

Fréchet Video Distance (FVD) [42]. FVD measures the
distributional similarity between real and generated videos
in a deep video feature space. Features are extracted using a
pretrained I3D [14] network over full video sequences, and
the Fréchet distance is computed as:

FVD = ∥µr − µg∥2 +Tr(Σr +Σg − 2(ΣrΣg)
1/2), (9)

where µr, Σr and µg , Σg are the means and covariances
of the real and generated video feature distributions. Lower
FVD indicates better spatio-temporal coherence.

FaceSim-Arc [17]. FaceSim-Arc measures the cosine
similarity between the face embeddings of a cropped refer-
ence image and those of a generated image. For video gen-
eration, we compute the similarity between each frame and
the reference image, then average the scores across frames
to obtain a video-level score. The final metric is the mean
similarity across all videos.

FaceSim-Arc =
1

N

N∑
i=1

(
1

Ti

Ti∑
t=1

cos (f(xi,t), f(ri))

)
(10)

N denotes the number of videos, and Ti is the number of
frames in the i-th generated video. xi,t is the t-th generated
frame of the i-th video, and ri is the corresponding refer-
ence image f(·) denotes the face embedding function (e.g.,
ArcFace), and cos(·, ·) is the cosine similarity between two
embedding vectors. A higher score indicates greater iden-
tity similarity between the generated face and the reference
image, implying better identity preservation in the gener-
ated outputs.

Frame Consistency (FC) [18]. Frame Consistency (FC)
evaluates the temporal stability of a generated video by
measuring the semantic similarity between consecutive
frames. This metric is designed to quantify artifacts such
as flickering or unnatural content shifts. It is calculated
by averaging the cosine similarity between the CLIP im-
age embeddings of all adjacent frame pairs within a video
sequence. The formula is as follows:

FC =
1

T − 1

T∑
t=2

cos (EI(Ft),EI(Ft−1)) , (11)

where T is the total number of frames in the video, Ft is the
frame at timestamp t, EI(·) is the CLIP image embedding
function, and cos(·, ·) denotes the cosine similarity. The
score ranges from -1 to 1. A value closer to 1 indicates
that adjacent frames are highly similar in the embedding
space, implying a temporally coherent video with smooth
transitions.

AX-NDCG@k. AX-NDCG@k evaluates alignment
quality between generated videos and text prompts using
X-CLIP [35] embeddings and retrieval-based ranking [47].
Given N video-text pairs {(V1,U1), . . . , (VN,Un)}, we
extract EV,EU ∈ RN×d using X-CLIP. Rows e

(i)
v , e(j)u

denote the i-th video/text embedding.
Step 1: Similarity Matrix.

S = EV E
⊤
U , Sij = ⟨e(i)v , e(j)u ⟩

Step 2: Ranking. For each Vi, sort {Sij}Nj=1 descending.
Let ranki be the rank of ground-truth Ui.

Step 3: NDCG@k. Binary relevance:

relij =

{
1 if j = i

0 otherwise

DCGi@k =

{
1

log2(ranki+1) if ranki ≤ k

0 otherwise

NDCGi@k = DCGi@k

Step 4: Final Metric.

XCLIPScore-NDCG@k =
1

N

N∑
i=1

NDCGi@k



“Chris Evans, dressed in military-style athletic gear, is doing 
martial arts footwork drills in a dim concrete-walled gym.”

“Barack Obama, dressed in a navy tracksuit, is jogging at a steady pace 
through an empty park trail under the morning sun.”

O
ur

s
 (

SD
X

L
 / 

 M
ot

io
nD

iff
us

e)
C

og
vi

de
oX

W
an

2.
1

O
ur

s 
(S

D
X

L
 / 

T
2M

-G
P

T
)

Sk
el

et
on

Sk
el

et
on

C
og

vi
de

oX
W

an
2.

1
Sk

el
et

on
Sk

el
et

on
O

ur
s

 (
SD

X
L

 / 
 M

ot
io

nD
iff

us
e)

O
ur

s 
(S

D
X

L
 / 

T
2M

-G
P

T
)

Figure 2. Qualitative comparison across different combinations of T2M modules, and baseline models For each prompt, we show
results from CogVideoX and Wan2.1 baselines, followed by our method with two T2M variants (T2M-GPT and MotionDiffuse). The third
and fifth row of the figure visualizes the 2D skeletons used as motion conditions. In this figure, reference appearance images are generated
using SDXL, and motion sequences are produced by the corresponding T2M modules. Each video is synthesized by combining these two
conditions via AnimateAnyone. For each model, five representative frames are sampled across the video, demonstrating consistency in
identity and motion fidelity.

Step 5: Stochastic Averaging. X-CLIP samples fixed
frames (e.g., 8/16), introducing variance. Repeat Steps 1–4
with C random seeds:

AX-NDCG@k =
1

C

C∑
c=1

XCLIPScore-NDCG@k(c)

AX-Hit@k. AX-Hit@k extends XCLIPScore-Hit@k
with multiple seeds. Hit@k for each Vi:

Hiti@k =

{
1 if ranki ≤ k

0 otherwise

XCLIPScore-Hit@k =
1

N

N∑
i=1

Hiti@k

4.3. Qualitative results
Figure 2 presents a qualitative comparison across differ-
ent combinations of T2M and T2I modules, evaluated on

two example prompts. For each prompt, we show base-
line results from CogVideoX and Wan2.1, followed by out-
puts from our method using two different T2M backbones:
T2M-GPT and MotionDiffuse. For each generated video,
we show five representative frames covering the temporal
progression of the sequence.

The skeleton rows visualize the 2D pose sequences used
as motion conditions. Compared to MotionDiffuse, T2M-
GPT tends to produce more anatomically plausible and
smoother motion, while MotionDiffuse better reflects the
semantic meaning of the prompt. In terms of appearance,
SDXL provides diverse and contextually rich reference im-
ages, which help preserve clothing style and facial consis-
tency, though it occasionally suffers from spatial distortion
in complex motion cases.

These visual comparisons highlight the complementary
strengths of different T2M backbones and demonstrate the
modularity of our generation pipeline.



Figure 3. Effect of skeleton alignment, face/hands modeling on video generation quality. We compare generations with and without
skeleton alignment and extended keypoints (hands and face). Each column corresponds to a sample video generated from the input text
(shown at the top). Top two rows of each example show the skeletons and generated frames using a basic body-only skeleton without
alignment. These results often exhibit misaligned motion and unnatural body proportions in video synthesis. In contrast, the bottom two
rows show the results when applying our proposed alignment method and incorporating hands and face keypoints. We observe significantly
improved motion naturalness, stable facial features, and better alignment with the reference image pose. This highlights the importance of
precise skeleton alignment and full-body joint modeling for realistic text-to-video generation.

4.4. Quantitative results
For the quantitative evaluation, we employed the FVD met-
ric using reference statistics computed from the UCF101
dataset [39], which comprises diverse human actions and
varied background scenes. The I3D network [14] was used
as the backbone feature extractor. Following the protocol
used in the reference statistics, all generated videos were
uniformly downsampled to a spatial resolution of 256×256
pixels and temporally cropped to fixed-length sequences
of 16 frames sampled at equal intervals. In the case of
FaceSim-Arc[17], every frame is extracted from each video,
and facial embeddings are obtained using the pretrained
ArcFace-based buffalo-l model from the InsightFace library.
A reference embedding is similarly extracted from the cor-
responding reference image. Cosine similarity is then com-
puted between the reference embedding and the embed-
dings of all frames in which a face is successfully detected.
For each model, we report the final performance as the mean
FaceSim-Arc score averaged over all evaluated video sam-
ples. This metric reflects how consistently the generated
face resembles the identity in the reference image through-
out the video.

Table 2. Metric evaluation results We cross-combine two text-to-
motion and two text-to-image modules. Lower is better for FVD;
higher is better for FaceSim-Arc and FC.

# Methods FVD↓ FaceSim-Arc↑ FC↑

- CogVideoX 240.18 0.2531 0.9633
- Wan2.1 225.76 0.0773 0.9682
A MotionDiffuse SDXL 238.67 0.1128 0.9908
B MotionDiffuse FLUX 281.89 0.0733 0.9896
C T2M—GPT SDXL 248.49 0.1201 0.9898
D T2M—GPT FLUX 281.89 0.0635 0.9878

As shown in Table 2, the proposed method demonstrates
comparable or improved performance over state-of-the-art
(SOTA) T2V models without requiring any additional train-
ing.

In terms of FVD, which measures the distributional
similarity between generated and real videos (lower is
better), the combination of MotionDiffuse and SDXL
(Model A) achieves an FVD score of 238.67, outperform-
ing CogVideoX (240.18) and closely approaching Wan2.1
(225.76). This indicates that the generated videos from the



Table 3. Comparison of AX-NDCG and AX-HIT metrics

# Model AX-NDCG@1 AX-NDCG@3 AX-NDCG@5 AX-NDCG@10 AX-HIT@1 AX-HIT@3 AX-HIT@5 AX-HIT@10

- CogVideo 0.328 0.5544 0.6002 0.6445 0.328 0.708 0.820 0.954
- WAN 0.322 0.4679 0.5210 0.5723 0.322 0.576 0.704 0.862

A T2MGPT & SDXL 0.458 0.6074 0.6500 0.6879 0.458 0.716 0.818 0.934
B T2MGPT & FLUX 0.304 0.4211 0.4772 0.5303 0.304 0.512 0.648 0.808
C MotionDiffuse & SDXL 0.464 0.6131 0.6468 0.6859 0.464 0.714 0.796 0.914
D MotionDiffuse & FLUX 0.322 0.4752 0.5240 0.5655 0.322 0.588 0.708 0.836

proposed configuration better approximate the real video
distribution compared to the existing T2V models.

For the FaceSim-Arc metric, which evaluates the percep-
tual similarity of facial identity (higher is better), the combi-
nation of T2M–GPT and SDXL (Model C) shows the high-
est value of 0.1201, suggesting that the generated facial fea-
tures are more consistent with real identities than those from
CogVideoX (0.2531) or Wan2.1 (0.0773). Wan showed a
lower FaceSim score, which was attributed to generating
videos of individuals different from the reference image.
Although CogVideo achieved a higher FaceSim score, this
was often due to merely enlarging and repeating the refer-
ence image across frames, rather than generating genuinely
high-quality or identity-consistent video content. These ob-
servations suggest that our method preserves the identity
and appearance of the reference person at a level compa-
rable to existing models.

In terms of Frame Consistency (FC), where higher scores
indicate smoother and temporally coherent frame transi-
tions, all the proposed combinations (Models A, B, C, and
D) exhibit consistently high values (above 0.987), on par
with or exceeding those of baseline models. This demon-
strates that the proposed cross-modal composition strat-
egy can maintain temporal coherence in the generated se-
quences even without fine-tuning.

Overall, these results validate that our proposed zero-
shot combination framework is effective in generating
high-quality, identity-preserving, and temporally consistent
videos, outperforming or matching SOTA models across
multiple evaluation metrics.

5. Conclusion

We have presented a training-free, modular pipeline that
factorises a text prompt into appearance and motion
streams, couples them with off-the-shelf T2I, T2M and I2V
backbones, and enforces geometric consistency through an
efficient 2-D/3-D skeleton–alignment block. Without any
additional fine-tuning, the framework yields videos that
(i) retain fine-grained identity cues, (ii) follow complex
motion trajectories, and (iii) achieve competitive or supe-
rior scores on FVD, FaceSim-Arc and Frame-Consistency
against strong T2V baselines. In addition, the method re-
mains interpretable—each sub-module can be manipulated

or replaced independently—highlighting the practical value
of semantic decomposition for controllable human video
generation.

Limitations. Although our training-free pipeline reaches
state-of-the-art fidelity, it still assumes a global affine cam-
era that fails under extreme viewpoints or self-occlusion,
and it derives appearance from a single reference frame,
causing subtle hand-/face details and identity consistency
to fade in very long clips.

Future work. We will replace the 2-D image-to-video
stage with a depth-aware diffusion backbone, introduce
lightweight joint fine-tuning to better couple motion and
appearance streams, and extend the system to multi-actor
prompts while compressing the cascade for near–real-time
authoring.
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Appendix

A. Full Prompt used in Decomposition

1. Task specification:

You are given a descriptive sentence about a person
performing an action. The given prompt describes a
person who is performing a certain action or activity,
potentially with additional details about their appear-
ance or surrounding environment. Your task is to split
this sentence into exactly two parts: [ “[Original de-
scription with certain format]”, “[Motion or action
description]” ] Do not add or assume anything that is
not present in the original sentence.

2. Supporting details and format:

APPEARANCE / BACKGROUND PROMPT
- Use this fixed output format: ”Full-body image of
[original contents]”
- Copy all information from the original sentence.
But, if the original prompt lacks information about
Appearance or Background, you can infer some
common attributes based on the given context, like
”Example 4” and ”Example 5” below.

MOTION / ACTION PROMPT
- Extract only the part of the sentence describing move-
ment, physical activity, or body dynamics.
- Start with the first motion-related verb (e.g. jumps,
runs, twirls, kicks).
- Include all motion-related details: body posture, ges-
ture, orientation, dynamics, etc.

3. In-context Examples:

EXAMPLES
Example 1:
Input: Barack Obama, wearing a navy sleeveless bas-
ketball jersey and black shorts, is shooting a basketball
into the hoop on an outdoor court with city buildings in
the background under clear skies.
Output:
“Full-body image of Barack Obama, wearing a navy
sleeveless basketball jersey and black shorts, shooting
a basketball into the hoop on an outdoor court with
city buildings in the background under clear skies.”,
“Shooting a basketball into the hoop.”
Example 2:
Input: Elon Musk, in black boxing shorts and red
gloves, is throwing a straight punch inside a gym-style
boxing ring with ropes and overhead lighting.

Output:
“Full-body image of Elon Musk, in black boxing shorts
and red gloves, throwing a straight punch inside a gym-
style boxing ring with ropes and overhead lighting.”,
“Throwing a straight punch.”
Example 3:
Input: A young woman in a gray sports bra and black
leggings is practicing kickboxing inside a dimly lit gym.
Output:
“Full-body image of a young woman in a gray sports
bra and black leggings practicing kickboxing inside a
dimly lit gym.”, “Practicing kickboxing.”
Example 4:
Input: A teenage boy is shooting a basketball into the
hoop.
Output:
“Full-body image of a teenage boy wearing a sleeveless
basketball jersey and shorts, shooting a basketball into
the hoop on an outdoor court”, “Shooting a basketball
into the hoop.”
Example 5:
Input: A man is running.
Output:
“Full-body image of a man in athletic clothing, running
on a jogging trail.”, “Running.”
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