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Abstract

Vision-Language Models (VLMs) have achieved strong
performance on multimodal tasks but remain limited in
their understanding of physical dynamics, especially in
fluid scenarios. To address this gap, we propose Flu-
idGPT, a modular framework for fluid dynamics reason-
ing in VLMs: we generate a comprehensive fluid simula-
tion dataset with precise physical annotations and train
a small VLM on these controlled simulations to produce
structured descriptions of each scene’s visual content
and physical inferences—enabling tasks ranging from
basic perception and cross-scene comparison to causal
reasoning. These outputs guide a larger VLM to ana-
lyze the visual content of a single scene and compare
physical inferences across multiple scenes for advanced
reasoning. Experiments show that that a compact modu-
lar architecture yields noticeable performance improve-
ments. FluidGPT and our simulation dataset offes a new
path toward equipping VLMs with fluid physical com-
mon sense. Code and dataset will be publicly available
at https://github.com/Ever2after/snu—
mlvu-project-2025.

1. Introduction

With the rapid evolution of Vision-Language Models
(VLMs) [9, 12], which leverage Large Language Models
(LLMs) as their backbone, significant progress has been
made across various multimodal tasks—including im-
age captioning, visual question answering, and more [1,
8]. However, recent studies have revealed that even
state-of-the-art VLMs continue to struggle with in their
understanding of the physical world. For instance,
prior work [5] shows that the average accuracy of
VLM:s on physical reasoning tasks remains below half of
human-level performance. This gap is particularly pro-
nounced in fluid dynamics scenarios, as demonstrated
by the ContPhy [18] benchmark.

As VLMs are increasingly applied to real-world set-

tings—ranging from action generation and decision-
making to robotics and embodied Al—it becomes criti-
cal for them to acquire a robust understanding of physi-
cal common sense [5, 11]. While fluids are as ubiquitous
in everyday contexts as rigid bodies, their inherent conti-
nuity and deformability make them far more challenging
to model and reason about. Thus, equipping VLMs with
the ability to reason about fluid dynamics is an essential
step toward comprehensive physical understanding [19].
Several approaches have been proposed to enhance
the physical reasoning capabilities of VLMs. Prior
work [17] has introduced Multimodal Chain-of-Thought
prompting to improve visual reasoning; PhysBench [5]
proposed the PhysAgent framework, integrating foun-
dation vision models with external knowledge memory;
and the Physics Context Builders [2] demonstrated per-
formance gains by fine-tuning small VLMs with scene
description data. Furthermore, Cosmos-Reasonl [11]
explored the use of reinforcement learning (RL) follow-
ing supervised fine-tuning (SFT) to further boost reason-
ing abilities. Yet, these studies have largely focused on
rigid-body dynamics or general commonsense reason-
ing, with little to no attention given to fluid dynamics.
To address this gap, we introduce FluidGPT, a gen-
eral modular framework for fluid dynamics reasoning in
VLMs. FluidGPT trains a small VLM to generate struc-
tured descriptions across a hierarchy of fluid reasoning
tasks—ranging from low-level perception to high-level
causal reasoning—based on visually simulated scenes.
The training dataset is fully generated from controlled
fluid simulations, allowing precise and automatic anno-
tation of perceptual attributes such as color, shape, and
position, as well as physical properties like viscosity.
The resulting VLM is not only capable of describ-
ing the visual behavior of fluid, but also inferring its un-
derlying physical properties and explaining the govern-
ing physical principles. Furthermore, we leverage the
small VLM’s structured output to guide a larger VLM in
performing advanced reasoning tasks such as next scene
prediction and counterfactual analysis.
Our contributions are summarized as follows:
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1. We present a simulation pipeline for generating di-
verse fluid scenes with automatic physical and per-
ceptual annotations.

2. We construct a large-scale dataset covering both
single-scene perception and cross-scene reasoning
tasks.

3. We propose FluidGPT, a modular framework that
boosts fluid reasoning via structured scene descrip-
tions from a lightweight sensing module.

2. Related Work

Physical Reasoning in Vision-Language Models

Recent studies have highlighted the limitations of
Vision-Language Models (VLMs) in physical reasoning
tasks. PhysBench [5] presents a comprehensive bench-
mark evaluating VLMs across object properties, object
relationships, scene understanding, and physics-based
dynamics. Despite achieving high performance on gen-
eral multimodal tasks, VLMs still fall significantly short
of human-level accuracy on physics-related scenes.

To address these limitations, several frameworks have
been proposed. The Physics Context Builders (PCB)
framework [2] fine-tunes a small VLM on simulated
physical scenes and provides its structured descriptions
as context to a larger VLM, achieving up to 13.8%
performance gain. Cosmos-Reasonl [11] develops a
four-stage training pipeline—including supervised fine-
tuning (SFT) and reinforcement learning (RL)—to en-
hance physical reasoning in multimodal LLMs, with RL
post-training yielding an additional 8.2% improvement
in benchmark accuracy.

Multimodal Chain-of-Thought (CoT) prompting [17]
improves visual reasoning by explicitly generating
intermediate rationales that jointly leverage visual
and textual modalities. This two-stage framework
achieves higher accuracy on benchmarks such as Sci-
enceQA [10], while also mitig ating hallucinations.
PhysAgent [5] combines generalist VLMs with expert
vision encoders and physics-aware memory modules,
demonstrating an 18.4% improvement on physical tasks
with GPT-4o.

Despite recent advances, existing works primarily fo-
cus on rigid-body dynamics or commonsense scenarios.
ContPhy [ 18] shifts attention to fluid and deformable ob-
ject reasoning using continuum-based 2D simulations,
and finds that VLMs perform particularly poorly in such
tasks—Ilargely due to their limited ability to perceive and
reason about highly deformable materials.

Physical Simulation for AI Training

Simulated environments have been widely used to train
and evaluate Al systems for physical reasoning. For
example, CLEVRER [16] and Falling Towers [2] pro-

vide synthetic video datasets designed for temporal and
causal reasoning in rigid-body scenes. Physion [3] tar-
gets intuitive physical prediction, while IntPhys [13]
evaluates human-like physics understanding by contrast-
ing physically plausible and implausible sequences.

For fluid dynamics, ContPhy [18] offers 2D fluid
simulations with annotations such as masks, bounding
boxes, and point-level physics attributes. However, its
visual diversity and scene complexity remain limited.
In contrast, datasets like FLUID-LLM [19], BLAST-
Net [6], and EAGLE [7] focus on engineering-oriented
predictions using scalar or vector fields represented as
colormaps, often relying solely on numerical solvers
and volume-rendered outputs. While valuable for sci-
entific computing, these datasets lack the visual realism
and perceptual grounding required for training VLMS on
fluid understanding tasks.

These efforts underscore the importance of develop-
ing simulation datasets that integrate accurate physics
with visually realistic inputs to support fluid dynamics
reasoning in VLMs.

3. Dataset

3.1. Scene Taxonomy

We generate a diverse set of controlled fluid simulations
using Blender'. Scenes include both basic flow phenom-
ena and interactions with rigid objects. Physical param-
eters such as viscosity, velocity, and object geometry
are precisely adjustable, enabling fine-grained annota-
tion and reproducible rendering.

Scenario Representative Setups
S1 Basic Fluid Phe- 1) Fluid flowing down a slope.
nomena 2) Jet falling into a container.

3) Ripples from surface impact.
S2  Fluid-Rigid-
Body Interaction

1) Object moving in fluid.
2) Fluid flowing around a object.

Table 1. Simulated scenario types.

Table | outlines the core simulation blocks used to
construct our dataset. The “Basic Fluid Phenomena”
category captures canonical behaviors such as lami-
nar flow, falling jets, and ripple dynamics, which are
essential for assessing fundamental fluid perception.
The “Fluid-Rigid-Body Interaction” category empha-
sizes the interplay between deformable and solid enti-
ties, enabling evaluation of more complex reasoning in-
volving collisions, buoyancy, and wake formation. This
dual-branch structure ensures comprehensive physical
coverage with minimal redundancy. Figure 2 illus-
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Figure 1. This figure illustrates an example scene and rendered frames created by our pipeline. The example scene shown in (a)
consists of a fluid source, a slope and a sink that the fluid can interact with and a camera denoted as a black wireframe on the
top-right region. (b), (c), (d), and (e) are the rendered frames with varying fluid simulation resolution((b): 963, (c): 1283, (d): 1923,
and (e): 2563). Higher fluid resolution results in more realistic fluid behavior and less unwanted leakage through the slope, at the

cost of increased simulation time.
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Figure 2. Examples of fluid simulation scenes

trates representative scenes from simulated fluid dynam-
ics dataset.

3.2. Task Formulation

Table 2 presents our task taxonomy, organized by scene
type (single vs. cross-scene), the target of reasoning (ob-
ject, fluid, or their interaction), and the specific task.

In single-scene settings, tasks primarily assess visual
perception capabilities, such as identifying the color, lo-
cation, or rotation of an object, and tracking the motion
or location of fluid. These tasks focus on recognizing
and understanding properties directly observable within

a single scene. Collision detection is also included to
evaluate the ability to reason about interactions between
objects and fluids.

In contrast, cross-scene tasks require comparative
physical reasoning between two independent scenes.
These include judging which fluid has a greater amount
or lower viscosity. Unlike single-scene tasks, these can-
not be answered by observing one scene alone—they re-
quire integrating perceptual understanding across both
scenes and performing step-by-step reasoning over la-
tent physical properties. Such tasks bridge visual per-
ception and abstract inference, testing the model’s ca-



Table 2. Task categorization by scene type and target.

Scene type Target Task

Color
Location
Rotation

Object

Single scene

Color
Fluid Location
Direction

Object + Fluid  Collision

Amount

Cross-scene  Fluid . .
Viscosity

pacity for multi-scene physical understanding.

3.3. Simulation Pipeline

3.3.1. Pipeline Overview

We propose a semi-automatic dataset generation
pipeline using Blender. We first manually generate a
small set of base scenes using Blender GUI, where a hu-
man sets all necessary scene properties such as object
locations and fluid parameters. Base scenes refer to a
set of Blender scene configurations that mainly differs
from each other in regards to the global arrangement of
the scene objects. This manual generation stage is em-
ployed to create diverse situations involving fluids in our
dataset, thereby aiding the model in generalizing fluid
properties.

Subsequently, the base anchor scenes are augmented
using an automated method. We implement a script that
converts a base scene into a Python file that when exe-
cuted within Blender, generates the original base scene.
The generated Python file explicitly includes numeri-
cal variables such as the locations of the meshes and
the camera, material color and alpha, and fluid proper-
ties. Meanwhile, the mesh geometry is saved in individ-
ual files and the Python file merely loads them into the
Blender scene upon execution. During the conversion to
the Python file, we specify to the conversion script the
set of properties that will later be augmented. Exam-
ples of these properties include fluid viscosity, material
color and camera position. These properties are stored
as variable names rather than as numerical constants in
the resulting Python file.

In the final stage of the pipeline, we manually pro-
vide the augmentation ranges for the properties that were
specified in the previous stage. Given the generated
Python file and the defined augmentation ranges, an au-
tomated procedure samples a scene using the Python
file, runs the fluid simulation and renders the final result
into a video. This procedure simultaneously generates
the ground-truth dataset annotations—such as fluid ve-

locity and bounding box of the fluid in each frame—by
utilizing the simulation cache. Specifically, we parse
and process the data from .vdb and .bobj files generated
during simulation, which contain the fluid particle mo-
tion data and the fluid mesh data respectively.

3.3.2. Implementation Details

We conducted a resolution ablation study to investigate
the trade-off between visual fidelity, physical realism,
and computational cost in our fluid simulations. We
tested four domain resolutions—963, 1283, 1923, and
2563—and evaluated both the perceptual quality of the
fluid and the rendering time required per sequence. As
shown in Figure 1, increasing the resolution consistently
improves surface detail, splash sharpness, and the over-
all continuity of fluid boundaries. However, the ren-
dering time grows nearly linearly with resolution, mak-
ing the higher-resolution configurations (e.g., 1923 and
2563) computationally impractical for large-scale dataset
generation.

While the highest resolution (2563) achieves the most
detailed fluid surfaces, it offers only marginal gains over
1283 in terms of visual quality, while nearly doubling
both simulation and rendering time. Conversely, we ob-
served that resolutions below 903 introduce physical ar-
tifacts that compromise simulation reliability: specifi-
cally, the fluid tends to penetrate effector boundaries un-
less an artificially thick surface is applied. This results in
noticeable spatial separation between the fluid and solid
objects, breaking physical plausibility. Although low-
ering the CFL number can mitigate this issue, doing so
substantially increases computational overhead.

Considering these trade-offs, we identify 963 as the
optimal resolution for our setting—it preserves essen-
tial surface features, maintains physical accuracy, and
ensures that the simulation remains computationally
tractable. All experiments in our dataset are therefore
conducted at 963 resolution by default.

To further optimize rendering for downstream vision-
language model (VLM) training, we configure the Cy-
cles renderer with 64 samples per pixel, and enable
Blender’s built-in denoiser to suppress high-frequency
noise. Empirical testing shows that this setup main-
tains key visual features—such as fluid contours, trans-
parency, and splash morphology—while keeping the av-
erage render time under 10 minutes per 5-second se-
quence (150 frames at 30 FPS on a GTX 1080 GPU).
This balance between quality and efficiency allows scal-
able data generation without compromising the physical
or perceptual fidelity required for multimodal learning
tasks.
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Figure 3. Training pipeline. We use Blender to generate both rendered fluid scenes and associated scene annotations, including
object location, fluid velocity, and viscosity. A 3B scale Sensing Module is trained to produce structured scene descriptions

covering both visual perception and physical inference.

3.4. Scene Description Generation

We implemented a pipeline that ingests raw simulation
parameter logs—object morphology, color values, vis-
cosity, and so on—and automatically generates natural
language descriptions for each scene. The simulation
produces annotations at each time step, and our pipeline
converts these into coherent English descriptions. To
capture view-dependent effects, we manually reviewed
each camera angle, recording fluid movement directions
from each viewpoint, and directly observed the charac-
teristic fluid behaviors, incorporating both into the text.
Each scene description consists of:

1. Object overview: enumerating all entities present,
their categorical types, positions, and colors;

2. Fluid kinematics: summarizing motion patterns
(flow direction, speed variations, presence of vor-
tices);

3. Viscosity inference: estimating relative viscosity
levels by correlating observed flow behavior with an-
notated parameters.

Figure 4 illustrates how raw log annotations are rendered
into human-like narratives.

4. FluidGPT

4.1. Methodology

We adopt a modular, two-stage architecture for fluid dy-
namics reasoning, composed of a lightweight Sensing
Module and a larger Reasoning Module. This separation
enables the system to first extract physically grounded
scene representations from visual input, and then use
them for higher-level reasoning.

Scene type: slope

Scene description:

A {fluid_description} fluid initially rests atop a
{slope_description} slope. Below the slope lies
a {container_description} container.

The fluid clings to the slope and moves very
slowly downward. As the fluid sticks to the
incline and barely moves, the fluid’s viscosity
is estimated as high.

Scene type: object interaction

Scene description:

In the scene two objects appear, with {ob-
jectl} on the left and {object2} to its
right. A {fluid_description} fluid flows from
{flow_direction} toward the objects.

The fluid collides with {collision1}. And then it
collides with {collision2}.

As the fluid flows swiftly around the objects
with minimal adhesion, the fluid’s viscosity is

estimated as low.
\ ow Y,

Figure 4. Description generation formats. (left) example of
basic fluid phenomena scene. (right) example of fluid-rigid
body interaction scene

4.1.1. Training the Sensing Module

As shown in Figure 3, we begin by generating synthetic
fluid scenes using Blender. Each simulation produces
rendered RGB frames along with structured annotations,
including object layout, fluid motion, and physical pa-
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Figure 5. Inference pipeline. At test time, the Sensing Module generates a structured description from visual input of single scene.
This description is passed to a larger Reasoning Module (>7B VLM), which performs higher-level tasks in both single scene and

multiple scenes.

rameters such as viscosity. These annotations are used
to supervise a compact vision-language model (~3B pa-
rameters, e.g., Qwen2.5-VL-3B [15]), referred to as the
Sensing Module.

The Sensing Module is trained to generate structured
natural language descriptions from video input, orga-
nized into three components: (1) Object Overview, de-
tailing visible entities and their properties; (2) Fluid
Kinematics, describing flow patterns and motion behav-
iors; and (3) Viscosity Inference, estimating latent phys-
ical attributes based on visual cues. This training objec-
tive enables the model to learn grounded, interpretable
mappings from fluid scenes to descriptive representa-
tions that can assist downstream reasoning.

4.1.2. Inference via Modular Reasoning

At inference time, both the video input and the scene
description are provided to the Reasoning Module (>7B
VLM, e.g., GPT-40 [12] or Gemini2 [14]), which serves
as the primary model responsible for final decision-
making. The Sensing Module acts as an auxiliary en-
coder that summarizes the visual scene into a structured
description comprising object configuration, fluid mo-
tion, and physical properties (e.g., viscosity), which is
used to guide or complement the reasoning process.

In single-scene tasks, one video and its description
are used to answer questions about the scene. In cross-
scene tasks, two independent videos are each processed
into separate descriptions, and both the visual inputs and

paired descriptions are jointly provided to the Reason-
ing Module for comparative reasoning. This design im-
proves interpretability and physical grounding while en-
abling the large model to perform robust, context-aware
inference.

4.2. Baselines

We evaluate a range of publicly available vision-
language models (VLMs) as baselines to assess their
ability to handle physically grounded reasoning in fluid-
dynamic visual scenes. Our selection includes both
open-source and commercial models, with a mix of
general-purpose VLMs and video-specialized architec-
tures.

Among open-source models known for strong
visual understanding, we include Qwen2.5-VL-7B-
Instruct [15], which supports structured outputs and
long-video event tracking for complex spatiotemporal
queries and InternVL3-8B-Instruct [4], which adopts na-
tive multimodal pretraining and advanced visual encod-
ing, showing strength in high-precision domains such as
scientific and industrial scenes.

We also include several commercial foundation mod-
els as baselines, the GPT series (GPT-40, GPT-4o-
mini) [12] . While these models offer strong perfor-
mance across a wide range of multimodal tasks, includ-
ing static and video input, their behavior in fluid-physics
scenarios remains largely unexplored. They are included
to benchmark the generalization ability of high-capacity



Table 3. Accuracy (%) on our FluidBench. Single-scene tasks evaluate visual perception (object / fluid properties and collision),
while cross-scene tasks test comparative physical reasoning (fluid amount and viscosity). Numbers in parentheses indicate the

absolute gain over the corresponding base model.

Single Scene

Cross-Scene (Fluid)

Category Model . . Total
Object Fluid Coll.  Amt. Visc.
Col. Loc. Rot. Col. Loc. Dir.
Random Choice  35.56  33.33 50 35.56 50 33.33 50 33.33 50 43.04
InternVL3-8B 86.67 53.33  46.67 60 60 60 80 13.33 44 53.53
Open-source Qwen2.5-VL-3B  66.67 40 40 40 53.33 40 60 13.33 48 45.29
Qwen2.5-VL-7B  66.67  73.33 40 66.67 60 93.33 7333 13.33 56 59.41
Closed-source GPT-40 73.33  86.67 7333  46.67 60 93.33 80 13.33 44 59.41
YT GPT-40-mini 80 46.67  66.67 60 60 13.33 7333  6.67 44 48.82
FluidGPT Qwen2.5-VL-7B 80 100 86.67 100 60 93.33 66.67 26.67 56 70.59
(Ours) + 3B-SFT (+13.33) (+26.66) (+46.67) (+33.33) (0) ) (-6.66) (+13.33) 0) (+11.18)
GPT-40-mini 80 100 86.67  86.67 53.33 53.33 7333 26.67 52 64.71
+ 3B-SFT 0) (+63.33) (+20) (+26.67) (-6.66) (+40) (0) (+20) (+8) (+15.89)

models in complex physical reasoning tasks.

We fine-tune a lightweight, open-source VLM,
Qwen2.5-VL-3B [15], on a domain-specific dataset
composed of simulated fluid scenes. We will then eval-
uate how providing the physical context generated by
this fine-tuned small VLM affects the performance of
larger baseline models, enabling a direct comparison be-
tween their zero-shot reasoning and context-augmented
reasoning in fluid environments.

5. Experiment

5.1. Experimental Setups

For training the Sensing Module, we used the Qwen2.5-
VL-3B model with a batch size of 16, learning rate of 2e-
6, and 2 training epochs. The training was conducted on
asingle A100 GPU and completed within approximately
one hour.

5.2. Results

As shown in Table 3, open-source baselines achieve
53.5% (InternVL3-8B), 45.3% (Qwen2.5-VL-3B), and
59.4% (Qwen2.5-VL-7B), while closed-source mod-
els record 59.4% (GPT-40) and 48.8% (GPT-40-mini);
these results, obtained without any scene descriptions,
show that the largest open-source model matches the top
closed-source performance but that all models still face
limitations in fluid reasoning. By augmenting each with
our FluidGPT sensing module (Qwen2.5-VL-3B-SFT),
Qwen2.5-VL-7B’s accuracy rises to 70.6% (+11.2) and
GPT-40-mini’s to 64.7% (+15.9). The largest gains are
observed in object localization questions—where accu-
racy reaches 100%—highlighting the value of enriched
contextual information. We also see notable improve-

ments in cross-scene fluid amount (up to +13.3) and vis-
cosity reasoning (up to +8). These results demonstrate
that integrating a lightweight, specialized context mod-
ule substantially enhances VLMs’ performance across
both single- and cross-scene reasoning tasks.

6. Conclusion

In this work, we proposed a novel dataset generation
pipeline that leverages an existing simulator tool to
generate diverse scenes involving fluids—ranging from
free-fall droplets and inclined-plane flows to surface
rippling and object—fluid interactions—while automat-
ically annotating key perceptual and dynamic attributes.
Leveraging this pipeline, we compile a comprehensive
7.2 K—sample train/test dataset that is rigorously catego-
rized by task type (object color, location, rotation; fluid
color, location, direction; cross-scene amount inference,
and viscosity reasoning), representing the first realistic
fluid-scene dataset of its kind and filling a crucial gap for
VLM evaluation. Building atop these resources, we pro-
pose FluidGPT, a modular context-builder framework in
which a lightweight sensing module (Qwen2.5-VL-3B-
SFT) enriches base VLMs with structured scene descrip-
tions. By adopting this modular design, FluidGPT al-
lows compact VLMs to be trained with minimal over-
head yet deliver substantial performance boosts—easily
achieving state-of-the-art results on both single- and
cross-scene reasoning tasks.

7. Future Work

Despite the scalability and structured diversity of our
dataset, several limitations remain. First, due to hard-
ware constraints, we were forced to reduce simulation



resolution and rendering sample rates in certain cases,
which led to a subset of videos with unnatural surface
behavior or physically implausible motion. This degra-
dation in visual and physical fidelity may hinder learn-
ing, particularly for models sensitive to fine-grained
fluid details such as splash continuity and particle coher-
ence. Second, our study does not include a validation of
sim-to-real (sim2real) transfer—that is, we did not as-
sess whether models trained on synthetic fluid simula-
tions generalize to real-world fluid dynamics. As a re-
sult, the applicability of our dataset to real-world tasks
such as robotic fluid manipulation or physical scene un-
derstanding is uncertain. Third, our evaluation is lim-
ited to perception-level tasks and does not cover higher-
order reasoning abilities, such as next scene prediction
or counterfactual inference. This limits our understand-
ing of whether current models can move beyond per-
ception to capture the causal and temporal structure of
fluid-based events, which is critical for physical reason-
ing under uncertainty.
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