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Abstract

Forecasting human gaze in egocentric videos provides
a window into attention dynamics during daily activities.
While recent methods have shown progress by leveraging
visual features from RGB frames, they often fail to model
the semantic intent underlying gaze behavior, such as the
observer’s ongoing actions. As a result, gaze predictions
tend to be spatially imprecise and biased toward the image
center. In this paper, we propose an Action-Segmentation
based framework that anticipates future gaze by condition-
ing on both visual and semantic cues. Our model is com-
posed of four key modules: (1) a transformer-based vi-
sual encoder, (2) an action feature extractor that predicts
verb/noun and produces an activity-aware representation,
(3) a segmentation module that extracts gaze-aligned ob-
Jject masks using SAM, and (4) a decoder that fuses visual
and semantic features to generate gaze heatmaps. We vali-
date our model on the EGTEA Gaze+ dataset and show that
action-segmentation based modeling significantly enhances
egocentric gaze forecasting performance.

1. Introduction

Egocentric vision understanding has emerged as a novel
and challenging research field in computer vision with the
rapid development of wearable devices. Unlike conven-
tional third-person vision, first-person visual data acquired
via cameras or sensors worn on human body offer a unique
perspective that reflects human visual experiences [11]].
Such research can be useful not only in augmented real-
ity (AR), virtual reality (VR), and human—computer inter-
action (HCI), but also in the emerging research domain of
embodied Al where artificial agents interact with the phys-
ical world, coupled with robotics.

Gaze represents distinctive information, inherently
present in egocentric vision. A person’s eye movements,
which reflect the observer’s intentions and goals, are essen-
tial for understanding egocentric video data, as the video
frames themselves change according to the observer’s head
and body movements driven by these intentions. In partic-
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Figure 1. The problem setting of egocentric gaze anticipation.
During the observation time (1-3 seconds), the model receives
video frames and a single action label. The model predicts two
outcomes for the anticipation time (1 second): (1) whether the
current action will continue, and (2) the gaze distribution as a
heatmap.

ular, the problem of egocentric gaze anticipation, predict-
ing where gaze will move in future frames of first-person
videos, can elicit a more comprehensive understanding of
the relationship between egocentric scene and gaze behav-
ior than a rather simpler gaze estimation task in the cur-
rent frame. In addition, gaze anticipation enables predictive
computation and is beneficial for many applications [23].
For instance, in virtual reality environments, predicting the
direction of a user’s gaze movement can be used to pre-load
content that the user is likely to focus on, thereby reducing
latency in VR rendering processes. However, the gaze an-
ticipation task is largely understudied due to the complexity
of egocentric scenes and the dynamic nature of gaze behav-
iors [10].

We argue that both action-based and segmentation-
guided cues are essential for egocentric gaze anticipation.
Gaze patterns are highly dependent on the observer’s on-
going task. During free-viewing scenarios such as environ-
mental exploration or passive observation, gaze tends to fol-
low bottom-up visual saliency, gravitating toward the most
visually prominent stimuli. In contrast, in task-driven set-
tings — e.g., cooking or object manipulation — gaze typ-
ically shifts toward task-relevant objects that are semanti-
cally associated with the next intended action.

Prior works have primarily relied on bottom-up saliency
cues extracted from RGB inputs. However, such approaches
have shown limited effectiveness, especially under condi-



tions of rapid gaze transitions or when multiple salient re-
gions are present [[18]. These limitations highlight the need
for models that incorporate higher-level semantic under-
standing.

To this end, we propose a model that jointly lever-
ages two complementary sources of information: (1) gaze-
guided segmentation masks that provide spatially localized,
semantic representations of potential gaze targets, and (2)
action-aware features that encode the observer’s behavioral
intent. This dual semantic conditioning enables more ac-
curate gaze forecasting by capturing both the *where’ and
’why’ behind gaze behavior. Our approach is particu-
larly effective in complex egocentric scenes, where saliency
alone fails to explain human attention.

Our contributions are summarized as follows:

* We introduce the first gaze anticipation framework that
fuses action semantics and gaze-guided object segmenta-
tion to model both behavioral intent and observed object
as well as visual saliency in egocentric videos.

e Our model successfully enhances gaze forecasting ac-
curacy in scenarios with complex interactions and rapid
gaze transitions by jointly leveraging high-level semantic
cues.

2. Related Work

Egocentric Gaze Modeling. In understanding human gaze
behavior in egocentric videos, the majority of previous re-
search has focused on gaze estimation, which aims to in-
fer the gaze point in the current video frame. Early re-
search started from saliency prediction using handcrafted
features [12,120,21]]. As entering the deep learning era, gaze
estimation models leveraging CNNs [6} [7, [19], LSTMs,
and Transformers [9, [14] have been developed. Huang et
al. [6] developed a framework for learning temporal atten-
tion shifts from video features that capture significant gaze
movements. Lai et al. [9] explicitly formulated global-local
relationships within visual embeddings for gaze estimation.

In contrast, egocentric gaze anticipation, which aims to
forecast future gaze targets based on previous video frames,
addresses a relatively unexplored aspect of gaze model-
ing. Currently there are only few gaze anticipation mod-
els in the literature. Zhang et al. [23] first introduced
a novel challenge defined as gaze anticipation in egocen-
tric videos and proposed a Generative Adversarial Network
(GAN [4]) model called Deep Future Gaze (DFG) to gen-
erate future frames, adopting a 3D-CNN architecture. In
the follow-up study [24], they improved their model by
expanding to a dual-branch structure. Yun et al. [22] in-
troduced the Multisensory Spherical World-Locked Trans-
former (MuST) framework, which transforms audiovisual
information relative to head pose, thereby compensating
for self-motion effects and improving the accuracy of gaze

anticipation. Recently, Lai et al. [10] proposed a Con-
trastive Spatial-Temporal Separable (CSTS) approach, uti-
lizing both video and audio modality for the first time in
egocentric gaze understanding and achieved state-of-the-
art performance on two egocentric video dataset, Ego4D
[S] and AEA [16]. All previous egocentric gaze anticipa-
tion models learn only from the bottom-up sensory prop-
erties. In this work, we introduce our model which lever-
ages another crucial factor influencing gaze behavior, the
observer’s action.

Gaze Understanding and Action. The relationship be-
tween gaze patterns and actions was explored in several pre-
vious works. Borji et al. [1]] established a direct mapping
between low-level visual features and motor actions de-
rived from top-down processes in driving simulation. Fathi
et al. 3] proposed a probabilistic generative model which
uses verb-noun pairs describing actions as a prior for gaze.
Huang er al. [7]] and Li et al. [13]] jointly modeled gaze and
action using CNNs, thereby constructed a unified frame-
work for gaze estimation and action recognition. These
studies have all been conducted in the gaze estimation task,
and no paper has explicitly investigated the effect of action-
related information on performance in the gaze anticipation
task. Therefore, we will examine whether action-related in-
formation also helps to predict where gaze will be directed
in the future.

3. Method

3.1. Overview

An overview of the full architecture is illustrated in Fig. 2]
Our proposed method aims to forecast future gaze locations
from egocentric video by integrating both visual and seman-
tic cues. The architecture is composed of four main com-
ponents: (1) a transformer-based visual encoder, (2) an ac-
tion feature extractor that predicts verb/noun and produces
an activity-aware representation, (3) a segmentation mod-
ule that extracts gaze-aligned object masks using SAM, and
(4) a transformer-based decoder that fuses visual and se-
mantic features to generate gaze heatmaps. The input to our
model is a sequence of egocentric RGB frames {I;}1_ cap-
tured over a variable temporal range between 1 and 3 sec-
onds and ground-truth. Regardless of the input duration, we
uniformly sample 8 frames to represent the temporal span,
assuming this subsampling retains sufficient information for
future gaze prediction. Our goal is to predict the user’s gaze
distribution G over the upcoming one-second interval in the
form of a dense spatial heatmap.

3.2. Network Architecture

Spatiotemporal Feature Encoder. We adopt the Multi-
scale Vision Transformer (MViT) [2] to encode egocentric
video clips. MViT captures both spatial and temporal fea-
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Figure 2. Overview of the proposed model. Given egocentric video frames {I; }7—, and gaze point (z, ¥ ), our model extracts both action

semantics and object-centric features to forecast future gaze. The video encoder first computes spatiotemporal embeddings F €

RBXNXD.

The action feature extractor generates action-aware features via a prediction MLP, while the segmentation module applies SAM to generate
spatial masks conditioned on gaze cues. The masked video frames are encoded again to produce ¢(M), and the fused features are decoded

to produce the gaze heatmap G.

tures across multiple scales, making it well-suited for dy-
namic first-person scenarios. Each input clip is uniformly
subsampled to 8 frames to balance computational efficiency
and temporal context, under the inductive bias that short
(under 3 seconds) egocentric sequences are sufficient for
downstream tasks.

Given an input video clip X € REXTXHXWX3 'the en-
coder produces patch-level feature embeddings:

F — ¢(X) c RBXNXD

where B is the batch size, T' the number of frames, H X
W the spatial resolution, /N the number of spatiotemporal
tokens, and D the embedding dimension.

Action Feature Extractor. This module infers the seman-
tic activity context from the encoded visual representations.
A lightweight MLP-based head predicts the verb and noun
associated with the user’s ongoing action:

’lA)ERBXC”, ’ﬁERBXCn, faeRBXNXD:EaCtion(F)
where C, and C,, denote the number of verb and noun
classes, respectively. The feature f, encodes action-aware
semantic information for downstream use.

Segmentation Module. We employ the Segment Anything
Model (SAM) [8] to extract object masks guided by pre-
dicted 2D gaze coordinates. Given the current frame /; and
predicted gaze point g; = (x4, y:), SAM generates a binary
mask M; € {0,1}7*W_ Stacking across time produces
M € REXTXHXW wwhich is encoded via the same back-
bone:

fm — (b(M) c RBXNXD

Gaze Forecasting Decoder. The decoder predicts spa-
tiotemporal gaze heatmaps by fusing the action-aware fea-
tures f, and the mask features f,,,:

zo = Fuse(f,, f,,) € REXNxD

The fused embedding z is processed by transformer decod-
ing layers to produce gaze heatmaps:

G = Decoder(zg) € REXIXTxH W

where H', W' denote the spatial resolution of the predicted
heatmaps. The output G represents the predicted spatiotem-
poral gaze distribution across the future 7" frames.

3.3. Training

Two-stage Training Strategy. We adopt a two-stage train-
ing scheme to ensure that the gaze forecasting module ben-
efits explicitly from the action semantics. In the first stage,
we train the egocentric video encoder and the action feature
extractor jointly using only action supervision. This allows
the model to learn discriminative activity-aware visual rep-
resentations that capture the user’s semantic context.

In the second stage, we introduce the gaze forecasting
decoder and train the entire model end-to-end using both
action and gaze supervision. Rather than freezing the action
encoder, we allow its parameters to be fine-tuned alongside
the decoder, enabling tighter semantic alignment between
action understanding and gaze prediction.

Loss Function. We use a combination of classification and
distribution-based losses for the two tasks. For action pre-
diction, we apply a multi-part cross-entropy loss that ac-



counts for verb and noun classification:

ﬁaction = )\v . CE(&verbv averb) + (1 - )\v) . CE(dnoum anoun)
ey
where )\, is a hyperparameter that controls the relative im-
portance of verb versus noun prediction.
For gaze prediction, we use the Kullback-Leibler diver-
gence to measure the discrepancy between the predicted and
ground-truth gaze heatmaps over the target interval:

Leaze = KL(G || G) )

The total loss is computed as the weighted sum of the
two task-specific losses:

Etolal = Lgaze + £acti0n 3

This formulation allows the model to jointly optimize
gaze forecasting and action understanding in an end-to-end
manner, reinforcing semantic alignment between behavioral
cues and spatial attention.

4. Experiments

4.1. Experimental Setup

Dataset. The EGTEA Gaze+ [13]] includes HD videos,
frame-level action annotations, and gaze tracking data. It
was collected from 32 subjects in 86 sessions and was cap-
tured over 28 hours of cooking activities. Videos and gaze
points have the same resolution of 1280 x 960 and 24 fps
fixed frame rate. The action annotations of 106 unique
classes are based on 19 verbs and 53 nouns. Original
action-segmented clips are trimmed in accordance with our
task settings, as we only use segments between 2 to 4 sec-
onds. Clips shorter than 2 seconds are discarded, and those
longer than 4 seconds are partitioned into non-overlapping
4-second video segments. For any residual segment at the
end of a clip, the same criterion is applied: segments shorter
than 2 seconds are discarded while those of 2 seconds or
longer are retained. After preprocessing, there are 8,589
training clips and 2,019 test clips. Other popular datasets
such as Ego4D [5] and AEA [16]], which were used in CSTS
[[10], are not suitable for our model due to the absence of ac-
tion labels.

Evaluation metrics. Following previous studies on ego-
centric gaze anticipation [10,13]], we adpot F1 score, recall,
and precision as evaluation metrics.

4.2. Implementation Details

For each training sample, we use video frames from ¢t — ¢
to t as input, where ¢ € [1, 3], and predict gaze heatmaps
from ¢ to ¢ + 1. During training, we sample 8 frames from
the input video, and resize them to 256 x 256. We adopt
the MViT backbone to the encoder and the decoder with the

Module Parameter Value
Input Frame size 256
Num. frames 8
Patch embedding Embedding dim 96
Patch kernel 3,7,7)
Patch stride 2,4,4)
Patch padding 1,3,3)
Action Head Verb / Noun classes 19/53
Verb / Noun weights (stagel) 1.0/1.0
Verb / Noun weights (stage2) 0.5/0.5
Training Loss functions KLDiv + CE
Optimizer AdamW
Learning rate 1x107*
Momentum 0.9
Weight decay 0.05
Max epochs 15

Table 1. Key hyperparameter settings used in each module of the
proposed model.

same structure as CSTS [10]. For SAM, we denormalize
input frame back to its original RGB before feeding it to
SAM. For each frame, SAM outputs three candidate masks
along with confidence scores; we select the single mask
with the highest score. We set a threshold of 0.5 to bina-
rize the selected mask. We use AdamW [[15] optimizer with
initial learning rate of le-4 and cosine annealing scheduler.
The momentum and weight decay are 0.9 and 0.05 respec-
tively. The model is trained for 15 epochs with a batch size
of 8 per GPU using 4 NVIDIA RTX 3090 GPUs. Other
hyperparameters are listed in Tab.[I]

4.3. Main Results

Baselines. We compared our model’s performance with
three other models: GLC [9]], MViT [2], and EgoVideo [17].
Although the current state-of-the-art (SOTA) model is
CSTS [10], direct comparison on the dataset was not fea-
sible, as EGTEA Gaze+ does not include audio data.
Since CSTS relies on an audio—video fusion mechanism,
its fusion layers become ineffective without audio, render-
ing the CSTS functionally identical to MViT. Therefore,
we decided to compare with MVIT backbone rather than
CSTS. We also compare our method with EgoVideo [17], a
newly released egocentric foundation model as an encoder.
Since EgoVideo was specifically designed to understand
the unique characteristics of egocentric video, we expected
this model would exhibit comparable performance to MViT,
which is trained on general video data. Finally, we adapt the
SOTA egocentric gaze estimation model, GLC [9] to the
anticipation setting. In [10], GLC also demonstrated per-
formance slightly lower than CSTS but higher than MViT
in the anticipation task.



Methods F1 Score Recall Precision
GLC [9] 49.1 52.8 46.0
MVIT [2] 49.1 54.2 44.8
EgoVideo [17] 45.4 53.8 39.6
Ours 54.4 65.7 46.4

Table 2. Performance comparison on EGTEA Gaze+. Existing
gaze estimation model is also employed as anticipation setting for
more thorough comparison. The best results are highlighted in
bold.

Methods F1 Score Recall Precision
vanilla MViT 49.1 54.2 44.8
Action only 46.4 61.2 37.4
SAM only 54.8 64.5 47.6
Ours 54.4 65.7 46.4

Table 3. Results of ablation study.

As summarized in Tab. [2] our action-segmentation
guided gaze anticipation model outperforms other models
across all evaluation metrics. The result shows that our
method to combine the action and segmentation approach
is effective for gaze anticipation. Meanwhile, contrary to
expectations, EgoVideo showed lower performance than
MViT. While this could be an issue with the performance of
encoder itself, it could be related to the difference in model
architecture, as EgoVideo model uses a convolutional de-
coder instead of an MViT decoder due to the absence of
intermediate features.

4.4. Ablation Study

Tab. [3|shows the result of ablation study on EGTEA Gaze+
dataset. To study the effect of each module in our model,
we compare our full model with ablated versions: vanilla
MVIT as our pure backbone model, ”Action only” as the
model using only the action features without mask features
from segmentation module, and ”SAM only” as the model
using only the segmentation branch without action features.
Unexpectedly, the results are contrary to our initial hypoth-
esis. The “Action only” model performed lower than the
MViT backbone, and even our full model exhibited slightly
inferior performance compared to the ”SAM only” model in
terms of F1 Score and Precision. These results consistently
suggest that the action module had a detrimental impact on
performance enhancement. It appears that the majority of
the performance gain was driven by the SAM module.

Our initial hypothesis that action features would be ben-
eficial for gaze anticipation appears to be incorrect. We
assume that it is not because action information itself is
unhelpful, but rather because the current module, utiliz-

ing an MLP layer, failed to effectively integrate the ac-
tion features into the model. The action context features,
which are added with the original frame embedding in the
action module, were designed for verb/noun classification.
Consequently, this might lead the decoder to be influenced
by confusing information that is irrelevant to the original
gaze anticipation task. Also, the same context embedding
is broadcasted and added to all N tokens of each sample
within a batch. Given that verb/noun information is global
while visual tokens are local, injecting the same global in-
formation into all tokens might constitute an excessive over-
generalization, potentially weakening the spatio-temporal
characteristics of the original frame embeddings.

4.5. Visualization

Fig. [3] and illustrates the visualization of the anticipation
gaze heatmaps of our model and the baselines. Our method
shows clear advantages in actions involving significant ob-
ject movement within the frame, such as pouring liquid
or cutting ingredients. In such cases, gaze transitions are
strongly influenced by the trajectory of moving objects, and
our model is able to better anticipate these shifts by effec-
tively integrating action semantics and temporal dynamics.
In contrast, bottom-up approaches like MViT and GLC per-
form reasonably well on simpler actions with minimal ob-
ject motion but struggle when the task requires tracking
rapidly moving targets. These methods tend to rely heav-
ily on static visual saliency and lack the capacity to model
high-level task-driven gaze behavior. We presume that the
regions from gaze-guided segmentation masks can provide
more localized information about the objects currently be-
ing observed by the viewer to the model.

We also illustrate a failure case in Fig.[d, When the gaze
shifts abruptly, the model cannot anticipate the correct gaze
position. This is a common limitation of all previous gaze
anticipation models. This problem is hard to resolve due
to an inherent limitation of the gaze anticipation task itself,
which necessitates forecasting gaze without access to future
frames.

5. Conclusion

In this paper, we addressed the challenging problem of ego-
centric gaze anticipation, which is crucial for understanding
human intent and interaction in first-person videos. We pro-
pose a novel action-segmentation based approach to fore-
cast future gaze targets. Our key contribution is that our
model estimate future gaze points more accurately by lever-
aging gaze point information from the observation time.
Furthermore, we attempted to introduce action-related in-
formation into the gaze anticipation task, albeit with results
that differed from our initial hypothesis.

There are some limitations in our study. First, the model
is heavier and slower than baselines due to the use of SAM.
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Figure 3. Egocentric gaze anticipation results from our model and
other baselines. Four future time steps are uniformly sampled from
the anticipation segments. Green dots indicate the ground truth
gaze location. Above (Pour o0il”) is the case where our model
predicts more accurately than other baseline models, while below
(”Wash dish”) is the case where the result of our model and base-
lines is similar.

The overhead appears to largely stem from internal struc-
tural issues within SAM. Specifically, the mask derivation
operation within SAM is not processed in a batched man-
ner; instead, it is handled individually for each frame. Fur-
thermore, SAM requires input as NumPy arrays rather than
tensors, which causes frequent data transfers between the
CPU and GPU. If we use an improved segmentation mod-
ule addressing these architectural inefficiencies, we could

EgoVideo MVIT GLC

Anticipation Segment

t+1,

Figure 4. Failure cases of our model and baselines. Green dots
indicate the ground truth gaze location. (Action annotation: “Di-
vide/Pull Apart paper towel”)

significantly reduce the overhead.

Second, the dataset is limited to cooking situation. This
is primarily due to the scarcity of datasets that possess
both gaze and action annotations simultaneously. Attaching
fine-grained action annotations per frame is a highly labor-
intensive and costly process. Therefore, a promising direc-
tion for future study could try a self-supervised learning, or
use a pretrained video caption model so as to automatically
generate action labels of each video clip.

Third, our model use ground-truth gaze points at obser-
vation time instead of predicted gaze points. Although us-
ing information prior to the anticipation time is valid, rely-
ing on ground-truth gaze data limits inference to only cases
where such data are available, thereby reducing its practical
applicability. Since this study confirmed the benefit of gaze
point information from the observation time, future work
could explore leveraging gaze points inferenced by other
gaze estimation models instead of ground-truth, enhancing
the method’s generalizability and practical use.

Lastly, our model fails to completely overcome the lim-
itation of previous approaches in predicting drastic gaze
movements. As mentioned earlier, this is due to the inherent
nature of the gaze anticipation task itself, which necessitates
forecasting gaze without access to future frames. To solve
this problem, we need to figure out the relationship between
future frame movement and gaze movement. Future studies
may account for these two components simultaneously.

In spite of these limitations, our work provides important
insights into the relationship of gaze, action, and observed
objects. Since several unresolved challenges are still left in



egocentric gaze anticipation, we hope our research encour-
ages further studies into this domain.
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