
Abstract 

 

We propose a multimodal synchronization framework 

for multi-camera videos in real-world broadcast 

environments. Leveraging pretrained audio-visual feature 

extractors from Synchformer, we extract segment-level 

embeddings from each view and estimate alignment via 

cross-moda similarity. Empirical results on three 

datasets—Replay, CASTLE 2024, and a real-world 

broadcast dataset (Womenera)—demonstrate that audio 

features significantly outperform video features in 

discriminative power, with a similarity gap of 0.19 vs. 

0.001. Our classifier extension, Multi-Synchformer, 

achieves low-latency offset prediction by reusing 

pretrained components with minimal adaptation. We 

further propose a confidence-weighted soft voting 

mechanism that improves alignment accuracy by up to 25% 

over baseline methods. Our approach offers a scalable, 

accurate, and practical solution for automatic multi-

camera synchronization in unconstrained environments. 

1. Introduction 

 

Synchronizing multi-camera video is essential in 

broadcasting, yet remains challenging in the absence of 

shared time references such as genlock or clapperboards. 

Traditional unimodal alignment methods, especially audio-

only, are often brittle under noisy or partial data conditions. 

While prior work has explored audio-visual 

synchronization, most focus on within-video tasks such as 

lip-sync, overlooking the more complex problem of 

aligning independently recorded multi-camera footage.We 

address this gap by proposing a segment-based alignment 

framework built on Synchformer’s pretrained audio-visual 

extractors. Our method measures cross-moda similarity 

between segments from master and node streams, using 

cosine distance and L1/L2 metrics to determine optimal 

alignment lags. We further introduce Multi-Synchformer, 

a lightweight offset classifier repurposing Synchformer's 

second-stage module with minor input modifications.To 

validate our approach, we evaluate performance on three 

datasets—Replay, CASTLE 2024, and a real-world public 

broadcast set—under both synthetic and real misalignment. 

Results show that audio modality offers superior alignment 

cues, and that our soft voting ensemble reduces prediction 

errors by up to 25%. These findings establish a robust 

baseline for multimodal multi-camera synchronization in 

complex production settings. 

 

Our contributions are summarized as follows: 

 

Problem formulation and data curation.We formalize 

the task of multi-camera synchronization as a supervised 

offset classification problem and propose a general-

purpose data processing pipeline applicable to a wide range 

of existing multi-view datasets. Furthermore, we release a 

novel in-the-wildbroadcast dataset that reflects the 

complexities and variability encountered in real-world 

production environments. 

 

Multimodal synchronization model.We extend prior 

unimodal approaches by jointly utilizing audio and visual 

cues. Leveraging Segment-AVCLIP representations, we 

propose a unified multimodal synchronization framework 

that significantly enhances alignment accuracy across 

diverse camera viewpoints. 

Cross view ensemble evaluation.We propose a 

confidence-weighted ensemble strategy that integrates 

complementary view pairs across cameras. The resulting 

soft votingmechanism produces more stable and robust 

alignment estimates compared to single-pair evaluations, 

making it well suited for practical deployment in multi-

camera synchronization workflows. 

2. Related work 
 

Multi-camera video synchronization remains a core 

challenge in video processing, especially when shared time 

references such as genlock or clapperboards are 

unavailable. Traditional methods rely on visual cues (e.g., 

scene changes, motion trajectories) or audio cues (e.g., 

waveform peaks, onset detection), but perform poorly 

under noise or viewpoint shifts. To overcome these 

limitations, Casanovas et al. [1] proposed a multimodal 



approach based on detecting co-occurring audio-visual 

events, demonstrating clear gains over unimodal baselines 

in both fixed and mobile setups. 

Recent advances in audio-visual representation learning 

have enabled self-supervised models to infer 

synchronization from embeddings. Chung et al. [2] and 

Owens & Efros [3] introduced contrastive training schemes 

to distinguish aligned vs. misaligned audio-visual pairs. 

Follow-up work, such as PerfectMatch [4], incorporated 

spatio-temporal attention [5] and improved cross-moda 

alignment. Transformer-based approaches [6] further 

extended this to large-scale in-the-wild datasets like 

VGGSound. 

To address sparse alignment scenarios, Iashin et al. [7] 

proposed learnable segment selectors, which were 

integrated into Synchformer [8], a state-of-the-art model 

combining segment-level contrastive pretraining with a 

lightweight offset predictor. While these methods achieved 

success in within-video tasks, most prior work focuses on 

lip-sync or single-stream alignment. 

In contrast, our work targets the underexplored problem of 

synchronizing independently recorded multi-camera 

streams. We propose a scalable framework that reuses 

pretrained AV feature extractors and introduces a 

confidence-weighted ensemble strategy for robust offset 

prediction. Our findings also highlight that traditional 

similarity metrics (e.g., cosine) may underestimate video 

modality performance, which can be recovered by 

alternative metrics such as L2 distance. 

In addition, we benchmark our method against AE2 [15], 

an object-centric alignment model for egocentric-

exocentric video pairs, and the ICASSP 2023 stereo 

camera synchronization method [16], confirming the need 

for explicit multimodal integration strategies. 

 

3. Method 

 

3.1 Feature Extraction for Multi-camera 

Synchronization 
 

For multi-camera synchronization, the ability to 

effectively capture audio-visual information from specific 

time segments within videos is crucial. In this study, we 

utilized the pre-trained audio and visual feature extractors 

from Synchformer[8], which has achieved state-of-the-art 

performance in audio-visual synchronization research. 

Synchformer[8] was specifically developed for in-the-

wild environments where synchronization cues are sparse, 

and employs an efficient two-stage learning approach that 

separates feature extractor and synchronization module 

training. The core of this approach is the Segment-level 

Audio-visual CLIP (Segment-AVCLIP) pre-training. In 

this stage, audio and visual streams are divided into short 

time segments, and feature extractors (Fa: AST[9], Fv: 

Motionformer[10]) are trained to extract high-quality, 

identifiable features through segment-level contrastive 

learning based on CLIP[11] methodology. Audio-visual 

segment pairs from the same time period are learned to be 

close, while other pairs are pushed apart, enabling the 

feature extractors to effectively represent the relationship 

between audio and visual elements within segments. These 

pre-trained feature extractors have demonstrated excellent 

adaptability not only for synchronization tasks but also for 

other audio-visual related subtasks. 

 

3.2. Multi-camera Synchronization Framework 

 

 
Fig. 1 Experimental Framework for Comparing  

Audio-visual Embeddings from Multiple Cameras 

 

For multi-camera synchronization, the ability to 

effectively capture audio-visual information from specific 

time segments within videos is crucial. In this study, we 

utilized the pre-trained audio and visual feature extractors 

from Synchformer[8], which has achieved state-of-the-art 

performance in audio-visual synchronization research. 

Synchformer[8] was specifically developed for in-the-

wild environments where synchronization cues are sparse, 

and employs an efficient two-stage learning approach that 

separates feature extractor and synchronization module 

training. The core of this approach is the Segment-level 

Audio-visual CLIP (Segment-AVCLIP) pre-training. In 

this stage, audio and visual streams are divided into short 

time segments, and feature extractors (Fa: AST[9], Fv: 

Motionformer[10]) are trained to extract high-quality, 

identifiable features through segment-level contrastive 

learning based on CLIP[11] methodology. Audio-visual 

segment pairs from the same time period are learned to be 

close, while other pairs are pushed apart, enabling the 

feature extractors to effectively represent the relationship 

between audio and visual elements within segments. These 

pre-trained feature extractors have demonstrated excellent 

adaptability not only for synchronization tasks but also for 

other audio-visual related subtasks. 

To verify temporal alignment across views, we 

periodically sample fixed-length audio-visual segments, 

treat the longest, scene-covering stream as the Master 

camera, and offset each Node segment by an integer lag τ 



relative to the master (Fig. 1).  Let 𝐸𝑚 ∈ 𝑅𝑑 and 𝐸𝑛,τ ∈ 𝑅𝑑 

denote the Segment-AVCLIP embeddings of the master 

segment and the node segment shifted by τ  frames, 

respectively. Their cosine similarity is 

 

Sim𝑐𝑜𝑠(𝐸𝑚, 𝐸𝑛,τ) =
𝐸𝑚
⊤𝐸𝑛,τ

|𝐸𝑚| ⋅ |𝐸𝑛,τ|
 

 
which ranges from -1 to 1; higher values indicate stronger 

audio-visual correspondence. For completeness we 

additionally compute the L1 and L2 distances 

 

𝑑1(𝐸𝑚, 𝐸𝑛,τ) = |𝐸𝑚 − 𝐸𝑛,τ|1 

𝑑2(𝐸𝑚 , 𝐸𝑛,𝜏) = |𝐸𝑚 − 𝐸𝑛,𝜏|2 

 

where lower values signify greater similarity.  Because all 

segments are captured under identical scene and acoustic 

conditions, this triplet of metrics—cosine similarity, 𝑑1 , 

and 𝑑2offers a robust, objective basis for determining the 

lag τ∗ that maximizes correspondence, thereby confirming 

that disparate cameras are indeed recording the same 

subject at the same moment. 

 

3.3 Multi Camera Offset Classification: Multi-

Synchformer 
 

In 3.1 we showed that L2 distances between AudioSet-

pre-trained audio-visual embeddings reliably separated 

segments drawn from the same time‐stamp from those 

drawn elsewhere on the timeline.  This result suggested 

training an explicit classifier for multi-camera 

synchronization.  However, the time and GPU budget 

required to construct a new data set and to train a large 

model from scratch proved prohibitive.  Instead, we 

repurpose the **second-stage synchronization module of 

Synchformer** by modifying only its inputs, thereby 

retaining all pre-trained weights. 

The original synchronization head accepts a sequence of 

video tokens 𝑉  and their co-occurring audio tokens 𝐴 , 

projects them to 𝑑model = 768 , and processes the 

concatenated stream with a 3-layer, 8-head Transformer 

encoder.  The task is formulated as 21-way classification, 

covering discrete offsets {−2.0, −1.8, … ,  1.8,  2.0} s  in 

0.2-s steps.  The [𝐶𝐿𝑆] token produced by the encoder is 

passed through a two-layer MLP followed by a soft-max to 

yield the posterior over offsets. 

For the multi-camera setting we form a cross view pair 

by combining the master camera’s video tokens 𝑉M with 

the node camera’s audio tokens 𝐴τ
N , where τ ∈

{0.1,0.2, … ,2.0} s is an artificially imposed lag.  Because 

Segment-AVCLIP ensures that video embeddings of the 

same moment remain similar across viewpoints, we 

hypothesise that the pre-trained classifier can still infer τ 

from the audio–video mismatch.  Training examples are 

generated by sampling time-aligned segments from the 

master stream, pairing them with node segments shifted by 

a random τ, and labelling each pair with the corresponding 

offset class.  This strategy enables low-cost adaptation of 

Synchformer to the multi-camera synchronization problem 

while preserving its audio-visual reasoning capabilities. 

 

4. Experiments 

 
In this chapter, we evaluated the cross-scene transfer 

effectiveness of Synchformer's pretrained feature 

extractors by assessing multimodal and multi-camera 

synchronization performance across three datasets. We 

used the Replay dataset[12] and CASTLE 2024 dataset[13] 

as our base datasets, and additionally utilized a custom-

built public broadcast dataset. This public broadcast 

dataset, based on "womenera" data, includes actual 

broadcast footage captured from various angles in a studio 

environment, showing full stage views and character close-

ups. We employed cosine similarity as the primary metric 

to evaluate how well each modality distinguishes between 

same index and different index features. 

 

4.1. Datasets and Experiment Setup 
 

Datasets for Multi-View AV Synchronization: The 

community has developed several datasets to facilitate 

research in multi-camera multimodal analysis. The Replay 

dataset , introduced by Shapovalov et al[12], provides 68 

multi-view video scenes (each ~5 minutes, captured by 12 

cameras) with spatial audio recorded by an array of 

microphones. All sensors in Replay are temporally 

synchronized and calibrated, making it a valuable resource 

for studying multi-view alignment and cross-moda 

understanding. More recently, the CASTLE dataset. 

(Rossetto et al[13].) offers an unprecedented scale of 

egocentric and exocentric video: 15 time-aligned camera 

streams (10 first-person wearable cameras and 5 static 

cameras) recorded over four days, totaling over 600 hours 

of 50 FPS UHD video with audio. CASTLE’s combination 

of first-person and third-person footage presents rich 

opportunities for multimodal synchronization research in 

real-world settings. Our work uses these datasets (along 

with a new internal broadcast-video dataset) as testbeds by 

taking their synchronized videos and verifying that our 

method can recover the known alignments. Notably, since 

these datasets come pre-synchronized by design, they 

allow us to simulate misalignment scenarios and will 

enable quantitative benchmarking of alignment accuracy in 

future work. 

In this study, we utilized two publicly available datasets 

to validate the cross-scene transfer effectiveness of 

Synchformer's pretrained feature extractor. The Replay 

dataset[12] contains temporally synchronized videos 

captured from various viewpoints using fixed cameras and 



action cameras, all sharing a common audio file. The 

CASTLE 2024 dataset[13] consists of recordings from 

cameras installed at fixed angles in multiple rooms of a 

residential environment, with independent video capture 

and audio recording. 

For our experiments, we used the original 1 minute 15 

seconds videos from DSLR-1, DSLR-2, and GOPRO1 

cameras in the Replay dataset. From the CASTLE dataset's 

60-minute recordings, we selected Kitchen, LivingRoom1, 

and LivingRoom2 videos, segmenting them into 120-

second clips for use as master-node video pairs.  

Additionally, we employed Real-world multi-camera 

footage from a public broadcast as a supplementary 

evaluation dataset. This studio-recorded content consists of 

two camera angles: one capturing the entire stage and 

another providing close-up shots of the performers' upper 

bodies. The total broadcast duration was 95 minutes, which 

we segmented into 4-minute intervals for evaluation 

purposes. 

All three datasets provide simultaneous multi-camera 

recordings of identical subjects with audio-video 

information, making them suitable for multimodal and 

multi-camera embedding research 

4.2 Embedding Distance Metric Results 

Table. 1 All Dataset Embedding Comparision by Index 

Dataset Metric Modality Same Diff 

Replay 

Cosine 

Similarity 

Video 0.99995 0.99981 

Audio 1 0.68755 

AV 0.99995 0.93446 

L2 dist 

Video 5.53 6.08 

Audio 0.00 143.21 

AV 5.24 143.15 

Castle 

Cosine 

Similarity 

Video 0.99999 0.99998 

Audio 0.86562 0.82815 

AV 0.96779 0.96156 

L2 dist 

Video 7.04 6.82 

Audio 102.39 118.45 

AV 103.11 119.07 

Womenera 

Cosine 

Similarity 

Video 0.99805 0.99894 

Audio 0.9501 0.74179 

AV 0.9875 0.93816 

L2 dist 

Video 125.02 185.32 

Audio 1604.37 3121.12 

AV 1751.43 3250.08 

 

Table. 1 summarizes the modality-specific embedding 

similarity comparison across the Replay, Castle, and 

Womenera datasets, using two metrics: cosine similarity 

and L2 distance. When analyzing with cosine similarity, 

the Audio modality generally demonstrated the highest 

discriminative power, while the Video modality showed 

minimal differences. However, when evaluating with L2 

distance, a different pattern emerges. The L2 distance 

metric demonstrates that all modalities, including Video, 

can distinguish between same index and different index 

pairs, as indicated by consistently lower distances for 

'Same' pairs compared to 'Diff' pairs across the datasets. 

The perfect matching in the Replay dataset's Audio 

modality (Cos=1.0, L2=0.00) is due to its design with 

shared audio files. 

In the real-world Womenera broadcast dataset, analysis 

via cosine similarity shows the Video modality struggling, 

with nearly identical values for both same index (0.998) 

and different index (0.999) pairs, making scene 

differentiation difficult. In stark contrast, the L2 distance 

analysis reveals a different outcome. The Video modality 

shows a clear separation, with an average distance of 

125.02 for same index pairs and 185.32 for different index 

pairs. This confirms that video embeddings can indeed 

differentiate scenes when an appropriate distance metric is 

used. While the Audio and AV modalities also demonstrate 

even stronger discriminative power with L2 distance, the 

key finding is that L2 distance unlocks the potential of 

video-based differentiation where cosine similarity fails. 

 

 
 

Fig. 2 Master-Node Heatmap by distance method 

 

Heatmap visualizations of similarity matrices (Fig. 3) 

reveal consistent patterns across both cosine similarity and 

L2 distance metrics. The cosine similarity heatmaps (Fig. 

3a) show that the Video modality displays uniformly high 

values (0.9996-1.0), making group distinction nearly 

impossible due to the narrow value range. The Audio 

modality demonstrates the most distinct block diagonal 

structure with broadly distributed similarity values (0.84-

0.94), clearly differentiating between same and different 

temporal indices. The Audio-Video (AV) fusion exhibits a 

moderate range of values (0.965-0.990) with somewhat 

observable block structure, though less pronounced than 

Audio alone. 

The L2 distance heatmaps (Fig. 3b) provide more 

encouraging results for Video modality discrimination. 



Video modality shows a discernible block diagonal pattern 

with same index distances (2.5-10) clearly lower than 

different index distances (10-17.5), indicating improved 

discriminative capability under L2 distance metric. Audio 

modality exhibits the most pronounced block diagonal 

structure where same index distances remain minimal 

(dark regions) while different index distances are 

substantially higher (160-280 range), demonstrating the 

strongest temporal synchronization cues. The AV fusion 

maintains a similar pattern to Audio (160-280 range) with 

well-defined contrast between same index and different 

index distances. 

Our results reveal that metric choice significantly 

impacts modality effectiveness for multi-camera scene 

synchronization. While cosine similarity favors Audio 

modality exclusively, L2 distance demonstrates that Video 

modality also possesses discriminative power, though 

Audio remains superior. The L2 distance metric appears 

more suitable for capturing the temporal dynamics 

necessary for synchronization tasks, as it better reveals the 

discriminative capabilities across all modalities. 

4.3 Multi-camera Offset Classification  

Evaluation protocol 

 

Offset prediction was assessed on the Replay and 

Womenera datasets with four inference strategies. 

ConfSelect feeds both cross view pairs—Master-Video ➝ 

Node-Audio (MV–NA) and Node-Video ➝ Master-Audio 

(NV–MA)—into Multi-Synchformer and selects the offset 

whose soft-max confidence is higher; the predicted value 

is converted to its absolute magnitude because all injected 

lags are positive. Soft Voting (our primary scheme) 

averages the absolute offsets of the two pairs, weighted by 

their respective confidences. 𝐶𝑟𝑜𝑠𝑠𝑀𝑉−𝑁𝐴  and 

𝐶𝑟𝑜𝑠𝑠𝑁𝑉−𝑀𝐴 evaluate each pair in isolation, exposing the 

model’s viewpoint sensitivity.  Finally, 𝑆𝑎𝑚𝑒𝑀𝑉−𝑀𝐴 

applies the synchronization head to a single stream with an 

artificially inserted offset, probing the ceiling performance 

when no cross view variation exists.  All methods were 

scored with mean-absolute-error (MAE) and mean-

squared-error (MSE) averaged over the four lags {0.1, 0.5, 

1.0, 2.0 s}. 

 

 

 

 

 

 

 

 

 

 

 

 

Results 

 
Table. 2 Performance Metrics for Evaluation Methods on Replay 

and Womenera Datasets 

Dataset Method MAE MSE 

Replay 

ConfSelect 0.765200 0.870140 

SoftVoting 0.688300 0.752080 

𝐶𝑟𝑜𝑠𝑠𝑀𝑉−𝑁𝐴 0.781560 0.893840 

𝐶𝑟𝑜𝑠𝑠𝑁𝑉−𝑀𝐴 0.769060 0.873800 

𝑆𝑎𝑚𝑒𝑀𝑉−𝑀𝐴 0.781560 0.893840 

Womenera 

ConfSelect 0.788667 0.923667 

SoftVoting 0.665733 0.695167 

𝐶𝑟𝑜𝑠𝑠𝑀𝑉−𝑁𝐴 0.716333 0.782567 

𝐶𝑟𝑜𝑠𝑠𝑁𝑉−𝑀𝐴 0.773300 0.896133 

𝑆𝑎𝑚𝑒𝑀𝑉−𝑀𝐴 0.775200 0.901500 

 

As summarised in Table 2, Soft Voting achieved the 

lowest errors on both datasets.  On Replay it reduced MAE 

from 0.7652 to 0.6883 (-10 %) and MSE from 0.8701 to 

0.7521 (-14 %) relative to ConfSelect.  On Womenera the 

gains were larger, lowering MAE to 0.6657 (-16 %) and 

MSE to 0.6952 (-25 %). 

The single-pair evaluations ( 𝐶𝑟𝑜𝑠𝑠𝑀𝑜𝑑𝑎𝑙𝑀𝑉−𝑁𝐴  and 

𝐶𝑟𝑜𝑠𝑠𝑀𝑜𝑑𝑎𝑙𝑁𝑉−𝑀𝐴) lagged behind Soft Voting on both 

metrics, and the same-source baseline registered the 

highest errors, confirming that cross view information is 

essential for accurate alignment. 

The comparison reveals that ConfSelect benefits from 

confidence ranking, yet Soft Voting further stabilises 

predictions by blending the two views, thereby mitigating 

outliers.  Taken together, the results establish Soft Voting 

as the most reliable strategy for fine-grained multi-camera 

synchronization across heterogeneous viewpoints. 

4.4 Comparison Method  

For comparison, we re-implemented AE2 [15], an 

object-centric network that aligns egocentric–exocentric 

video pairs by minimizing Dynamic Time Warping (DTW) 

cost. Replay and Womenera datasets were partitioned 

70%/20%/10% into train, validation and test splits, and 

processed into 10-second clips. Two evaluation settings 

were used: a +1 second offset and perfect synchrony. All 

preprocessing followed the procedure described in Section 

4. AE2 was trained for 50 epochs with the Adam optimizer 

(learning rate 1×10⁻⁴, weight decay 1×10⁻⁵), hidden 

dimension 256, and DTW cost as both loss and metric. 

Training was performed on NVIDIA RTX 4080 and A4000 

GPUs. 

 
Table. 3 Performance of AE2 on Multi Camera Datasets 

 

Offset(sec) Replay Womenera 

1 0.11203 0.16623 

0 0.10762 0.10850 

 



Table 3 reports the mean DTW costs. On Replay, the 

score decreased from 0.11203 under the 1-second offset to 

0.10762 when no offset was applied; on Womenera, it fell 

from 0.16623 to 0.10850. While the cost improves as 

temporal misalignment is reduced, the change is modest, 

indicating that AE2 provides a coarse yet consistent visual 

baseline for subsequent multimodal experiments. 

As a second comparison, we reproduce the method from 

[16]. The system consists of a Matching-Frames (MF) 

network that learns an object-centric distance metric 

followed by a Delay-Estimation (DE) network that 

regresses the frame lag. Using the Womenera4, 

Womenera5 pair, we extract the first 24,000 frames at 

224×224 resolution and compute Farneback optical flow 

for the 23,999 inter-frame intervals. 

The MF network is trained with Triplet-Euclidean loss 

(margin = 0.5) where the anchor is a frame from 

Womenera4, the positive is its temporally aligned 

counterpart in Womenera5, and the negative is a frame 

shifted by −10…−1 or 1…20 frames; the split is 80%/20% 

and the batch size is 64. After convergence, the MF weights 

are frozen and 40,000 clip pairs of length 20 frames are 

generated with relative shifts of −19…20 frames. Each pair 

is converted to a 20×20 distance matrix, flattened, and fed 

to the DE network, which is trained (80%/20%, batch size 

32) to predict the integer offset. 

The MF stage attains a training loss of 0.2047 and a 

validation loss of 0.2424 (initially 0.5), confirming 

effective metric learning. The DE stage reports 48.9% 

training accuracy and 44.2% validation accuracy with 

losses of 1.87/2.13 and a mean absolute error of 0.032 

frames. Precision remains high (0.86/0.78) while recall is 

lower (0.35/0.32). 

 

5. Conclusion and Future Work 

 
This study presents a multimodal synchronization 

framework for aligning multi-camera video streams in real-

world broadcasting environments. Through extensive 

experiments across three datasets—Replay, CASTLE 2024, 

and Womenera—we empirically confirm that the audio 

modality provides significantly stronger synchronization 

cues than the visual modality. Specifically, the similarity 

gap between same- and different-timestamp segments for 

audio (0.19) was approximately 190× larger than that for 

video (0.001), highlighting the superior discriminative 

power of audio features for scene alignment. Although 

simple audio-visual concatenation yielded moderate gains 

(0.08), it did not outperform the audio-only approach, 

suggesting that naïve fusion methods remain suboptimal. 

We hypothesize that this disparity arises from (1) the 

limited visual variance present in our dataset, and/or (2) the 

representational limits of current visual embedding 

extractors. To verify these hypotheses, we plan to conduct 

further experiments with diverse datasets, varying scene 

structures, segment granularities, and fusion strategies. 

 

In addition, we introduced a lightweight offset classifier, 

Multi-Synchformer, which repurposes Synchformer’s 

second-stage synchronization module with minimal 

modifications. Among four evaluated inference schemes, 

our proposed Soft Votingstrategy—which fuses 

predictions across view pairs using confidence-weighted 

averaging—consistently outperformed all baselines. 

Compared to ConfSelect, Soft Voting reduced alignment 

errors by up to 14% on Replay and 25% on Womenera, 

demonstrating the importance of cross view integration for 

fine-grained synchronization. 

We further benchmarked our approach against re-

implementations of AE2 [15] and the stereo-video 

synchronization model from [16]. While AE2 produced 

modest DTW cost improvements under reduced 

misalignment, the method from [16] achieved stable metric 

learning but exhibited limited recall and coarse offset 

regression performance. These comparisons reaffirm the 

need for synchronization frameworks that explicitly 

leverage modality-specific cues and structured fusion. 

 

In future work, we aim to enhance our system through 

the following directions: 

(1) modality reliability-aware weighted fusion, 

(2) improved visual feature encoders sensitive to temporal 

      variation, 

(3) timecode search optimization via embedding     

      quantization and dimensionality reduction, 

(4) dedicated offset prediction modules for timecode 

      localization, and 

(5) deployment of a unified synchronization architecture 

      robust to diverse production scenarios. 

 Together, these extensions will contribute to more 

accurate, efficient, and scalable multi-camera 

synchronization pipelines suited for real-world 

broadcasting and video production workflows. 
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