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Abstract

We propose a novel approach to video summariza-
tion that leverages Multimodal Large Language Mod-
els(MLLMs) to extract high-dimensional semantic repre-
sentations encompassing both visual and temporal context.
Unlike prior caption-based methods, our framework en-
codes sequences of consecutive frames as contextual in-
put to an MLLM, guided by an instruction prompt explic-
itly designed to estimate frame-level importance. The re-
sulting embeddings can be directly integrated into exist-
ing summarization models without architectural modifica-
tions, significantly enhancing their expressive capacity. To
address the computational overhead of MLLMs during in-
ference, we further introduce a lightweight mapping func-
tion F (x) that aligns low-level visual features from a pre-
trained GoogLeNet with the MLLM embedding space. Ex-
periments on the SumMe and TVSum benchmarks demon-
strate that our method outperforms existing state-of-the-art
approaches in rank-based metrics such as Kendall’s Tau
and Spearman’s Rho. Ablation studies validate the impor-
tance of instruction design in guiding MLLM reasoning.
Our results highlight the potential of MLLM-driven repre-
sentations as a scalable and expressive foundation for gen-
eralizable video summarization.

1. Introduction
With the explosive growth in the production and consump-
tion of video content in modern society, the demand for ef-
ficiently identifying key information from long videos has
been steadily increasing. As a result, video summarization
has emerged as a crucial technology across various applica-
tions such as search, navigation, recommendation, and per-
sonalized services by concisely compressing the essential
content of original videos. In particular, the mobile-centric
content consumption environment and the decreasing atten-
tion span of users have further highlighted the importance
of summary quality in enhancing user experience.

Deep learning-based video summarization is typically
defined as the task of predicting the importance of each
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Figure 1. Comparison of video summarization paradigms. This
figure presents the evolution of video summarization techniques
from unimodal encoding, to visual-text fusion, followed by LLM-
guided captioning, and culminating in our integrated MLLM-
based framework.

frame and generating a summary that condenses the orig-
inal video to approximately 15% of its length. Early ap-
proaches, as illustrated in Fig. 1a, focused primarily on
visual information using CNN- [33] or LSTM-based [18]
architectures. More recent models have adopted structures
such as Transformers [4, 8, 15, 33, 45] and Diffusion mod-
els [32], which are capable of processing information more
precisely, thereby improving performance. To address the
limitations of vision-only approaches, cross-attention-based
multimodal models [5, 11, 20, 28, 29] that incorporate tex-
tual information, as shown in Fig. 1b, have also been pro-
posed. Recently, the importance of generalization capabil-
ities—particularly those that can capture diverse user per-
spectives—has drawn attention to the language reasoning
abilities of large language models(LLMs) [1–3, 39, 40].
For example, LLMVS [19], illustrated in Fig. 1c, gen-
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erates captions for each frame, encodes them using an
LLM [23, 25] to obtain embeddings, and predicts frame im-
portance through a self-attention mechanism.

However, approaches like LLMVS [19] face inherent
limitations. Captions generated on a per-frame basis often
fail to capture critical semantic cues such as fine-grained
visual details, scene dynamics, or subtle changes in human
behavior. Moreover, the multi-stage pipeline that combines
a multimodal LLM with a standard LLM introduces signif-
icant computational complexity and latency, making it un-
suitable for real-time applications or large-scale video pro-
cessing. These issues of semantic loss and computational
inefficiency pose major obstacles to the practical deploy-
ment of such methods in real-world services and applica-
tions [22, 23, 38, 42, 43].

To address the limitations of frame-wise caption-
ing—namely, semantic loss and inefficiency—this work
leverages the strong generalization and contextual reason-
ing capabilities of large language models(LLMs). We pro-
pose an embedding extraction method using a Multimodal
Large Language Model(MLLM) [24] that processes a se-
quence of consecutive video frames as a single contextual
unit. Specifically, we encode eight consecutive frames as vi-
sual tokens and input them into the MLLM [24] alongside a
natural language prompt designed to assess the importance
of the central frame. We then extract high-dimensional
embeddings from the final hidden states. These embed-
dings go beyond simple textual representations by captur-
ing temporal flow and visual context, forming a rich seman-
tic representation space. Our approach can be integrated
into existing video summarization models without struc-
tural changes, demonstrating not only enhanced represen-
tational power but also strong potential for generalization
and scalability.

Most prior work in video summarization has relied on
visual features extracted from a pretrained GoogLeNet [37]
model to construct summarization models. This approach
offers high computational efficiency and ease of implemen-
tation, but its representational capacity is inherently lim-
ited. In contrast, embeddings derived from MLLMs [24]
provide rich, high-dimensional representations that incor-
porate both visual and linguistic context, enabling superior
summarization performance. However, their high computa-
tional cost and latency make them impractical for real-time
or large-scale batch applications. To resolve this trade-off,
we propose to learn a mapping function F (x) that aligns vi-
sual features extracted from GoogLeNet [37] with the em-
bedding space of MLLMs [24]. Inspired by Platonic repre-
sentational space theory [13] and the success of vec2vec-
style embedding alignment [14], we optimize F (x) using
MLLM-derived embeddings as supervision during training.
At inference time, the model can generate semantically rich
representations using only lightweight GoogLeNet [37] fea-

tures. This design achieves a balance between expressive-
ness and efficiency, while maintaining structural compati-
bility and practical usability within existing video summa-
rization pipelines.

To validate the effectiveness of the proposed approach,
we conducted experiments on two widely used video sum-
marization benchmarks: SumMe [10] and TVSum [34].
The results demonstrate that our MLLM-based representa-
tion outperforms traditional visual feature-based methods,
achieving superior summarization performance. Notably,
our method surpasses state-of-the-art baselines on ranking-
based evaluation metrics such as Kendall’s Tau [17] and
Spearman’s Rho [35]. These findings suggest that the pro-
posed unified embedding strategy can more precisely cap-
ture the semantic essence of videos, highlighting its poten-
tial to advance both the expressiveness and practical appli-
cability of video summarization.

The main contributions of this work are as follows:
• High-dimensional semantic embeddings via MLLMs:

We extract embeddings by processing sequences of
frames as contextual units, capturing integrated visual and
temporal information to reduce semantic loss.

• Mapping lightweight visual features into the MLLM
space: We propose a mapping function that aligns
GoogLeNet features with MLLM embeddings, achieving
a balance between expressive power and computational
efficiency.

• Empirical validation on standard benchmarks: Our
method outperforms prior approaches on key ranking-
based metrics using the SumMe and TVSum datasets,
demonstrating its effectiveness and generalizability.

2. Related Work
Video Summarization. Video summarization typically in-
volves predicting the importance of each frame, segmenting
the video using Kernel Temporal Segmentation(KTS), and
selecting about 15% of frames using the 0–1 Knapsack al-
gorithm [30]. Early methods adopted encoder–decoder ar-
chitectures with bidirectional LSTMs [18], later replaced
by attention-based models [4, 8, 15, 33, 45] for improved
long-range dependency modeling. More recent work, such
as CSTA [33], employs a sliding-window CNN to learn
spatio-temporal patterns. Diffusion-based [32] approaches
have also emerged to incorporate user subjectivity through
stochastic sampling.

To address the limitations of visual-only methods, multi-
modal summarization has been explored [5, 11, 20, 28, 29],
leveraging subtitles, transcripts, and audio to improve infor-
mativeness and semantic alignment. Vision-language mod-
els like CLIP-It [28] and TL:DW? [29] use cross-modal at-
tention and saliency to align visual and textual information,
while A2Summ [11] and SSPVS [20] enhance temporal co-
herence through contrastive and self-supervised learning.
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Recent advances incorporate large language mod-
els(LLMs) to improve multimodal reasoning. V2Xum-
LLaMA [12] and LLMVS [19] adopt prompt-based in-
struction tuning and caption-conditioned attention to build
controllable, language-driven summarization frameworks.
Building on this trend, we propose a novel method that
leverages high-dimensional semantic representations from
Multimodal Large Language Models(MLLMs) [24] to
capture fine-grained visual semantics often missed by
language-centric approaches.

MLLMs for Video Understanding. In recent studies on
Multimodal Large Language Models(MLLMs) [6, 25,
26] for video understanding, early approaches primar-
ily involved combining pre-trained video encoders with
LLMs by aligning the extracted visual features to a lan-
guage embedding space before feeding them into the
LLM. Representative examples of this line of work in-
clude Video-ChatGPT [27] and Video-LLaMA [44]. Video-
ChatGPT [27] incorporates frame-level spatiotemporal fea-
tures obtained from a CLIP-based video encoder into the
LLM, enabling detailed video descriptions. Meanwhile,
Video-LLaMA [44] adopts a dual-branch architecture for
vision-language and audio-language streams, utilizing mod-
ules such as Q-Former [21] and ImageBind [9] to integrate
visual and auditory information, thereby extending its ca-
pacity to understand temporal dynamics and sound con-
text. More recently, the field has shifted toward unified vi-
sual representation and joint multimodal training strategies
that encompass both images and videos. For instance, Chat-
UniVi [16] and Video-LLaVA [24] improve multimodal in-
teraction learning by aligning image and video representa-
tions into a shared language feature space prior to LLM in-
put, using mixed-modal training data. As such, the MLLM
domain continues to advance its capability to comprehen-
sively understand complex video content by focusing on
modality alignment and integrated representation through
joint training.

Semantic Embedding Alignment. The Platonic Represen-
tation Hypothesis [13] argues that as models become larger
and more general-purpose, their representation spaces
across heterogeneous modalities such as vision and lan-
guage tend to converge into a shared semantic space. This
perspective provides the conceptual basis for our design, in
which lightweight visual features are aligned to the em-
bedding space of an MLLM, enabling the two modali-
ties to share a unified semantic representation. Meanwhile,
vec2vec [14] demonstrates that the geometric structure of
embedding spaces is sufficiently universal across models,
allowing for unsupervised alignment between different em-
bedding spaces without any paired data. This notion of un-
supervised alignment offers both theoretical support and
practical inspiration for our approach of learning a mapping
function F (x) that projects lightweight visual features into

the MLLM semantic space—ultimately enabling real-time
video summarization that balances expressiveness and effi-
ciency.

3. Method
We describe the overall architecture of our model. Sec. 3.1
defines the video summarization task, and Sec. 3.2 explains
how feature vectors are extracted using an MLLMs [24].
Sec. 3.3 introduces the method for aligning visual features
from GoogLeNet [37] to the MLLMs embedding space.
Sec. 3.4 describes how frame-level importance scores are
predicted. Finally, Sec. 3.5 presents the training objective
used for model optimization.

3.1. Problem Definition
Given a video V = [v1, v2, . . . , vT ] ∈ RT×H×W×3, where
T is the number of frames and H , W denote the height and
width of each frame, respectively, the goal of video sum-
marization is to predict a sequence of importance scores
s = [s1, s2, . . . , sT ] ∈ RT×1. A higher value of st indi-
cates that the corresponding frame vt is more likely to be
included in the summary.

3.2. Multi-modal LLMs
In this section, we propose a method for extracting
frame-level importance embeddings using a Multimodal
Large Language Model(MLLM). We utilize a pre-trained
MLLM [24] to process a sequence of 8 consecutive frames
I0, . . . , I7, where I4 is considered the center frame and is
provided as the visual input. Simultaneously, a dialogue-
style instruction in an instruction-following format is given
as the text input, guiding the model to assess how important
the center frame is for summarizing the entire video. The
final instruction is accompanied by the following examples:

A chat between a curious human and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the human’s
questions. USER: <image> <image> <im-
age> <image> <image> <image> <image>
<image>

You are given 8 consecutive video frames repre-
sented as image tokens. The center frame(index
4) occurs at time t. Evaluate how important
this center frame is for summarizing the video,
considering its visual uniqueness and relevance
to the overall narrative.

Example 1) Score: 0.87 Explanation: The
frame shows a key action different from others.

Example 2) Score: 0.12 Explanation: The
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Figure 2. Overview of the proposed architecture. The model extracts frame-level embeddings using a pretrained GoogLeNet [37] and
feeds them into a Multi-modal Large Language Model(MLLM) [24] with temporal prompts. The MLLM output is aligned with visual em-
beddings via a mapping function F (x), and the resulting unified representations are used by the summarization model to assign importance
scores for each video segment.

frame is nearly identical to adjacent ones.

Example 3) Score: 0.61 Explanation: The
frame contains a common action but has some
unique visual elements that contribute to the
overall narrative.

Example 4) Score: 0.43 Explanation: The
frame is similar to others but has a slight varia-
tion that makes it relevant to the narrative.

Now, respond for the current input.

Along with this textual prompt, each frame Ii is em-
bedded into a D-dimensional visual feature vector vi

via the MLLM’s built-in vision encoder, while the tex-
tual instruction is tokenized into a sequence of tokens
(w1, . . . , wL) [24]. These visual tokens (v0, . . . ,v7) and
textual tokens (w1, . . . , wL) are concatenated to form the
input sequence, which is then processed by the MLLM’s
transformer. The transformer outputs a hidden state vector
h
(L)
j ∈ RD for each input token at its final layer.

Finally, the average of these hidden state vectors is used
as the semantic representation embedding of the center
frame, defined as follows:

fMLLM =
1

N

N∑
j=1

h
(L)
j , (1)

Here, N denotes the total number of input tokens
(both visual and textual). The resulting embedding fMLLM
serves as a contextual semantic representation of the center

frame and is integrated into the input features of the down-
stream video summarization model. For example, by using
fMLLM as an additional input, the model’s representational
power can be enhanced without altering its architecture, ul-
timately leading to improved summarization performance.

3.3. Learning Semantic Representaions
To learn semantic representations from video frames, we
designed a method to map the visual feature vectors ex-
tracted from a pre-trained GoogLeNet [37] model into the
high-dimensional semantic embedding space of a large lan-
guage model(MLLM) [24]. For each frame, we generate
training data (x, y) by pairing the feature vector x obtained
from GoogLeNet [37] with the embedding vector y pro-
duced by the MLLM for the same frame. The objective is to
learn a transformation function F : Rdv → Rds such that
for any given visual feature x, F (x) ≈ y.

Building on the idea from the vec2vec [14] paper, we
implemented the transformation function F (x) as a multi-
layer perceptron. Since an image feature vector is a fixed-
length embedding with no spatial structure, we chose an
MLP architecture over a CNN [14]. We incorporated resid-
ual connections, layer normalization, and the SiLU activa-
tion function into the network design to ensure stable train-
ing and rich representational capacity even for a deep net-
work [14]. Furthermore, the output dimension of F (x) was
set to match the MLLM embedding dimension ds, ensuring
that F (x) operates in the same representation space as the
MLLM.

While the original vec2vec [14] work performed fully
unsupervised training with additional loss terms (such as
cycle consistency and vector space preservation), in our
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work we leverage aligned data pairs and thus learn an effec-
tive mapping using only the core adversarial training objec-
tive, without those extra constraints. The theoretical justifi-
cation for this embedding alignment approach is grounded
in the Platonic representation hypothesis [13]. According
to this hypothesis, embedding spaces learned by different
models share a common underlying geometric structure,
and a sufficiently expressive transformation can map vec-
tors from one space to another while preserving their se-
mantic content.

The learned mapping function F (x) plays a crucial role
in the subsequent video summarization stage. In the sum-
marization process, we can obtain MLLM-level semantic
embeddings for each frame simply by feeding the frame’s
GoogLeNet [37] feature through F , without needing to run
the MLLM [24] for each frame. This means that visual
information can be utilized as linguistic semantics almost
in real time, greatly improving efficiency when processing
large-scale video data.

In other words, the proposed semantic representation
learning method effectively aligns the low-level features
from a pre-trained vision model with a high-dimensional se-
mantic space, enabling summarization based on the seman-
tic importance of each frame. This can be seen as a form of
knowledge distillation from the MLLM into the summariza-
tion model, integrating MLLM-level semantic understand-
ing into the summarization process without directly relying
on the MLLM at inference time.

3.4. Importance Scoring

The high-dimensional semantic embeddings extracted
through our proposed method can be directly utilized as
inputs to various video summarization models. Since the
primary focus of this study is on enhancing representa-
tional power, the frame-level importance scoring must be
integrable without modifying the architecture of existing
models. To achieve this, we use the transformed embed-
ding F (x)—obtained by mapping the GoogLeNet [37] fea-
tures of each frame into the semantic space—as the input,
allowing existing importance prediction models to process
it without additional adaptation.

Ultimately, our approach enhances performance by alter-
ing only the input representation while preserving the orig-
inal output structure of existing models. This design choice
ensures that the proposed embeddings can serve as a drop-in
replacement, thereby enabling fair comparisons with prior
methods. Moreover, by eliminating the need for structural
changes, our method offers both practicality and general ap-
plicability, making it suitable for a wide range of model de-
signs.

3.5. Training Objective
Our overall framework is trained with two main objec-
tives: (1) frame-level importance prediction for video sum-
marization, and (2) embedding transformation that aligns
lightweight visual features with the MLLM semantic space.
To this end, we employ dedicated loss functions tailored to
each objective.

First, the loss for frame importance prediction is defined
based on Mean Squared Error(MSE). The model minimizes
the squared error between the predicted importance score
ŝt and the ground-truth score st for each frame. The loss is
formulated as follows:

Ls =
1

T

T∑
t=1

(st − ŝt)
2 (2)

This loss encourages the extracted embeddings (either
fMLLM or F (x)) to accurately reflect the semantic impor-
tance of each frame.

Second, the loss for aligning the low-dimensional visual
features from GoogLeNet [37] to the high-dimensional se-
mantic space of MLLM is constructed using an adversarial
framework, inspired by the vec2vec [14] method. Specif-
ically, the mapping function F (x), acting as a generator,
is trained to produce outputs indistinguishable from real
MLLM embeddings y, while a discriminator D(·) is trained
to differentiate between real and generated embeddings.
The corresponding loss is defined as:

Lv = Ey∼Py
[logD(y)] + Ex∼Px

[log(1−D(F (x)))] (3)

Through this adversarial training, the transformed vector
F (x) is aligned to reside in the same semantic space as y,
the MLLM embedding for the same frame.

4. Experiments
We conduct a comprehensive set of experiments to eval-
uate the effectiveness of our proposed method. Specifi-
cally, Sec. 4.1 describes the experimental setup, includ-
ing the datasets, baselines, evaluation metrics, and imple-
mentation details. Sec. 4.2 provides additional implemen-
tation details, including model architecture and training
procedures. In Sec. 4.3, we present quantitative compar-
isons with state-of-the-art methods on standard benchmark
datasets. Sec. 4.4 offers ablation studies that analyze the
impact of different instruction types and design choices. Fi-
nally, Sec. 4.5 presents qualitative results on representa-
tive examples, highlighting the interpretability and semantic
precision of our approach.

4.1. Experimental Setup
Datasets. We evaluate on two standard benchmarks:
SumMe [10], and TVSum [34]. SumMe [10] comprises 25
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Model
SumMe [10] TVSum [34]

τ ↑ ρ ↑ τ ↑ ρ ↑
Random [31] 0.000 0.000 0.000 0.000
Human [31] 0.205 0.213 0.177 0.204

Visual
VASNet [7] 0.160 0.171 0.160 0.170
DSNet-AB [45] 0.051 0.059 0.108 0.128
DSNet-AF [45] 0.037 0.046 0.113 0.135
DMASum [41] 0.063 0.074 0.098 0.115
PGL-SUM [4] 0.065 0.072 0.206 0.157
MSVA [8] 0.200 0.230 0.204 0.233
iPTNet [15] 0.101 0.119 0.197 0.230
CSTA [33] 0.246 0.274 0.192 0.255

Visual + Text
CLIP-It [28] 0.109 0.120 0.108 0.147
TL;DW? [29] 0.111 0.128 0.142 0.167
A2Summ [11] 0.108 0.129 0.137 0.198
SSPVS [20] 0.192 0.257 0.181 0.238
Argaw et al. [5] 0.165 0.231 0.220 0.268
LLMVS [19] 0.253 0.282 0.211 0.275

Ours 0.267 0.298 0.225 0.296

Table 1. Comparison with SOTA Models on SumMe [10] and
TVSum [34] dataset. The table categorizes the compared meth-
ods into three groups: (1) random and human baselines, (2) mod-
els relying solely on visual features, and (3) models incorporat-
ing both visual and textual modalities. Our proposed approach
achieves superior performance across both SumMe and TVSum
datasets, setting a new benchmark among existing methods.

user-generated videos with multiple human summaries per
video. TVSum [34] includes 50 YouTube videos, segmented
into 2 second-long shots and scored by 20 annotators.
Evaluation Metrics. For evaluation, we compute Kendall’s
tau (τ ) [17] and Spearman’s rho (ρ) [35] on the SumMe [10]
and TVSum [34] datasets. Although F1-score has been
widely adopted in prior video-summarization work, [30]
demonstrated its susceptibility to segmentation biases and
poor semantic alignment. Accordingly, we restrict our eval-
uation to kTau, and sRho.

4.2. Implementation Details
In our implementation, we employ Video-LLaVA [24] as
the Multimodal Large Language Model(MLLM) to extract
high-level semantic embeddings, while visual features are
obtained from a pre-trained GoogLeNet [37]. For the video
summarization model, we adopt the CSTA [33] architec-
ture, which serves as a representative baseline to validate
the general applicability of our embedding method. No-
tably, our framework is model-agnostic and can be inte-

Instruction Type
SumMe [10] TVSum [34]

τ ↑ ρ ↑ τ ↑ ρ ↑
Summarize 0.205 0.223 0.209 0.233
Importance Score 0.267 0.298 0.225 0.296

Table 2. Ablation studies on instruction design. The table com-
pares the effect of different instruction types given to the MLLM,
showing that the “Importance Score” instruction leads to better
performance.

grated with any existing importance prediction architecture
without structural modifications.

The MLLM processes a sliding window of 8 consecu-
tive frames, generating one semantic embedding per win-
dow [24]. This windowing operation is applied across the
entire video in a sequential manner, resulting in per-frame
representations aligned with the narrative context. Due to
instability observed in early-stage training, we exclude the
GAN-based embedding alignment from this study. This
component will be revisited in Sec. 5.

All experiments are conducted using NVIDIA A6000
GPUs. We set the learning rate to 1e-3, the weight decay to
1e-7, and train with a batch size of 1 throughout all stages.

4.3. Performance Comparison
Tab. 1 reports the performance comparison on the

SumMe [10] and TVSum [34] datasets in terms of Kendall’s
tau (τ ) [17] and Spearman’s rho (ρ) [35], which are rank-
based correlation metrics. Our proposed method achieves
the best performance across all models, recording τ =
0.267, ρ = 0.298 on SumMe, and τ = 0.225, ρ = 0.296 on
TVSum. Compared to recent state-of-the-art models such
as CSTA [33], MSVA [8], and LLMVS [19], our approach
consistently outperforms them, demonstrating the effective-
ness and generalization capability of MLLM-based seman-
tic embeddings.

Notably, our method attains strong performance with-
out relying on any segment alignment procedure. While
many existing methods incorporate temporal segmentation
or post-processing to enhance summarization quality, our
model solely leverages frame-level semantic embeddings to
achieve high accuracy. This suggests that the learned em-
beddings are capable of capturing the underlying seman-
tic flow of videos, even in the absence of explicit structural
alignment. Furthermore, this also implies that incorporating
segment-level alignment in future work could lead to addi-
tional performance gains.

Overall, these results validate the potential of our pro-
posed semantic embedding strategy as a strong drop-in
replacement for visual features in existing summarization
models, and point to its promise as a core component for
future multimodal video summarization frameworks.
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(b) TVSum video 15. ”How to Clean Your Dog’s Ears - Vetoquinol USA”

Figure 3. Qualitative results on the TVSum dataset. The comparisons illustrate that our method yields more coherent and informative
summaries by capturing key events and transitions, demonstrating superior alignment with human-generated summaries compared to
existing baselines.

4.4. Ablation Studies

To evaluate the effect of instruction design on the quality of
semantic embeddings, we conduct an ablation comparing
two prompt types: Summarize, which asks for a short de-
scription of the center frame, and Importance Score, which
explicitly requests a score reflecting the frame’s relevance
to the summary.

As shown in Tab. 2, the Importance Score instruction
yields substantial relative improvements over Summarize
across all metrics. On the SumMe dataset, τ improves by
30.2% (from 0.205 to 0.267) and ρ by 33.6% (from 0.223 to
0.298). On the TVSum dataset, τ improves by 7.7% (from
0.209 to 0.225), and ρ by 27.0% (from 0.233 to 0.296),
demonstrating consistent gains.

These results indicate that prompting the model to eval-
uate importance rather than generate descriptions leads to
more discriminative and semantically aligned embeddings.
The numerical scoring format better aligns with the model’s
reasoning capabilities and the nature of the summarization
task, resulting in more effective representation learning.

4.5. Qualitative Results

Fig. 3 presents qualitative comparisons on two example
videos from the TVSum dataset. Each row illustrates the se-

lected key segments over time by different methods, where
the top row (GT) represents the human-annotated ground
truth summaries aggregated from multiple users.

As shown in Fig. 3a, our model produces a summary
that closely aligns with the ground truth, effectively captur-
ing key transitions and salient moments such as behavioral
changes and interview scenes. In contrast, baseline methods
like LLMVS [19] and CSTA [33] include redundant or less
informative segments, failing to fully reflect the semantic
flow of the video. Similarly, as illustrated in Fig. 3b, our
approach demonstrates superior alignment with the ground
truth by selectively including meaningful steps in the dog
ear-cleaning process while omitting visually repetitive or
trivial content. Other methods either miss critical actions
or generate overly fragmented summaries, which leads to
reduced coherence and informativeness.

These qualitative results reaffirm the strength of our
MLLM-based semantic representations in identifying con-
textually significant segments without explicit segment
alignment. The improved alignment with human prefer-
ences highlights the model’s potential for real-world sum-
marization tasks where interpretability and relevance are
crucial.
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5. Future Work

While this study demonstrates the potential of MLLM-
based representations for video summarization, several im-
portant directions remain for future exploration.

First, achieving stable training for semantic embedding
alignment remains a challenging task. Although we ini-
tially adopted an adversarial training framework to learn
the mapping function F (x) that aligns GoogLeNet [37]
features to the MLLM embedding space, our early exper-
iments revealed significant convergence difficulties. This
instability is primarily attributed to the high dimensional-
ity and complex distribution of MLLM embeddings, which
makes it difficult to maintain equilibrium between the gen-
erator and discriminator. In future work, we aim to integrate
stabilization techniques such as gradient penalty, feature
matching loss, or two-stage pretraining to improve conver-
gence behavior and alignment quality. Moreover, we plan
to explore geometry-aware alignment strategies—such as
manifold regularization or geometric consistency loss—that
leverage the intrinsic structure of the embedding space.

Second, to rigorously evaluate the generalization and
scalability of our approach, it is essential to conduct exper-
iments on large-scale datasets. The recently introduced Mr.
HiSum [36] benchmark provides a highly diverse and re-
alistic setting for video summarization, with a broad range
of topics, video lengths, and human-annotated summaries.
However, due to the substantial memory requirements and
computational demands of MLLMs, we were unable to per-
form experiments on Mr. HiSum [36] in this study. In future
work, we plan to revisit this direction with access to more
powerful compute resources and optimized memory man-
agement strategies, in order to validate whether our method
maintains strong performance at scale. Demonstrating ef-
ficacy on large-scale benchmarks will be critical for es-
tablishing the practical viability and robustness of MLLM-
based summarization techniques.

Ultimately, our future efforts will focus on enhancing the
theoretical grounding and empirical stability of semantic
alignment, while validating the proposed framework across
diverse datasets to ensure its extensibility and applicability
to real-world multimodal video understanding scenarios.

6. Conclusion

This paper presents a novel approach to enhancing video
summarization by leveraging Multimodal Large Language
Models(MLLMs). We propose a semantic embedding ex-
traction framework that processes consecutive video frames
as contextual units, generating high-dimensional represen-
tations that integrate both visual and temporal cues. These
embeddings can be seamlessly integrated into existing sum-
marization models without architectural changes. To ad-
dress the computational inefficiency of MLLMs, we intro-

duce a lightweight mapping function F (x) that aligns vi-
sual features from a pre-trained GoogLeNet [37] with the
MLLM embedding space, enabling efficient inference. Ex-
perimental results on the SumMe [10] and TVSum [34]
benchmarks demonstrate that our method consistently out-
performs prior state-of-the-art techniques in rank-based
metrics. Further ablation studies and qualitative analyses
confirm the effectiveness and generalization capability of
the proposed semantic embeddings. Overall, this work pro-
vides a practical framework for distilling MLLM knowl-
edge into efficient representations, offering a scalable foun-
dation for future multimodal video understanding and sum-
marization research.
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