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Abstract

Recent advancements in multimodal Visual Question
Answering (VQA) have leveraged Retrieval-Augmented
Generation (RAG) to enhance answer accuracy by in-
corporating external images and texts. However, cur-
rent RAG-based VQA systems typically rank retrieved
evidence solely based on relevance to the input query,
while ignoring semantic coherence among the selected
evidence. This often leads to inconsistent or contra-
dictory inputs that result in hallucinated answers. In
this work, we propose a lightweight, plug-and-play se-
mantic coherence module that can be integrated into
existing RAG-VQA pipelines without fine-tuning the
underlying retriever. Our two-stage approach first fil-
ters evidence using query-level similarity, then assesses
inter-evidence consistency via cross-modal alignment
metrics. By removing incoherent image-text pairs prior
to generation, our method reduces hallucinations and
improves factuality. We demonstrate the effectiveness
of our module on real-world VQA datasets, showing
improvements in both answer quality and system ro-
bustness across diverse scenarios.

1. Introduction
Recent advances in large language models (LLMs) have
substantially expanded the capabilities of Visual Ques-
tion Answering (VQA) systems, particularly when inte-
grated with Retrieval-Augmented Generation (RAG).
In multimodal RAG-based VQA, external knowledge
in the form of images and text is retrieved from a cor-
pus to support the generation of accurate and grounded
answers. This has enabled applications in high-stakes
domains such as sinkhole risk assessment, wildfire re-
sponse, and urban planning, where reliable multimodal
reasoning is critical.

Despite this progress, current multimodal RAG-
based VQA systems generally follow a retrieve-then-
answer pipeline that ranks evidence (e.g., documents
or images) based only on their similarity to the in-

put query. These systems typically ignore semantic
coherence between the retrieved pieces of evidence. As
a result, retrieved contents may be topically relevant
to the query but mutually inconsistent, redundant, or
even contradictory. This lack of internal consistency
among evidence can mislead the generative model and
result in hallucinated or erroneous answers, undermin-
ing reliability in decision-critical settings.

Prior research has attempted to enhance RAG-
based VQA through improved retrievers (e.g.,
MuRAG [4]) and answer validation techniques (e.g.,
MAVEx [14]), but these approaches typically assess ev-
idence relevance at an individual level. They fail to ex-
plicitly model inter-evidence consistency, which is par-
ticularly important when integrating multiple modali-
ties or sources. As such, existing methods do not suf-
ficiently mitigate conflicts among retrieved results, es-
pecially across retrieved image-text pairs.

To address this gap, we propose a plug-and-play
semantic coherence module that can be integrated into
any RAG-VQA pipeline without fine-tuning the under-
lying retriever or multimodal language language model
(MLLM). Our module evaluates semantic coherence
across the retrieved evidence (image-text pairs) and
removes incoherent items, allowing only semantically
consistent evidence to be used in answer generation.

To be specific, our approach involves a two-stage
architecture. In the first stage, we compute pairwise
semantic similarity between the query and retrieved
evidence using multimodal embedding models such as
CLIP [10]. In the second stage, we evaluate the internal
coherence of the retrieved evidence set via cross-modal
alignment metrics (e.g., CLIPScore or BLIP [7] match-
ing), and perform selective filtering. This design en-
ables our module to be lightweight, domain-agnostic,
and easily deployable on top of existing RAG-VQA
frameworks.

We demonstrate that integrating our semantic
coherence module significantly reduces hallucinations
and improves answer consistency in RAG-based VQA.
Our contributions are summarized as follows:



Figure 1. Overview of two representative RAG-based VQA architectures. Top: a decoupled pipeline (MoqaGPT)
using fixed retrievers and reasoning modules. Bottom: a unified retrieval-generation model (SKURG). Our proposed
semantic coherence module (highlighted in red) can be inserted in both cases to filter incoherent evidence.

• We identify and formalize the problem of inter-
evidence semantic inconsistency in multimodal
RAG-based VQA systems.

• We propose a modular, retriever-agnostic frame-
work for semantic coherence filtering across multi-
modal evidence.

• We empirically show that our method enhances
VQA accuracy and reliability on real-world datasets
with MULTIMODALQA (MMQA) dataset [13]

2. Preliminaries
While recent RAG-based VQA models vary widely in
architecture, we observe that they often fall into two
distinct implementation patterns based on how evi-
dence retrieval and answer generation are coordinated.
Specifically, we identify (1) retrieval-decoupled ar-
chitectures, where retrieval and generation are mod-
ularized as separate components, and (2) retrieval-
integrated architectures, where these steps are per-
formed jointly in a unified pipeline. To motivate the
general applicability of our proposed semantic coher-
ence module, we briefly describe representative exam-
ples of each: MoqaGPT [16] and SKURG [15]. Fig-
ure 1 illustrates the overall structures and shows where
our module can be inserted in both designs.

2.1. MoqaGPT: Decoupled Retrieval-Generation
MoqaGPT [16] exemplifies a decoupled architec-

ture that separates retrieval and answer generation into
distinct stages. The model first retrieves modality-
specific evidence using fixed retrievers for text and im-
ages, without mapping them into a unified embedding
space. These retrieved evidences are passed to zero-
shot vision-language or text-based models to extract
answer candidates independently. Finally, a rule-based
strategy combined with LLM-based reasoning selects
the final answer among these candidates. Our seman-
tic coherence module can be inserted between retrieval
and reasoning stages to filter out incoherent evidence,
as illustrated in the top part of Figure 1.

2.2. SKURG: Unified Retrieval-Generation
In contrast, SKURG [15] follows a unified pipeline

that jointly performs retrieval and generation in an
end-to-end manner. It introduces an entity-centered
fusion encoder that constructs a knowledge graph from
multi-modal inputs. These fused entity representa-
tions are used by a unified retrieval-generation de-
coder, which retrieves and integrates evidences on-the-
fly through a pointer mechanism during answer gener-
ation. This design tightly couples retrieval and gener-
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Figure 2. Integration of proposed module in: (a) MoqaGPT, (b) SKURG (embedding-based), (c) SKURG (graph-based).

ation, improving coherence through iterative reason-
ing across modalities. Although tightly integrated,
SKURG still offers insertion points for external filtering
modules: our coherence module is applied after entity
fusion and before generation to prune conflicting evi-
dences,as shown in the bottom half of Figure 1, thus en-
hancing semantic alignment while preserving SKURG’

s joint architecture.

3. Methodology
In this section, we describe the overall design of our
proposed 2-stage semantic coherence module and how
it is integrated as a plug-and-play module into two rep-
resentative RAG-based VQA systems (MoqaGPT and
SKURG). The core idea is to evaluate and prune multi-
modal evidence sets for semantic consistency, thereby
improving the end-to-end performance and reliability
of existing models.

3.1. 2-Stage Coherence Module

Given a question q and multimodal evidence pools-
images Dimg, text passages Dtext, and tables Dtable-our
goal is to select a final evidence set Efinal of size k that
is both highly relevant to q and mutuallly coherent. To
achieve this, we introduce a lightweight, two-stage co-
herence module that sits between retrieval and answer
generation.

In the first stage, we compute a relevance score for
each candidate d in each modality via a pretrained mul-
timodal model (e.g. CLIP). Concretely, for modality
m we calculate

rd = Sim(q, d)

and then keep only the top-k items per modality:

E = TopK{rd|d ∈ Dm}.

We merge these sets into a combined pool E = Eimg ∪
Etext ∪ Etable which typically has up to 3k candidates.

In the second stage, we refine E by measuring each
item’s coherence with the rest of the pool. For each
candidate ei ∈ E , we compute the average pairwise
similarity to all other items:

ci =
1

|E| − 1

∑
j ̸=i

Sim(ei, ej)

Finally, we select the top-k candidates under ci
for form Efinal. This two-step process ensures that the
retained evidence is not only individually relevant to
the query but also semantically consistent as a group.

3.2. Module Description
1. Stage 1: Modality-wise relevance filtering

• Compute similarity scores between the question
and each retrieved evidence item per modality
(e.g., image, text, table).

• For each modality, select the top-k most relevant
evidence items.

• If necessary, repeat retrieval until enough items
are gathered.

2. Stage 2: Cross-modal coherence refinement
• Construct a merged pool of selected evidence

across all modalities.
• Evaluate each item’s coherence with others in the

pool using pairwise similarity.
• Select the final top-k most coherent evidence



items for answer generation.

3.3. Integration in MoqaGPT

Figure 1 shows the insertion point of our seman-
tic coherence module in the MoqaGPT pipeline. Mo-
qaGPT separates evidence retrieval and answer gener-
ation into distinct stages, allowing external modules to
modify the retrieved evidence before generation.

In Stage 1, the module selects the top-k relevant
evidence items from each modality based on similarity
to the question. If fewer than k items remain, retrieval
is repeated. In Stage 2, the module computes pairwise
similarity among the pooled evidence items and selects
a subset with the highest coherence.

This procedure, described in Algorithm 1, out-
puts a filtered evidence set that is then passed to the
modality-specific QA models. Each model generates an
answer candidate independently. These candidates are
subsequently processed by a rule-based strategy that
selects a subset of plausible answers based on modality
type and confidence heuristics. The selected candidates
are then concatenated into a templated prompt and
passed to a final LLM-based reasoning module, which
produces the final answer.

3.4. Integration in SKURG

Our coherence module is integrated into SKURG
pipeline between retrieval stage and knowledge graph
construction, before answer generation. Stage 1 filter-
ing is applied in the same manner as described for Mo-
qaGPT, using CLIP-based scoring to select top-k rele-
vant evidence items from each modality.

For Stage 2, we implement two variants of coher-
ence filtering. The first is an embedding-based ap-
proach, where each retrieved evidence is encoded us-
ing SKURG’s internal multimodal encoder (e.g., OFA),
and pairwise similarity is computed using pooled rep-
resentations. A coherent subset is selected based on
average similarity scores across modalities.

The second is a graph-based approach that op-
erates over the constructed knowledge graph. In this
variant, each entity in evidence items is represented as
a node, and edges reflect shared or related entities iden-
tified during graph construction. Each entity node is
annotated with the set of evidence sources (text or im-
age) in which it appears. Nodes that occur in only one
source and are not relationally connected to entities
from other sources (i.e., degree � 1 without cross-source
edges) are pruned to maintain structural coherence.

By selectively retaining evidence both relevant and
mutually coherent, our module enhances the consis-
tency and reliability of answers generated by SKURG.

Algorithm 1 in Decoupled Retrieval-Generation
Input: A question q,
Retrieved evidence D = {Dimg, Dtext, Dtable},
Target number of evidence items k
Output: Coherent evidence set Efinal

// Stage1: Modality-wise relevance filtering
E ← ∅ foreach modality m ∈ D do

foreach document d ∈ Dm do
Compute relevance score rd = Sim(q, d)

Select top-k items Em by rd E ← E ∪ Em

// Stage2: Cross-modal coherence refinement
foreach ei ∈ E do

Compute coherence score
ci =

1
|E|−1

∑
j ̸=i Sim(ei, ej)

Select top-k items Efinal by ci
return Efinal

Algorithm 2 in Unified Retrieval-Generation
Input: A question q,
Retrieved evidence D = {Dimg, Dtext, Dtable},
Target number of evidence items k
Output: Coherent evidence set Efinal

// Stage1: Modality-wise relevance filtering
E ← ∅ foreach modality m ∈ D do

foreach document d ∈ Dm do
Compute relevance score rd = Sim(q, d)

Select top-k items Em by rd E ← E ∪ Em

// Stage2: Cross-modal coherence refinement
// Method A: Embedding-based filtering
foreach ei ∈ E do

Compute coherence score
ci =

1
|E|−1

∑
j ̸=i Sim(ei, ej)

Select top-k items Efinal by ci

// Method B: Graph-based filtering
Construct knowledge graph G = (V, Eedge) from entity
set E with source annotations

foreach entity node vi ∈ V do
Compute degree di = deg(vi)
Identify # of distinct modalities associated with vi
if di ≤ 1 and vi is not connected to other modalities
then

Prune vi from G
Select top-k items Efinal by di
return Efinal

4. Experiments
Our experiments evaluate the proposed semantic-check
module using a multimodal VQA benchmark that



emphasizes multi-step reasoning across heterogeneous
modalities such as text, tables, and images. The
dataset is well-suited for assessing whether the filtering
of semantically inconsistent evidence can improve the
coherence and factual correctness of generated answers.

4.1. Experimental Protocols
4.1.1. Dataset

We selected MMQA as our primary benchmark
due to its moderate dataset size, which makes exper-
imentation feasible under limited computational re-
sources. More importantly, MMQA provides a well-
structured setting for evaluating semantic coherence
across heterogeneous modalities, as it explicitly re-
quires the integration of multiple evidence sources to
produce accurate answers. This aligns closely with our
goal of assessing the effectiveness of coherence filtering
in retrieval-augmented multimodal QA pipelines.
4.1.2. Metrics

We primarily evaluate model performance using
Exact Match (EM) and F1 scores. EM measures strict
correctness by computing the proportion of predictions
that exactly match the ground truth answers. In con-
trast, the F1 score accounts for partial correctness by
measuring the harmonic mean of precision and recall
over token overlap between the predicted and reference
answers.

We report results under three evaluation cate-
gories:
• Single Modality: Evaluation is conducted on

questions that can be answered using evidence from
a single modality (e.g., text, image, or table).
This setting isolates the performance of unimodal
pipelines and measures their capacity to extract
modality-specific information.

• Multi Modality: This category includes questions
that require reasoning over multiple modalities. It
evaluates the model’s ability to perform cross-modal
integration and synthesize heterogeneous evidence.

• Overall: Represents aggregate performance over
the entire evaluation set, encompassing both single-
and multi-modality questions.

These metrics provide insight into how well the
model performs under varying reasoning demands, and
help quantify the benefit of coherence-aware evidence
filtering in both unimodal and cross-modal settings.
4.1.3. Baselines

We select MoqaGPT and SKURG as baselines to
evaluate our coherence module. MoqaGPT adopts a
retrieval-decoupled design, where modality-specific ev-
idence is retrieved first and candidate answers are gen-
erated separately, allowing straightforward insertion of
our module between retrieval and reasoning stages.

In contrast, SKURG performs retrieval and gen-
eration jointly using an entity-centric fusion encoder.
Our module is applied after entity fusion to filter in-
coherent evidence before decoding. These two setups
enable us to assess the module’s effectiveness in both
modular and tightly integrated pipelines.

4.1.4. Implementation Details
We retrieve up to 10 candidates per modality and

apply our filtering module to select the top-k (k = 5)
coherent items based on

All models are accessed through their official APIs
or HuggingFace implementations. Retrieval is per-
formed over a fixed corpus of 10 references per modal-
ity, and the filtering module selects the top-k evidence
items before answer generation. Coherence scores are
computed using pairwise cosine similarity among pro-
jected embeddings.

MoqaGPT We build our module on the Mo-
qaGPT pipeline using a set of pre-trained models
for each modality. For text retrieval, we employ
all-mpnet-base-v2[11], a transformer-based sentence
encoder that retrieves relevant passages based on se-
mantic similarity. Image retrieval is conducted us-
ing CLIP (ViT-B/32)[10]. To handle structured data,
we use ADA-002[9], an OpenAI embedding model opti-
mized for retrieving table content.

For evidence scoring and selection, our module
supports multiple similarity metrics, including L1 dis-
tance, Euclidean distance, and CLIP-based semantic
similarity.

For answer generation, the retrieved text and ta-
ble evidence are combined with the question and pro-
cessed by gpt-3.5-turbo[2]. For image-based ques-
tions, image-question pairs are input to BLIP-2[8]. Fi-
nally, all candidate answers from each modality are
scored and aggregated by a reasoning module based on
gpt-3.5-turbo.

SKURG For encoding inputs, SKURG uses BART-
base encoder for text and tables, and OFA-base en-
coder for images. Entities are extracted from evidence
content using a pre-trained ELMo-based NER model,
and are linked across modalities to construct a unified
knowledge graph for each question. Implementation
details in Stage 1 follows that of MoqaGPT.

For Stage 2 (coherence filtering), we support two
strategies. In the embedding-based variant, similar-
ity is computed using pooled representations from
SKURG’s internal encoders (e.g., OFA for image,
BART for text). In the graph-based variant, the knowl-
edge graph is implemented as a dictionary where each
key represents an entity node and the corresponding
value lists the entities it is connected to.



Scoring Strategy Single Modality Multi Modality Overall
F1 EM F1 EM F1 EM

MoqaGPT Baseline 47.78 40.40 31.17 26.38 40.64 34.37
MoqaGPT Baseline(w/o image modality) 46.48 38.39 29.61 25.33 39.22 32.77
Stage 1 (L1 Similarity) 47.28 40.19 30.14 25.71 39.91 33.96
Stage 1 (Euclidean Similarity) 47.98 40.62 30.89 26.38 40.63 34.49
Stage 1 (CLIP Similarity) 48.10 40.76 30.65 26.00 40.59 34.41
Stage 2 (L1 + Pairwise Filtering) 47.28 39.97 30.71 26.38 40.15 34.13
Stage 2 (Euclidean + Pairwise) 48.05 40.55 31.46 26.67 40.92 34.58
Stage 2 (CLIP + Pairwise) 47.72 40.33 30.56 25.71 40.34 34.04
SKURG Baseline 65.91 62.78 55.81 51.14 61.29 58.80
Query-Level (CLIP Similarity) 65.59 62.41 55.49 50.83 60.96 58.43
Coherence-Aware (Embedding-based) 65.47 62.63 55.76 51.20 61.31 58.85
Coherence-Aware (Graph-based) 66.23 63.05 56.07 51.48 61.58 59.11

Table 1. Comparison of evidence scoring strategies on the MultiModalQA benchmark. Query-level methods rank references
by query-to-document similarity, while coherence-aware methods further refine selection via cross-modal consistency.

Figure 3. Performance comparison across modality settings
in MoqaGPT.

4.2. Model Performance

4.2.1. Overall Performance
We evaluate the impact of the semantic coher-

ence module under different modality configurations
within both the MoqaGPT and SKURG frameworks.
As shown in Table 1, two-stage filtering consistently
yields small but measurable improvements across F1
and EM metrics. The improvements are more notable
in the multi-modality setting, where the integration of
heterogeneous evidence sources increases the likelihood
of semantic noise. This suggests that coherence filter-
ing may help stabilize generation performance in such
conditions.

In MoqaGPT, the performance gain from coher-
ence filtering is most evident when multiple modalities
are involved. With Euclidean similarity and full two-
stage refinement, F1 improves from 29.61 to 31.46, and
EM from 25.33 to 26.67. These gains, while modest
in absolute terms, reflect improved evidence alignment
under cross-modal reasoning (Figure 3).

We also observe that the overall impact of the im-
age modality remains limited. The difference between
the text-only and text-image baselines is small, and fur-
ther applying coherence filtering to the image branch
does not yield substantial improvement. This is re-
flected in the minimal performance delta across con-
figurations involving image evidence, as shown in the
lower part of Figure 3. The gain ratio helps clarify
these marginal effects by quantifying the relative ben-
efit of adding or filtering each modality.

Meanwhile, the baseline SKURG model achieved
an overall F1/EM score of 61.29/58.80. When using
only query-level CLIP similarity for evidence ranking,
performance slightly dropped (-0.33 in F1, −0.37 in
EM), suggesting the need for additional coherence fil-
tering. The embedding-based coherence-aware variant
produced results nearly identical to the baseline, show-
ing minimal variation across all modality groups. No-
tably, the graph-based coherence strategy led to con-
sistent performance improvements across all settings,
improving overall F1 and EM by +0.29 and +0.31 re-
spectively. These findings align with those observed in
the MoqaGPT setting, reinforcing the effectiveness of
coherence-aware filtering regardless of the underlying
retrieval-generation architecture. While the integra-
tion of our plug-and-play module itself contributed to
performance gains, strategies like the graph-based vari-
ant―which more closely align with the original model’s
reasoning paradigm―proved more effective at preserv-
ing semantic coherence among retrieved evidences.



4.3. Case Study

Figure 4. Visual comparison of evidence filtering strategies
across modalities.

MoqaGPT To illustrate the effect of our coherence-
aware evidence filtering module, we present a represen-
tative example from the MMQA dev set. The question
requires synthesizing evidence from multiple modalities
to generate an accurate answer.

Baseline (No Filtering). In the original
pipeline, the retrieved evidence includes several par-
tially relevant or off-topic items. These items exhibit
inconsistencies in content and modality focus, leading
to distractive or conflicting information. As a result,
the generated answer is vague or factually incorrect.
For example, as illustrated in Figure 4, the question
”What body part is on the front cover of As Real as It
Gets?”
with ground truth hand yields the following unfiltered
evidence set:

{Ii}5i=1, {Tj}5j=1, {Tab1}

where
• I1 is the actual front-cover image of As Real as It

Gets,
• I2 − I5 are other album covers or logos (off-topic),
• T1−T5 are text snippets about unrelated album art

or media facts (off-topic), and
• Tab1 is table listing release dates (partially related

by album title but containing no body-part infor-
mation).

In particular, snippet T3 contains the pharase ”. . . the
cover features a heart sculpted . . . ,” which introduces
a spurious cue. This misleading token ”heart” cor-

relates strongly with the model’s incorrect prediction
ŷ = heart, despite the true answer being ”hand”.

With Coherence Filtering. After applying our
two-stage filtering module, the selected evidence set be-
comes noticeably more focused and semantically con-
sistent. The retrieved text and image content reinforce
each other, and redundant or contradictory informa-
tion is removed. This leads to a more precise and con-
textually grounded answer.

SKURG We also present a representative failure
case of SKURG where our coherence-aware module suc-
cessfully corrects the prediction. In Figure 5, the ques-
tion asks: ”Which Title(s), in Filmography of Ben Pi-
azza, has the left half of a woman’s face on its poster?”
Given the multimodal context, SKURG incorrectly se-
lects The Hanging Tree, which also stars Ben Piazza
and features a woman’s portrait in partial profile, yet
is unrelated to the question’s implied subject. In con-
trast, our model correctly identifies Tell Me That You
Love Me, Junie Moon, a film in which Liza Minnelli
plays a woman with facial disfigurements. The movie’s
promotional materials prominently depict the left half
of her face, aligning directly with the question. Our
model’s success is attributed to effective pruning based
on cross-evidence coherence. In the constructed multi-
modal knowledge graph, we identify shared entity hubs
(e.g.,Junie Moon, Liza Minnelli, and Facial disfigure-
ment) which form a dense subgraph around Image Ev-
idence 4 and the relevant texts. In contrast, Image
Evidence 1 and its linked table evidence remain struc-
turally isolated. This particular case shows that our
module removes this low-coherence cluster, allowing
the generator to focus on semantically aligned signals.

5. Related Works
5.1. Multimodal Visual Question Answering (VQA)

Visual Question Answering (VQA) refers to the
task of answering natural language questions based on
visual inputs such as images or videos. Recent ad-
vances in VQA have expanded beyond pure vision-
language reasoning to incorporate retrieval-augmented
or grounded generation. Early multimodal VQA mod-
els relied on parametric learning with paired image–
question datasets, but recent work incresingly inte-
grates external knowledge through retrieved evidence.
Representative benchmark datasets such as MULTI-
MODALQA [5] and WebQA [3] provide diverse, multi-
hop questions that require both textual and visual un-
derstanding across multiple sources.

5.2. Retrieval-Augmented Generation (RAG)
Retrieval-Augmented Generation (RAG) frame-

works combine non-parametric retrieval with genera-



Figure 5. Qualitative example where SKURG fails while our coherence module succeeds. Our method selects semantically
consistent evidence (Text 1–2, Image 4), leading to the correct answer, while SKURG is misled by visually similar but
unrelated content.

tive models, enabling open-domain or visual question
answering by incorporating relevant external knowl-
edge at inference time. Early works such as RAG [6]
focused on purely textual retrieval, while later models
like MuRAG [4], M2RAG [4], and FilterRAG [12] ex-
tended this framework to more complex multi-hop or
noisy retrieval settings.

In the multimodal domain, models such as
MAVEx [14], SKURG [15], RAMQA [1], and Mo-
qaGPT [16] incorporate cross-modal retrieval (e.g.,
from web images or captions) to enhance answer
grounding. However, these systems predominantly fo-
cus on retrieving and encoding each evidence item inde-
pendently, often relying on dense retrieval or pointer-
based decoding, without verifying semantic consistency
across multiple retrieved elements.

While FilterRAG [12] attempts to mitigate re-
trieval noise through learned relevance estimation, it
requires retriever modification and task-specific tuning.
In contrast, our work introduces a retriever-agnostic
coherence filtering module that can be seamlessly in-
serted into both modular (e.g., MOQAGPT) and uni-
fied (e.g., SKURG) pipelines. This plug-and-play de-
sign improves reasoning reliability by filtering out in-
consistent or contradictory evidence prior to genera-
tion.

6. Conclusion
Retrieval-augmented VQA pipelines typically rank

evidence only by query relevance; as a result, mutu-
ally inconsistent, redundant, or contradictory items of-
ten reach the generator and increase hallucination risk.
To mitigate this issue we proposed a lightweight, plug-
and-play two-stage coherence module. Stage 1 per-
forms modality-wise relevance filtering, selecting the

top-k items per modality by query–evidence similar-
ity. Stage 2 then conducts cross-modal coherence re-
finement, scoring the pooled items by average pairwise
similarity and retaining the most self-consistent subset.
Because the module operates on frozen embeddings, it
can be inserted between retrieval and generation in ex-
isting pipelines such as MoqaGPT and SKURG. Ex-
periments on the MMQA benchmark show small but
consistent improvements.

This study (i) formalises the inter-evidence incon-
sistency problem in multimodal RAG-VQA, (ii) offers a
retriever-agnostic two-stage filtering solution, and (iii)
demonstrates its seamless integration into off-the-shelf
systems with measurable accuracy and reliability ben-
efits.

Future work will extend coherence filtering to
video-based QA, explore richer cross-evidence metrics
such as scene-graph overlap and temporal alignment,
and investigate end-to-end training that jointly op-
timises retrieval, coherence enforcement, and answer
generation within a unified framework.
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