Jamo Is All You Need:
Enhancing Korean OCR with Style Tags

Younguk Kim

Seokhoon Kang Ye Ji Chun

Juhee Chae

Seoul National University, Korea
{yu5.kim, getar98, yejichun, chaejuhee}@snu.ac.kr

Abstract

We present an efficient and generalizable OCR
framework for Hangeul that leverages sub-character
(jamo-level) prediction instead of treating each sylla-
ble as a distinct class. By decomposing each character
into its constituent initial, medial, and final compo-
nents, our model reduces the output class space from
over 11,000 full syllables to just 144 jamo units. This
leads to a 40% reduction in model size and improved
generalization to rare or unseen syllables. When fine-
tuned on multilingual datasets, our jamo-based OCR
achieves higher word accuracy (97.84%) than a con-
ventional full-syllable baseline (97.31%), while preserv-
ing compatibility with Latin scripts. In addition, we
extend the model to recognize formatting styles such
as superscripts and subscripts by introducing a parallel
classification head and training on a custom synthetic
dataset. Despite class imbalance, the model learns to
identify visual position cues and produce layout-aware
outputs. These results demonstrate the benefit of struc-
turally aligned modeling for complexr writing systems
like Hangeul and open up avenues for style-aware OCR
in multilingual scenarios.

1. Introduction

Optical character recognition (OCR) is a technol-
ogy that extracts text from images, increasingly pow-
ered by machine learning and deep learning. With
the advancement of deep learning, OCR, performance
has improved significantly. Typically, an OCR sys-
tem converts the text in an image into a machine-
encoded format (such as Unicode), enabling digital us-
age. A wide range of approaches have been explored,
from classical pattern recognition methods to modern
high-precision deep learning models. Recently, a model
called PARSeq [[l]] introduced a permutation-based au-
toregressive sequence training strategy for text recog-

nition, achieving state-of-the-art results.

These OCR models perform well on many bench-
marks. However, most of the research has focused on
the English alphabet, and there is a lack of studies
targeting scripts such as Hangeul (the Korean writing
system). Hangeul characters are composed of smaller
units (called jamo), and we hypothesize that recog-
nizing these subcomponents instead of whole syllables
could be more effective. Therefore, in this work, our
aim is to contribute by proposing a model that recog-
nizes Hangeul at the jamo level. This approach differ-
entiates our work from previous Korean OCR studies
as we attempt to recognize subunits using composi-
tional components, which we believe bring notable ben-
efits. After we developed a model to detect Hangeul
successfully, we also attempted to upgrade the model
by adding the function to distinguish normal, super-
script, or subscript letters. We realized that few pre-
vious studies have thoroughly explored the recognition
of superscripts and subscripts using recent OCR mod-
els, let alone integrated this with Hangeul recognition.
Therefore, we also further tested a model variant that
included a function to distinguish whether a charac-
ter is a superscript, subscript, or a normal letter. In
this aspect, we believe that our work could contribute
to future superscript and subscript notation recogni-
tion, not only for Hangeul but also for Latin-based
languages.

Hangeul syllabic blocks consist of individual con-
sonants and vowels. Existing OCR systems generally
treat each syllable as an atomic character, thereby ig-
noring Hangeul’s compositional nature. By contrast,
our method explicitly leverages Hangeul’s structure:
we extend the PARSeq framework to recognize the con-
stituent jamo of each character and assemble them into
syllables. This design aligns the OCR process with the
intrinsic makeup of Hangeul, potentially improving ac-
curacy and generalization for Hangeul text.

In many real-world OCR applications, practitioners
have adapted open-source or commercial OCR engines

to support multiple languages by expanding the char-
acter set (e.g., including Hangeul, Chinese characters
(Hanja), Latin letters, special symbols, etc.). How-
ever, existing approaches—including open-source sys-
tems like EasyOCR [2] and PaddleOCR [B], as well as
recent research work [l d]—share certain limitations
because they predict each character in an image di-
rectly as a Unicode code point. We highlight two major
issues with this paradigm:

1. Explosion of character classes for composi-
tional scripts. Languages such as Korean and
Chinese have extremely large sets of possible char-
acters. For example, English text can be handled
with 52 classes (26 letters in two cases), whereas
modern Hangeul requires 11,172 distinct syllable
classes. Similarly, Latin-based languages intro-
duce additional letters with diacritics (A, C, U,
etc.), dramatically increasing the number of sym-
bols to recognize. An OCR model that treats
each possible character as a separate class faces
increased complexity and data sparsity.

2. Difficulty in recognizing text style informa-
tion. Many visual text elements encode stylis-
tic or formatting information (such as subscripts,
superscripts, underlines, strikethroughs, or ital-
ics) that cannot be captured by a single Unicode
character. For instance, the number 0 versus the
superscript ©, or the presence of underlining or
strikethrough, represent distinctions that are not
preserved if the model outputs only plain Unicode
text. A conventional OCR model might recognize
styled text such as COq or footnote markers (e.g.,
1) simply as CO2 or 1, thus losing formatting
information or potentially causing misinterpreta-
tion.

OCR is a crucial technology for digitizing documents
and images, finding applications in search, augmented
reality, and large language models, among others. The
need for high accuracy, especially for a complex script
like Hangeul, motivates new approaches that can ef-
fectively handle compositional character systems. By
developing a model that recognizes text via subcharac-
ter components, we aim not only to improve Hangeul
recognition but also to lay groundwork for better han-
dling of other languages. For instance, the same idea
could help recognize Latin characters with diacritics or
Chinese characters composed of multiple radicals. Of
course, naively expanding the character set to cover all
such cases would greatly increase the computational
burden and reduce training efficiency. This under-
scores the need for a more efficient approach, which
our model attempts to provide. In addition to this

core model we have developed, we recognized that pre-
vious OCR models lacked the ability to recognize su-
perscripts and subscripts, which are essential for ac-
curately capturing a wide range of textual content.
To address this limitation, we tested a model that in-
corporates a classifier to distinguish between normal,
subscript, and superscript characters, enabling a more
comprehensive OCR recognition.

2. Related Work
2.1. Scene Text Recognition Methods

Scene text recognition (STR) has evolved along two
primary model paradigms. According to a recent sur-
vey by Wang et al. [§], early STR models were often
based on Connectionist Temporal Classification (CTC)
decoders, while later models adopted attention-based
encoder-decoder architectures. CTC-based models are
effective for recognizing text with regular patterns,
as they align predictions with positions in the image.
However, they tend to underperform on images with
irregular text layouts or complex backgrounds. In con-
trast, attention-based models can dynamically focus on
relevant parts of the image during decoding, yielding
higher performance on complex scene text images.

Publicly available OCR engines (e.g., EasyOCR,
PaddleOCR) are generally designed to recognize
Hangeul as pre-composed syllable characters, and in
practice they can only handle a subset of all Hangeul
syllables (about 1,471 or 1,758 out of the 11,172 pos-
sible) due to model and data limitations. This means
they cannot represent many rare syllables. Moreover,
for the same reason, such models cannot capture style
annotations: for example, they might recognize COx4
simply as CO2 or interpret a footnote marker like *
as the digit 1. Misreading of these styled characters is
possible since style information is disregarded.

A historical example that illustrates the problem of
class explosion is the early standard for Hangeul char-
acter encoding. The legacy character set KS X 1001 [9],
commonly referred to as the Wansung code, defined
only 2,350 frequently used Hangeul syllables out of over
11,000 possible combinations, primarily due to mem-
ory constraints at the time. In contrast, represent-
ing Hangeul by decomposing syllables into their con-
stituent consonants and vowels (as adopted by modern
IME keyboards) is significantly more memory-efficient
and computationally practical. This comparison high-
lights the potential benefits of a compositional ap-
proach for OCR systems, especially when dealing with
complex writing systems like Korean.

Over the years, OCR models have integrated convo-
lutional networks (for visual feature extraction) with

sequence models (for text sequence decoding). A va-
riety of architectures—such as CRNN, LSTM, atten-
tion mechanisms, Transformer, and Vision Transformer
—have been applied to text recognition [, 4], yield-
ing continual performance improvements. Nonetheless,
the majority of these studies report results on English-
centric benchmarks. Research focusing on languages
with non-Latin scripts (such as Korean) is still rela-
tively scarce.

2.2. Hangeul OCR Research

The unique composition of Hangeul has spurred
some research into specialized OCR methods. Unlike
Latin characters where each symbol is atomic, a single
Hangeul character is a combination of multiple jamo
(letters), and an OCR system must analyze a clus-
tered arrangement of these parts. A Hangeul syllable
can be decomposed into an initial consonant, a medial
vowel, and an optional final consonant. Many OCR
models for Hangeul text, however, have typically not
taken this structure into account, instead training on
complete syllable characters as if they were indivisible
units. [G-§]

In recent work, Kim et al. [10] and Lee et al. [11]
developed OCR models recognizing handwritten and
printed Korean text at the whole-syllable level without
leveraging jamo decomposition. Later, Ko et al. [12]
applied a CNN-based model to Korean scene text
recognition, again treating Hangeul as pre-composed
characters. There is an expectation that recognizing
Hangeul text by decomposing it into jamo could im-
prove performance, especially for less frequent sylla-
bles. If the model learns to recognize sub-character
units, it could correctly predict rare or unseen sylla-
bles by recombining known components, even when
trained on relatively limited real data. This suggests
that a compositional approach might enable more ro-
bust OCR for Hangeul with fewer data, by handling
characters that seldom appear in fully composed form.

Beyond OCR, the idea of leveraging jamo units has
appeared in other language processing tasks. For ex-
ample, some prior works explored jamo-level tokeniza-
tion for Korean machine translation [[13,[14] and lan-
guage modeling [15]. These demonstrate the feasibility
and utility of breaking Hangeul text into sub-character
units in NLP contexts. However, there has been little
work applying such ideas to OCR, which is the gap our
research addresses.

2.3. Jamo Decomposition for Hangeul

A major challenge in extending OCR to Hangeul
is the large number of possible syllables. Modern
Hangeul comprises 11,172 valid syllable combinations

ﬁﬂ[zﬂ Eﬂ] Z%Q
B AT T

A w 1+ }- 4 O oo

Wi T

19 21 28

Aa = Aa
Eé = Ee

4+4 4+1

Figure 1. Illustration of Hangeul syllable decomposition
and output class reduction. The example syllable 7 is
split into its jamo components: = (initial), } (medial), o
(final). Our model predicts each of these components with
separate outputs, which are then combined to form the rec-
ognized character. This approach reduces the Hangeul out-
put space from thousands of syllables (11,172 possible com-
binations) to a few dozen sub-character classes. The right
side illustrates a similar composition approach for Latin
script with diacritics (e.g., A can be represented as A with
an accent mark).

(or 11,265 Unicode code points when including histor-
ical or obsolete forms). A naive approach that treats
each syllable as an independent class results in an out-
put softmax with over 11,000 classes, in addition to
those for other scripts. This massive output space
significantly increases model complexity and leads to
severe data sparsity, as many syllables appear only
rarely.

Although there has been prior research that has
adopted jamo-level decomposition into deep learning
methods in OCR detection for Hangeul, or Korean let-
ters, there is a lack of studies that integrate this linguis-
tic knowledge into recent state-of-the-art OCR models
as far as we have observed. The most recent study that
attempted to address the structural decomposition of
Hangeul was proposed in 2019 by Chang et al. [21], who
took into account the decompositional characteristics
of Hangeul and Chinese characters into a CNN-TDNN
model for OCR tasks. This study reports that utilizing
the decompositional structure of Hangeul and Chinese
characters significantly reduced the parameters used
in the model. However, there is still a lack of research
that focusing on Hangeul OCR detection using SOTA
models.

To address this, we adopt a jamo decomposition
strategy for Hangeul. Instead of predicting whole syl-
lable characters, our model predicts the constituent
components of each Hangeul syllable. Specifically,
each Hangeul character is represented as a combina-
tion of three subunits: an initial consonant (choseong),
a medial vowel (jungseong), and a final consonant
(jongseong, which may be absent). We modify the de-
coder so that at each time step it outputs three tokens:
one for each type of jamo. These three predicted tokens
collectively form one syllable in the recognized text.

Using this approach, any Hangeul syllable can be
generated from an appropriate triplet of jamo classes.
Importantly, this decomposition also means that the
model can generate syllables it never saw during train-
ing, as long as each jamo in the syllable was seen in
some context. This offers a way to generalize to un-
seen character combinations, addressing the long-tail
character distribution problem in Hangeul.

2.4. Radical-Based Recognition in Other Languages

Our approach is conceptually related to techniques
in other languages that use sub-character components.
In Chinese text recognition, for instance, researchers
have studied recognizing radicals or character compo-
nents to improve performance. Deng et al. [L6] and
Zhang et al. [17] proposed models that leverage rad-
ical information—parts of Chinese characters—to as-
sist the recognition process. These studies suggest that
a similar strategy (segmenting characters into smaller
constituent parts like radicals, or in our case jamo or
diacritics) can enhance an OCR model’s capability. In-
spired by this, our work can be seen as an extension of
the compositional recognition concept to Hangeul and
potentially to Latin scripts with diacritics.

2.5. Superscript and Subscript Detection in OCR

Previous research has aimed to detect superscripts
and subscripts in OCR, particularly in domains such as
scientific documentation, mathematics, and chemical
notation.

Garain [22] presented one of the earliest studies in
this field, focusing on the structural identification of su-
perscripts and subscripts in mathematical documents.
This rule-based method relied on analyzing spatial re-
lationships between characters, such as vertical or hor-
izontal alignments. More recent work includes that
of Orji et al. 23] who developed a method to recog-
nize subscripts in the context of image-to-LaTex con-
version. The paper increased accuracy in OCR de-
tection by augmenting of training data with LaTex
syntax constraints, active learning strategies, and the
employment of active learning feedback loops. An-
other related study by Hsu et al. [24] introduced a
generative fusion decoding algorithm that integrates
Large Language Models (LLMs) with traditional OCR
pipelines. Although this work did not focus on su-
perscript or subscript recognition, this model showed
improved performance in processing structured and
instruction-sensitive tokens using generative models.

In this research, we have attempted to incorporate
Hangeul detection with image-to-LaTeX conversion to
handle superscripts and subscripts. We have also de-
veloped a model to detect superscripts and subscripts

Position Queries Visio-ls
b * Decoder ‘ ‘
P B o |Pa] P | s -}L MLP -+}- Linear
{)) L))

w5l n

S i e

[

1
I
I
e, e i) !
b L] % | 5 o)l loml: | gz genaa || VITES
1
! o || te1f{te1)... [P
|
|

Topat Image

Tnput Context Permutations Groand Trath Label

Figure 2. Overview of our PARSeq-based OCR model ar-
chitecture. The model uses a Vision Transformer encoder
for feature extraction and an autoregressive Transformer
decoder for sequence prediction. We modify PARSeq’s out-
put layer by introducing separate or extended heads for
Hangeul jamo components to support multiple scripts.

in both Hangeul and English text, as well as Arabic
numerals.

3. Method
3.1. Model Architecture

We base our text recognition model on the recently
proposed PARSeq architecture [l], a permutation-
based autoregressive sequence model designed for scene
text recognition. PARSeq utilizes a Vision Transformer
(ViT) backbone [L8] to extract visual features from in-
put text images, and a Transformer decoder that gen-
erates the output sequence token by token in an au-
toregressive manner. This design enables the model
to leverage both visual and linguistic context during
decoding.

Starting from a pretrained English PARSeq model,
we fine-tune it for multilingual OCR by extending
the output layer to support multiple scripts, including
Hangeul. The core architecture—the ViT encoder and
Transformer decoder—is preserved to retain PARSeq’s
strong performance and robustness. Only the output
embedding and prediction layers are modified to ac-
commodate the expanded character set required for our
task. The overall model structure is illustrated in Fig-
ure

3.2. Jamo Decomposition for Hangeul

Hangeul characters are composed of one choseong
(initial consonant), followed by a jungseong (medial
vowel), and may or may not include a jongseong (fi-
nal consonant). According to the rules of Hangeul
composition, there are 19, 21, and 27 Hangeul letters
that can occupy the positions of choseong, jungseong,
and jongseong, respectively. Among the 27 possible
jongseongs, some are combinations of two Hangeul
characters that function as a single final consonant in
a syllable, such as v &, v x, etc. Each of these com-
binations is also counted as a distinct type of possible

jongseong. Figure ﬂ illustrates this idea. For example,
the Hangeul syllable 7} consists of three jamo compo-
nents: -7 (initial consonant), } (medial vowel), and
o (final consonant). In theory, there are 11,172 possi-
ble Hangeul syllables, considering all combinations of
choseong, jungseong, and jongseong. However, only
a subset of these syllables actually appears in Korean
texts, making it impractical to train a model with each
syllable as a distinct label class.

To incorporate this structure into our model, we de-
signed it to detect Korean letters in the following order:
choseong, jungseong, and jongseong. If a jongseong is
not found in a sequence, the model proceeds to detect
the next choseong. For example, when detecting the
syllable 7}, the model predicts one label for each com-
ponent —=7, }, and o —in a fixed initial-medial—final
sequence, repeating this pattern for subsequent sylla-
bles. Although Hangeul syllables generally follow con-
sistent structural patterns, it is difficult to encode these
patterns into a simple rule. For instance, the positional
behavior of three different jungseongs —], —, and
—varies depending on the syllable. We expected the
model to form attention patterns corresponding to the
type of Hangeul letter. For characters without a final
consonant, the model omits the final position. By lever-
aging the fact that there are only 19 initial consonants,
21 medial vowels, and 27 final consonants, we reduce
the output space from 11,172 full-syllable classes to a
more compact set of sub-character classes. In future
work, we plan to explore more advanced architectures
that predict the initial, medial, and final components
in parallel rather than sequentially.

3.3. Superscript and Subscript Recognition

To enable fine-grained character formatting recog-
nition, we extend our model to jointly predict the
Unicode character and its positional attribute—specif-
ically, whether it is rendered as a normal character,
superscript, or subscript. We achieve this by attaching
an auxiliary classification head to the decoder, oper-
ating in parallel with the main character recognition
head. This additional head performs position classifi-
cation with three discrete labels: 0 for normal, 1 for
superscript, and 2 for subscript.

Given the absence of public datasets with positional
annotations at the character level, we constructed a
custom synthetic dataset by modifying the SynthTiger
[25] engine. The extended generator supports render-
ing of characters in superscript and subscript positions
across a wide variety of fonts, character compositions,
and background conditions. Representative examples
are shown in Fig. E, illustrating both the diversity and
positional richness of the generated data. For each

w o

ead

1, 204, Ef

i

1 F

Figure 3. Examples of synthesized text images with posi-
tional annotations. Each sample contains characters ren-
dered in normal, superscript, or subscript positions. The
first image shows a superscripted Y, and is represented by
the position label sequence 00100 (0: normal, 1: super-
script, 2: subscript). The second includes subscripts in 9
and ¥, a superscript in &, and is labeled as 02000201. The
third contains a subscripted 4 and is labeled as 00200.

image, we provide a corresponding position label se-
quence (e.g., 00100, 02000201, 00200) that aligns with
the character-level annotations. To capture these posi-
tional variations, we define the end-of-sequence (EOS)
token as 73", leading to the formation of a head with
a total of four classes.

3.4. Multi-Task Learning for Character and Posi-
tion Prediction

To train the model to simultaneously recognize
the character identity and its positional attribute, we
adopt a multi-task learning framework. Specifically,
two separate output heads are used: one for character
classification and the other for position classification.
Each head outputs a probability distribution over their
respective label spaces, and the model is supervised us-
ing two cross-entropy loss functions.

Let Lehar denote the cross-entropy loss for character
prediction and L0 for position classification (normal,
superscript, subscript). The total loss is computed as
a weighted sum of the two:

Ltotal = £char + A £pOS7 (1)

where) is a balancing hyperparameter that controls
the contribution of the position loss. In our experi-
ments, A is selected empirically based on validation per-
formance, with a lower value assigned to the position
loss to reflect the higher priority of accurate charac-
ter identity recognition. This formulation encourages
the model to learn rich representations that are pri-
marily optimized for character classification, while still

capturing meaningful positional semantics. To ensure
that the position loss retains its significance despite be-
ing much smaller in magnitude, we experimented with
different values of A and ultimately selected a value of
20, which was found to strike the right balance between
character accuracy and positional accuracy.

3.5. Dynamic Loss Weighting for Robust Position
Classification

To further stabilize training and address class imbal-
ance, particularly the relative sparsity of superscript
and subscript labels, we adopt a dynamically scaled
loss weight. This weight modulates the contribution
of the position classification loss Ly relative to the
primary character loss Lcnar, and is computed at each
epoch using a warm-up strategy followed by ratio-based
scaling.

During the initial phase of training, the weight is set
to zero for early epochs and then gradually increases
toward a maximum value A\, . using a quadratic sched-
ule. This allows the model to focus on stable character
recognition before incorporating the auxiliary supervi-
sion for positional classification.

To further improve robustness to class imbalance, we
replace the standard cross-entropy loss for £,,s with a
Focal Loss [26]. This formulation reduces the impact of
well-classified (i.e., high-confidence) samples and em-
phasizes learning from harder examples such as rare
superscript or subscript characters. The focal loss is
defined as:

Lpos = —ar(1 — pt)" log(pe), (2)

where p; is the predicted probability for the true class,
~ is the focusing parameter (set to 1.5 in our experi-
ments), and «; is an optional class-balancing weight.
The values of «; are computed by inversely weight-
ing the class distribution of the training data, which
helps balance the loss function under highly imbal-
anced conditions. Specifically, a; values are calcu-
lated based on the inverse frequency of each class in
the training set, ensuring that underrepresented classes
receive higher weights. In our experiments, we set
ay = [0.035,0.4825,0.4825, 0.01], where the values cor-
respond to the weights for each class based on their rel-
ative frequencies: the lower values correspond to more
frequent classes, and the higher values are assigned to
less frequent classes, helping to mitigate class imbal-
ance. We ignore padded positions via a mask and apply
the loss only to valid targets.

4. Experiments
4.1. Dataset Construction

Our training data consists of both real and syn-
thetic sources. For real-world scene text, we used two
public multilingual datasets: the ATHub Multilingual
OCR dataset [19] and the ICDAR 2019 MLT (Multi-
Lingual Text) dataset [20]. These datasets contain a
broad range of scripts, including Hangeul, English, and
other Latin-based alphabets—making them well-suited
for our multilingual OCR setting. We used their offi-
cial training splits, while evaluation was performed on
a curated held-out test set consisting of half of the Al-
Hub validation set and the full MLT-2019 test split.
All data underwent consistent preprocessing, including
resizing, normalization, and sequence tokenization.

For position-aware supervision, we incorporated the
synthetic dataset described above. A total of 1 mil-
lion images were generated and split into training, val-
idation, and test subsets with an 8:1:1 ratio. This
synthetic dataset supplements the real-world data by
explicitly modeling superscript and subscript phenom-
ena, which are rare or unannotated in natural scene
datasets.

4.2. Data Preparation

Given the annotated scene text images in AIHub
and MLT, we preprocessed the data by cropping each
individual text instance to create focused word images.
Each text annotation in the source datasets is provided
as a polygon (often a quadrilateral) that tightly bounds
a word or text line. We extracted an axis-aligned rect-
angular patch that tightly encloses the polygon. This
approach simplifies the preprocessing pipeline while
still preserving the majority of the visual information
needed for recognition.

Cropping was automated using the annotated poly-
gon coordinates. For each polygon, we computed the
minimum enclosing bounding box and extracted that
region from the image. The corresponding text label
was also stored for each cropped patch. As a result,
our training set consists of tens of thousands of word-
level image patches paired with ground-truth text la-
bels. We applied the same procedure to prepare the
validation and test sets from the reserved data.

4.3. Character Set and Labeling

We define a unified character set that covers all sym-
bols appearing in our training data. For the baseline
model (which predicts complete characters), the vocab-
ulary includes: (1) English uppercase and lowercase
letters (52 classes), (2) digits 0-9 (10 classes), (3) com-
mon punctuation marks, and (4) the full set of 11,265

modern Hangeul syllables. This results in a total of
over 11,200 classes, with Hangeul syllables comprising
the majority.

In contrast, the jamo-based model recognizes 51
unique Hangeul jamo symbols, excluding duplicates
across the initial, medial, and final positions. These
symbols represent the sub-character components—ini-
tial consonants, medial vowels, and final consonants—
that are composed to form complete Hangeul syllables.
English letters and digits are handled identically to the
baseline model, each assigned to its own class and emit-
ted in a consistent position within the jamo decoding
sequence.

4.4. Experimental Setup

We trained both the full-character baseline and our
jamo-based model under the same settings for a fair
comparison. Training was performed using the Adam
optimizer. We started with a learning rate of 7 x 104
and applied learning rate decay on plateau of validation
loss. Early stopping was used based on validation accu-
racy to prevent overfitting. Both models were trained
for up to 200 epochs. Due to storage constraints on the
system, the current experiments were conducted using
a subset of the data, specifically 918,464 image-text
pairs.

For input preprocessing, all word images were re-
sized to 128 x 32 pixels. We applied basic data
augmentation techniques, including rotation, shearing,
translation, and noise injection. These settings follow
the same preprocessing configuration used in the orig-
inal PARSeq implementation.

5. Results
5.1. Jamo Decomposition Results

To establish a rigorous baseline, we surveyed prior
work on Hangeul OCR. The most recent effort that
explicitly targets Hangeul characters as classification
labels is Bakrie et al. [27] they created a small custom
dataset and trained an SVM on zoning and GLCM
features, but did not employ a modern sequence recog-
niser. The latest study to explore jamo decomposition
is Chang et al. [21], which used a CNN-TDNN pipeline
on printed-line images—an approach that predates to-
day’s Transformer-based scene-text models and lacks
publicly available code. Because no up-to-date recog-
niser jointly handles Korean text and sub-character de-
coding, we fine-tune the strongest open-source STR
backbone, PARSeq, on Korean data with its origi-
nal full-syllable vocabulary and use this syllable-level
model as the baseline against which we compare our
proposed jamo decomposed variant.

Model Classes Word Accuracy
Full Syllable Model (Unicode 11,265) 11,265 97.31%
Jamo Model (Sub-units 144) 144 97.84%

Table 1. Comparison of word-level accuracy on the Hangeul
test set (178,966 words) for the baseline full-syllable model
vs. our jamo-decomposed model. The jamo-based model
achieves higher accuracy despite operating with a vastly
smaller output class space.

We evaluated the models on the Hangeul portion
of the test set using word-level accuracy. A prediction
was considered correct only if the entire predicted word
exactly matched the ground truth. Both models were
evaluated on the same set of word images, consisting
of a total of 178,966 words. We conducted experiments
with two different character encoding schemes: (1) the
Full Syllable model, which uses the Unicode charac-
ter set comprising 11,265 precomposed Hangeul sylla-
bles, and (2) the Jamo Decomposed model, which
predicts the initial, medial, and final jamo components
separately, with a total of 144 possible sub-character
classes for Hangeul.

Table m summarizes the results. The jamo-based
model achieved a word accuracy of 97.84%, which is
0.53% higher than the baseline model’s 97.31%. This
indicates that the compositional approach yields a
measurable improvement in recognition performance.
We also observed that during training, the full-syllable
model showed signs of overfitting (its training accu-
racy continued to improve while validation accuracy
plateaued and eventually declined), whereas the jamo-
based model converged more stably. The latter exhib-
ited lower validation loss and higher validation accu-
racy, as shown in Figure {l, suggesting better general-
ization.

We analyzed the frequency distribution of Hangeul
syllables in our dataset to better understand the chal-
lenges of Hangeul OCR. The results reveal a pro-
nounced long-tail pattern: the vast majority of pos-
sible Hangeul syllables are either extremely rare or en-
tirely absent in the training data. Specifically, out of
11,265 possible syllables, 9,302 (82.6%) do not appear
at all in our training set, and an additional 513 syl-
lable types appear fewer than 10 times. Even in the
test set —which follows a similar distribution —9,815
syllables are unseen during training, making them ef-
fectively out-of-vocabulary for a model that memorizes
only full syllables. Table E provides a breakdown of
syllable frequency categories in the training and test
sets. These findings highlight that Hangeul OCR “in
the wild”is inherently a long-tail (and often zero-shot)
recognition problem.

Frequency Category ’I‘raining Set Test Set Module Full Syllable Model Jamo Model

Encoder (ViT backbone) 5.4M 5.4M
Never appeared 9,302 9,815 Decoder 504K 504K
1-10 occurrences 513 524 Output Head 2.2M 28.0K
11-100 occurrences 446 482 Token Embedding 2.2M 28.2K
Over 100 occurrences 1,004 444 Total Parameters 10.3M 6.0M
Total distinct Hangeul 11,265 11,265

Table 2. Frequency of Hangeul syllable classes in the train-
ing and test sets. A large majority of possible syllables are
not present or are very rare in training data, underscoring
the importance of handling unseen or rare characters.

Full Jamo
Input Image 31\3;11(1)5(‘1‘;119 Model
RARICYCH | wads AR
s T
2 S O s
SEC} ore} ot

Table 3. Comparison of OCR outputs on words containing
rare or unseen Hangeul syllables. Each row shows (left)
the input image, (middle) the output of the full-syllable
baseline model, and (right) the output of our jamo-based
model. The baseline model tends to misread unseen or
infrequent syllables (e.g., predicting &t} instead of &t}
or ¢t} instead of gt}), while the jamo-based model ac-
curately reconstructs the target word by composing valid
jamo sequences.

Table E illustrates several such cases. In the first ex-
ample, the input word is 3%t t}, which contains the
rare syllable . The baseline model misreads it as
ZA)}, substituting more frequent syllables, whereas
our jamo-based model correctly outputs % tjt}. In
the second example, the input word is 2T}, which in-
cludes the unseen syllable Z. The baseline predicts ZF
t}, replacing it with a more familiar syllable, while the
jamo-based model accurately reads Zt}. In the third
example, the input 3t} contains the unseen syllable
$}F. The baseline outputs $¥th—a visually similar but
incorrect substitution—whereas our model again pro-
duces the correct Ft}. These results demonstrate that
the jamo-level model generalizes significantly better to
unseen or rare characters by virtue of its compositional
decoding. In contrast, the baseline model, lacking rep-
resentations for novel syllables, tends to fall back on
the closest known alternatives.

We also conducted a qualitative experiment to verify

Table 4. Model size comparison. The jamo-based model
uses far fewer output classes for Hangeul, resulting in much
smaller output-head and embedding layers. Overall, the
jamo model has about 40% fewer parameters than the full-
syllable model (6.0M vs 10.3M total).

how each model handles completely unseen character
combinations. We selected several Korean words con-
taining syllables that never appeared in the training
set (for example, syllables like 2 or $F). The baseline
model (trained on complete Unicode syllables) failed
to recognize these unseen characters correctly, often
substituting them with visually or phonetically similar
known characters. In contrast, our jamo-based model
correctly recognized these syllables by composing them
from the learned sub-character features.

Beyond accuracy, our approach offers a significant
advantage in model size. We compared the number
of parameters required by each model, focusing espe-
cially on the output-related components. The jamo-
based model substantially reduces the parameter count
by eliminating the need for large embedding and clas-
sification layers to handle thousands of full-character
classes. Specifically, our jamo model uses approxi-
mately 4.3 million fewer parameters than the baseline
model —about a 40% reduction in total model size.
In the baseline, both the token embedding and output
head modules comprise roughly 2.2 million parameters
each, whereas in the jamo model, these components
are only 28,000 parameters each. Table 4 provides a
breakdown of parameter counts across key components
of both models.

5.2. Superscript and Subscript Recognition Results

To assess the effectiveness of our model in recogniz-
ing character position (normal, superscript, subscript),
we evaluate its performance on the synthetic test set
described in Section 3. This test set includes character-
level annotations for both Unicode identity and po-
sitional labels, enabling fine-grained analysis of both
textual and positional prediction capabilities.

Table E summarizes the model’s performance on
both word and positional accuracy. Although the
overall accuracy is relatively modest, the results high-
light the model’s ability to learn layout-sensitive fea-
tures. Despite the class imbalance, where normal

loss] & o
0.1
0.08
0.06
0.04
0.02
0 S0k 100k 150k 205599 *
val_loss L J'F' ‘i E
1.6
h M
0 50k 100k 150k 205599 x
val_accuracy] I =z .
75
70
65
0 50k 100k 150k 205599

Figure 4. Training and validation performance of the base-
line full-syllable model (red) versus the jamo-based model
(blue). Top: Training loss curves. Middle: Validation
loss curves. Bottom: Validation accuracy curves. While
the full-syllable model achieves lower training loss, it suf-
fers from higher validation loss, indicating overfitting. In
contrast, the jamo-based model maintains lower validation
loss and achieves higher final accuracy.

Head Configurations Word Accuracy Pos Accuracy

Simple Linear 81.47 % 92.79 %
Linear+LayerNorm+ReLU
+Dropout+Linear 82.94 % 95.11 %

Table 5. Comparison of Word and Positional Accuracy
for Superscript and Subscript Recognition Using Different
Model Configurations.

Decoder

\ [oo)
[Linear (192,64) |
|
]
]
]

/ Decoder

[LayerNorm

|

RelLU

{

|
[Dropout
(

|

Linear (64,4) |

[Linear (192,4) |

Figure 5. Comparison of head configurations.
The figure illustrates two different head architec-
tures: the 7”Simple Linear” head and the ”"Lin-
ear+LayerNorm+ReLU+Dropout+Linear” head. The
addition of LayerNorm and ReLU layers in the second
configuration improves both word and positional accuracy,
enhancing the model’s ability to capture positional layout
information.

characters significantly outnumber positional variants,
the model demonstrates competitive accuracy in both
tasks: character recognition and position classification.

Comparing the two head configurations, the ”Simple
Linear” head achieves a word accuracy of 81.47% and
positional accuracy of 92.79%. On the other hand, the
”Linear+LayerNorm-+ReLLU+Dropout+Linear” head
shows a clear improvement, with a word accuracy of
82.94% and a positional accuracy of 95.11%. This indi-
cates that incorporating additional layers such as Lay-
erNorm and ReLU in the model enhances its ability to
capture the positional layout of characters more effec-
tively.

In this experiment, we investigated the feasibility of
recognizing superscript and subscript characters using
only synthetically generated data, without any real an-
notated examples. As expected, absolute performance
remains modest compared to standard character recog-
nition. Nevertheless, the model successfully learned to
distinguish positional variants such as superscripts and
subscripts under highly imbalanced conditions. Qual-
itative results further support this, showing that the
model can visually identify and separate these charac-
ters in layout-sensitive contexts.

Despite limitations in available resources (training
time and GPU capacity), our findings suggest promis-
ing potential for further improvement. We antici-
pate that incorporating real-world annotated data and

Input Tmage Text Position Final LaTeX-Formatted
p & Prediction Prediction Output
DASH 7} 00202 DA_{S}H_{7}}
12 (em) o 0021100 1A {Gx~{em}) °
Point 02000 P_{o}int
2 3+b d=0| 0010000000000 ~{3}+b d=0
ax’+bx’+ cx+d=0| e ax {3} +bwcrexr
CZ H5 OH C2H50H 000000 C2H50H

Table 6. Examples of superscript and subscript recognition outputs. The Position Tags column shows the model’s predicted

tag sequence for each character (0 = normal, 1 = superscript, 2 = subscript).

The Output as LaTeX column shows

the corresponding text with formatting, using LaTeX notation for subscripts/superscripts (e.g., ”_{}” denotes subscript

content).

optimizing the loss function and head architecture
could significantly enhance the style recognition perfor-
mance. These results validate the viability of explicit
positional modeling and highlight the value of contin-
ued exploration in this direction. For illustration, Ta-
ble p provides examples of the model’s output on the
test set, including the predicted position tags and the
corresponding LaTeX expressions for those outputs.

However, as shown in the two samples below, there
are still cases of incomplete recognition where the
model fails to capture superscripts or subscripts. These
errors likely stem from insufficient learning or limita-
tions of the synthetic data, suggesting that more train-
ing or refined data is needed for better accuracy. For
example, in one case, the model fails to recognize the
superscript in a word, while in another, it misses a sub-
script notation in an equation. These specific errors
highlight areas for further improvement in the model
learning process and data representation.

6. Conclusion

In this work, we presented a novel OCR frame-
work for Korean Hangeul that leverages a jamo-level
decomposition strategy. By exploiting Hangeul’s in-
herent compositional structure, our method drastically
reduces the output character space compared to con-
ventional approaches that treat each syllable as an in-
divisible class. This design enabled the model to gen-
eralize better and achieved higher word-level accuracy
than a full-syllable baseline. Notably, the jamo-based
approach also proved effective at recognizing rare and
previously unseen characters—an important capability
for real-world OCR applications.

Additionally, we extended our model to detect

superscript and subscript characters, addressing the
under-explored challenge of style-aware OCR. By train-
ing on a synthetically generated positional dataset and
employing techniques like dynamic loss weighting with
focal loss, the model learned to capture layout-sensitive
attributes of text. However, the style recognition com-
ponent remains imperfect: in some cases the model
failed to detect certain superscripts or subscripts, likely
due to the limited variability of the synthetic training
data. This highlights a current limitation of our study,
indicating that the model’s style awareness is not yet
fully robust and could benefit from further data and
refinement.

Our findings underscore the value of structurally
aligned modeling in OCR, particularly for writing
systems with compositional properties like Hangeul.
Moreover, explicitly modeling text formatting through
style tags can enhance the expressive power of OCR
systems beyond plain Unicode output, preserving infor-
mation (such as superscript/subscript notation) that
would otherwise be lost in a standard text recognition
pipeline.

For future work, we plan to integrate real annotated
data for positional attributes (instead of relying solely
on synthetic data), utilize stronger vision backbones to
improve overall recognition accuracy, and explore par-
allelizing the decoding of jamo components to increase
efficiency. Ultimately, our goal is to develop a gener-
alizable, style-aware OCR system capable of handling
complex, multilingual text in the wild, thereby broad-
ening the scope and applicability of OCR technology.

References

[1] Bautista, D., and Atienza, R. 2022. Scene text recog-
nition with permuted autoregressive sequence models.

2l
3l

(4]

[5]

(6]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

In ECCV, pages 178-196, 2022.

Jaided AL 2020. EasyOCR. GitHub: https://github.
com/JaidedAI/EasyOCR.

PaddlePaddle. 2021. PaddleOCR. GitHub: https://
github.com/PaddlePaddle/Paddle0CR.

Baek, J., et al. 2019. What is wrong with scene text
recognition model comparisons? Dataset and model
analysis. In ICCV, pages 4715-4723, 2019.

Wang, X.-F.; et al. 2023. A survey of text detection and
recognition algorithms based on deep learning technol-
ogy. Neurocomputing, 556:126702, 2023.

Kang, Ga-Hyeon, et al. A study on improvement of Ko-
rean OCR accuracy using deep learning. Proceedings
of the Korean Institute of Information and Commu-
nication Sciences Conference. The Korea Institute of
Information and Communication Engineering, 2018.

Park, Sun-Woo. A Study on the OCR of Korean Sen-
tence Using DeepLearning. Annual Conference on Hu-
man and Language Technology. Human and Language
Technology, 2019.

Park, Youngki, and Youhyun Shin. Gradual OCR: An
effective OCR approach based on gradual detection of
texts. Mathematics, vol. 11, no. 22, 2023, p. 4585.

Korean Agency for Technology and Standards
(KATS), KS X 1001: Code for Information Inter-
change (Hangeul and Hangja), National Standard of the
Republic of Korea, 1997. Formerly KS C 5601.

https : / / standard . go . kr /KSCI / standardIntro /
getStandardSearchView.do7ksNo=KSX1001

Kim, M. S., et al. 2004. Segmentation of handwritten
characters for digitizing Korean historical documents.

In Proc. Int. Workshop on Document Analysis Systems
(DAS), 2004.

Lee, J.-S., Kwon, O.-J., and Bang, S.-Y. 1999. Highly
accurate recognition of printed Korean characters
through an improved two-stage classification method.
Pattern Recognition, 32(12):1935-1945, 1999.

Ko, D.-G., et al. 2017. Convolutional neural networks
for character-level classification. IEIE Trans. Smart
Processing and Computing, 6(1):53-59, 2017.

Lee, J., et al. 2025. Jamo-level subword tokenization in
low-resource Korean machine translation. In Proc. 8th
Workshop on Technologies for Machine Translation of
Low-Resource Languages (LoResMT), 2025.

Park, J., and Zhao, H. 2020. Korean neural machine
translation using hierarchical word structure. In Proc.
International Conference on Asian Language Process-
ing (IALP), 2020.

Kim, S., et al. 2024. KOMBO: Korean character repre-
sentations based on the combination rules of subchar-
acters. In Findings of ACL, 2024.

Deng, X., et al. 2023. RRecT: Chinese text recog-
nition with radical-enhanced recognition transformer.

In Proc. International Conference on Artificial Neural
Networks (ICANN), 2023.

(17]

(18]

(19]

(20]

(21]

(22]

23]

(24]

[25]

[26]

27]

Zhang, J., Du, J., and Dai, L. 2020. Radical analysis
network for learning hierarchies of Chinese characters.
Pattern Recognition, 103:107305, 2020.

Dosovitskiy, A., et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale.
arXiv:2010.11929, 2020.

National Information Society Agency (NIA), “Multi-
lingual OCR Dataset,” ATHub, 2023.

Available: https://www.aihub.or.kr/aihubdata/
data/view.do?dataSetSn=71730

N. Nayef, Y. Patel, M. Busta, P. N. Chowdhury, D.
Karatzas, W. Khlif, J. Matas, U. Pal, J.-C. Burie, C.-
L. Liu, et al.,

“ICDAR2019 Robust Reading Challenge on Multi-
lingual Scene Text Detection and Recognition—RRC-
MLT-2019,”

in Proc. 2019 International Conference on Document
Analysis and Recognition (ICDAR), pp. 1582-1587,
IEEE, 2019.

Chun-Chieh Chang, Ashish Arora, Leibny Paola Gar-
cia Perera, David Etter, Daniel Povey, and Sanjeev
Khudanpur. Optical character recognition with Chi-
nese and Korean character decomposition. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW), volume 5, pages
134-139. IEEE, 2019.

U. Garain. Identifying subscripts and superscripts in
mathematical documents. International Journal of
Document Analysis and Recognition, 2005. Structural
analysis to differentiate baseline, sub- and superscript.
Everistus Z. Orji, Ali H. Haydar, Ibrahim Ergan, and
Othmar Mwambe. Advancing OCR accuracy in image-
to-LaTeX conversion—A critical and creative explo-
ration. Applied Sciences, 2023. 10.3390/app132212503.
Focus on recognition of subscripts in chemical formu-
las.

Chan-Jan Hsu, Yi-Chang Chen, Feng-Ting Liao, Pei-
Chen Ho, Yu-Hsiang Wang, Po-Chun Hsu, and Da-
shan Shiu. Let’s fuse step by step: A generative fu-
sion decoding algorithm with LLMs for robust and
instruction-aware ASR and OCR. arXiv preprint
arXiv:2405.14259, 2024. Cross-modal fusion improves
OCR of structured tokens.

Yim, M., Kim, Y., Cho, H.-C., and Park, S. Syn-
thTIGER: Synthetic Text Image GEneratoR Towards
Better Text Recognition Models. In Proceedings of the
International Conference on Document Analysis and
Recognition (ICDAR), pages 109-124, 2021. Springer.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollar,
P. 2017. Focal Loss for Dense Object Detection. In
ICCV, pages 2980-2988.

Dinda Nadila, Pengenalan Karakter Huruf Korea

(Hangul) Menggunakan Algoritma Support Vector Ma-
chine (SVM), Ph.D. thesis, Universitas Bakrie, 2023.

https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR
https://github.com/PaddlePaddle/PaddleOCR
https://github.com/PaddlePaddle/PaddleOCR
https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?ksNo=KSX1001
https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?ksNo=KSX1001
https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=71730
https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=71730

	. Introduction
	. Related Work
	. Scene Text Recognition Methods
	. Hangeul OCR Research
	. Jamo Decomposition for Hangeul
	. Radical-Based Recognition in Other Languages
	. Superscript and Subscript Detection in OCR

	. Method
	. Model Architecture
	. Jamo Decomposition for Hangeul
	. Superscript and Subscript Recognition
	. Multi-Task Learning for Character and Position Prediction
	. Dynamic Loss Weighting for Robust Position Classification

	. Experiments
	. Dataset Construction
	. Data Preparation
	. Character Set and Labeling
	. Experimental Setup

	. Results
	. Jamo Decomposition Results
	. Superscript and Subscript Recognition Results

	. Conclusion

