
Backpropagation-free Contrastive Forward Learning
Using Label Embeddings

Anonymous Author(s)
Affiliation
Address
email

Abstract

Despite its widespread success, backpropagation is constrained by feedback weight1

symmetry and forward/backward pass locking. These constraints make backpropa-2

gation biologically implausible and computationally inefficient. Free from those3

problems is recently emerging "forward learning": every layer can update its4

weights after a forward pass without propagating error signals backward. While5

forward learning is biologically plausible and computationally efficient, it is hard6

to formulate a local learning objective in the absence of auxiliary networks. In7

this work, we propose a simple and biologically plausible way to formulate the8

local learning objective using label embeddings. Previous works require special-9

ized architecture, input distortion, or local projection, but our method can employ10

architectures used in backpropagation with minimal modification. Even with small11

architectures, our method, contrastive forward learning with label embeddings12

(CFL), outperforms existing forward learning approaches on non-trivial datasets13

such as CIFAR-10 and CIFAR-100, while approaching performance close to back-14

propagation. Furthermore, our training objectives allow label embeddings to learn15

the meaningful representation of the labels, such that embedding interpolation16

enables zeroshot inference.17

1 Introduction18

Backpropagation (BP) Rumelhart et al. [1986] has been at the forefront of deep learning. Not only is19

BP easy to implement through modern deep learning frameworks, but it also offers a simple solution20

to the credit assignment problem: how each weight of a model should adjust its value to optimize the21

model’s performance Werbos [1974]? Error signals are obtained through the loss function of model22

outputs and targets. Then, BP allows a model to update all of its weights in a way that reduces the23

error signals, by backwardpassing the error signals through symmetric feedback weights. Therein24

lies two constraints for BP: (1) weights used in forward and backward passes should be symmetric25

and (2) backward passes cannot start until all forward passes are complete, and vice versa (forward26

and backward locking).27

These constraints pose two main problems for BP. Firstly, it is not biologically plausible. If our brain28

learns by BP, symmetric neural pathways should be prevalent in the brain, but they are not. Biological29

plausibility is not necessary for a competent learning algorithm. However, much artificial intelligence30

research still strives to mimic human cognition, since we humans are the most intelligent agents we31

can find (yet). Such observation suggests that BP may not be an optimal learning algorithm because it32

is drastically different from how we learn. Secondly, BP is computationally inefficient. Computation33

of the weight gradients requires local activation to be stored. Accordingly, after a forward pass, each34

layer consumes memory to store local activation while staying idle, until all backward passes are35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



complete. Such forward/backward locking severely undermines the parallelization of computation36

and makes BP undesirable for edge computing.37

Many backpropagation alternatives have been introduced. Feedback alignment (FA) Lillicrap et al.38

[2014, 2016] replaces symmetric feedback weights with fixed random feedback weights. The39

problems of BP persist. FA lifts the weight symmetry constraint, but it is still constrained by40

reciprocal feedback connection. Moreover, FA still suffers from forward/backward locking. In direct41

feedback alignment (DFA) Nøkland [2016], fixed random weights backwardpass error signals to42

each layer directly. DFA is more biologically plausible than FA in a flexible way because DFA does43

not enforce reciprocal feedback connection, resembling top-down feedback systems in the brain44

Gilbert and Li [2013]. Yet, although DFA unlocks backward passes, it is still forward-locked: weights45

cannot be updated until all forward passes are complete. In target propagation (TP) Lee et al. [2014],46

like BP, each layer learns by reconstructing the activation of the previous layer. Like BP, TP is47

forward/backward locked.48

Using BP only in local modules, local learning (LL) Nøkland and Eidnes [2019], Belilovsky et al.49

[2019] offers a balanced solution to the problems of BP. With the module-wise weight symmetry,50

LL achieves improved computational efficiency over BP as it is module-wise forward/backward51

unlocked. A local module consists of layers used in forward passes as well as auxiliary networks.52

Only used during training to compute the local loss and propagate error gradients backward, auxiliary53

networks constitute memory overhead, especially in edge computing. A recent approach "Forward54

Learning" (FL) Frenkel et al. [2021], Hinton [2022] goes a step further by eliminating module-wise55

BP and auxiliary networks. In FL, weights of each layer are updated by the layer-wise local loss,56

thereby making FL completely forward/backward unlocked and especially fit for edge computing.57

For example, implementing a forward learning method Frenkel et al. [2021], spiking online-learning58

convolutional neuromorphic processor (SPOON) achieves 16.8% power overhead and 11.8% area59

overhead on on-chip online learning compared to offline learning Frenkel et al. [2021, 2020]. Despite60

such advantages, FL has to overcome two main challenges: formulating local targets for loss61

calculation and poor performance compared to BP and LL. Without auxiliary networks to transform62

local features, it is hard to use local features and local targets in the local loss calculation because the63

dimension of the features and the targets do not usually match (e.g. features and labels in classification64

with CNN). Even if existing methods manage to obtain the local loss without auxiliary networks,65

their performances are poor on non-MNIST datasets like CIFAR-10. Details are discussed in Section66

2.2.67

To formulate local label targets, we use label embedding vectors. Just as each word has a correspond-68

ing embedding vector in NLP Mikolov et al. [2013], Devlin et al. [2018], each classification label69

has a corresponding label embedding vector. To formulate local objectives, we leverage contrastive70

learning. Contrastive learning has been effectively used for representational learning in various71

settings—supervised, unsupervised, visual, multimodal, etc. Chen et al. [2020a,b], Khosla et al.72

[2020], van den Oord et al. [2018], Park et al. [2020], Radford et al. [2021]. In this work, we employ73

two supervised contrastive objectives so that each layer learns a salient representation of inputs74

without global feedback. One objective maximizes agreement between image features with the same75

label while minimizing agreement between image features of different labels. The other maximizes76

agreement between image features and their corresponding label embedding vector while minimizing77

agreement between image features and their non-matching label embedding vectors.78

During training, label embedding vectors learn meaningful label-specific representation such that79

embedding interpolation enables zeroshot inference. Unlike existing local and forward learning80

approaches, our method requires no specialized architecture, auxiliary network, input distortion, or81

local projection, other than a label embedding dictionary. Accordingly, as long as the computational82

graph is detached after each layer, our method can utilize BP architectures with minimal modification.83

Extensive experiments demonstrate that our method, contrastive forward learning with label embed-84

dings (CFL), outperforms existing forward learning approaches on the CIFAR-10 and CIFAR-100,85

even with small architectures.86

2 Related Works87

Local learning and forward learning are greedy local learning in the sense that each module/layer88

updates its weights to optimize local features for the local objective Baldi and Sadowski [2015],89

2



Belilovsky et al. [2018]. Since inference of most deep learning models only uses the final outputs90

from the last forward pass, intermediate local features learned from greedy local learning are not91

optimized for final outputs used in inference. This section discusses how such greedy learning still92

manages to stay competitive.93

2.1 Local Learning94

With two separate auxiliary network pathways to generate features for reconstruction and label95

prediction loss, Nøkland and Eidnes [2019] is one of the first few that outperform BP on CIFAR-1096

and CIFAR-100. The reconstruction loss compares L2 distance between self similarity matrix of97

one-hot encoded labels and local features. The label prediction loss is the cross entropy loss typically98

used in the final layer in classification. The label prediction loss is the most common local loss in99

greedy local learning Belilovsky et al. [2018, 2019], Pathak et al. [2022]. In contrast, our method100

uses no auxiliary network and neither of the local loss functions.101

Wang et al. [2021] analyzes greedy local learning in the perspective of information theory. The102

authors examine how greedy local learning affects I(x, h), mutual information between inputs and103

local features from auxiliary networks, and I(h, y), mutual information between local features and104

labels. Compared to BP, I(x, h) and I(h, y) decrease much more quickly the deeper the layer in105

local learning. The authors prove that minimizing the supervised contrastive loss Khosla et al. [2020]106

maximizes the lower bound of I(h, y) across layers. Since the contrastive loss function can be used107

without auxiliary networks, we also adopt it as one of our loss functions (the equation 9).108

2.2 Forward Learning109

The recently emerging approach, the forward forward algorithm Hinton [2022], overlays one-hot110

encoded labels onto images to formulate local objective. Inspired by Noise Contrastive Estimation111

Gutmann and Hyvärinen [2010], FF optimizes local features to be above a certain threshold if112

the overlaid labels match the images (positive pair). Otherwise (negative pair), local features are113

optimized to be under a certain threshold. To receive global information, FF also proposes a RNN-114

variant. The RNN-variant processes the same input for multiple time steps; intermediate layers115

receive normalized states from the upper layer at the previous time step for global information,116

similar to top-down processing in the brain. The predictive forward forward algorithms (PFF) Ororbia117

and Mali [2023] combines the RNN-based FF with predictive coding Rao and Ballard [1999a],118

Salvatori et al. [2021], Ororbia and Kifer [2020], Rao and Ballard [1999b], in which neurons predict119

activation of nearby neurons and learn based on the difference between the prediction and observed120

activation. PFF jointly trains classifier and generative network, such that the generative network121

learns to reconstruct/predict intermediate features from the classifier and to reconstruct inputs from122

Gaussian noise. During training, classifier and generative network interacts through lateral and123

top-down circuits for multiple time steps. PFF performs experiments on only MNIST and its variants,124

while requiring the generative auxiliary network to train the classifier. Symba Lee and geun Song125

[2023] improves upon FF by introducing Intrinsic Class Pattern (ICP). Rather than overlaying one-hot126

encoded label which hides a portion of an input image in FF, Symba adds a label-specific fixed127

random noise map to a separate image channel. The threshold-based NCE local objectives used in128

FF-based approaches are unstable and scales poorly on CIFAR-10 and CIFAR-100.129

The direct random target projection (DRPT) uses fixed random weights to project one-hot encoded130

labels into local targets, just as DFA uses fixed random weights to project global error gradients131

to local layers. Our method doesn’t use random weight projection because we directly use label132

embedding vectors as local targets. In contrast, the cascaded forward algorithm (CAFO) Kirkpatrick133

et al. [2016] freezes the random weights of feedforward layers and only updates the weights of the134

local linear projection layers used in local prediction. When the number of labels to predict is small135

as in MNIST and CIFAR-10, CAFO requires relatively small architecture. However, due to linear136

projection from a feature map to class predictions, CAFO scales poorly on the number of classes.137

While projection-based approaches surpass FF-based approaches with smaller architectures, our138

method outmatches the projection-based approaches on CIFAR-10 and CIFAR-100 with even smaller139

architectures and without projection layers.140

3



3 Contrastive Forward Learning with Label Embeddings141

3.1 Label Embedding142

Vectorizing labels into dense vectors, rather than sparse one-hot encoded vectors, our method uses the143

dense vectors as local targets for the local loss functions. In NLP, each input word has a corresponding144

embedding vector queried from a vocabulary dictionary Mikolov et al. [2013], Vaswani et al. [2017],145

Devlin et al. [2018]. During training, the word embeddings receive error gradients from BP. After146

training, the word embeddings are distributed in the semantically meaningful latent space such that147

interpolation of embeddings is possible Badimala et al. [2019]. Similarly, we query a label embedding148

vector corresponding to each label, from a label embedding dictionary. For Z label classes, we have149

a label embedding dictionary DZ = {t1, . . . , tZ} where tz ∈ RCD . During training, the label150

embedding vectors and layer weights are optimized to maximize similarity between feature vectors151

and their corresponding label embedding vector, while minimizing similarity between feature vectors152

and non-corresponding label embedding vectors (Section 4).153

3.2 Training Loss154

Consider a model with L layers F = {f1, ..., fL}, each with learnable weights θl. Except for the155

final linear classifier layer fL, every intermediate layer f l obtains error gradients from the two156

local loss functions. Each local layer f l outputs the local feature map hl
n ∈ RCl×Kl such that157

hl
n = f l(sg[hl−1

n ]), where sg[·] is the stop gradient operator and h0
n is the input image, and Cl is158

the dimension of the feature vectors at the l-th layer. Kl is the number of feature vectors. For a159

convolutional layer, Kl = heightl × widthl, whereas in fully connected layers (FC), layer outputs160

are divided into K groups (RCK 7→ RC×K). K values are listed in Table 4.161

We use the mean local feature vector h̄l
n ∈ RCl , averaged across K, to represent the n-th sample in162

a batch of N samples. The batch embedding contrastive loss Lbatch takes the mean feature vectors163

h̄l
n, while the feature contrastive loss Lfeat uses the l2-normalized mean feature vectors ĥl

n. The final164

prediction layer fL updates its weights through the cross entropy loss, as in BP training. Prediction165

is also possible at every layer, by choosing the label with the highest similarity to the feature vectors:166

ŷ = argmaxz(⟨h̄l
n, t

z⟩) for tz ∈ DZ , (1)

where ⟨·, ·⟩ denotes the dot product. The models without the final linear classifier fL makes prediction167

through the equation (1).168

3.2.1 Embedding Contrastive Loss169

For the batch of N layer outputs H l
N = {h̄l

1, . . . , h̄
l
N}, we obtain the corresponding batch of label170

embedding vectors:171

T l
N := {avgpooll(tn) + ϵ | y(tn) = y(h̄l

n) for tn ∈ DZ
l and h̄l

n ∈ H l
N , ϵ ∼ N(0,

1

C2
l

)}, (2)

where avgpooll : RCD 7→ RCl is the average pooling with a padding of 0, a stride of CD

Cl
, and kernels172

of size CD − (Cl − 1)× stride. During training, label embedding vectors receive error gradients173

only at the last intermediate layer L− 1, such that:174

DZ
l = {sg[tx] if l < L− 1, tx otherwise | tx ∈ DZ}. (3)

Then, the batch embedding contrastive loss for h̄l
n is:175

Ll
batch(h̄

l
n, T

l
N ) = − log

exp⟨h̄l
n, tn⟩∑

ti∈T l
N ,y(ti) ̸=y(h̄

l
n)

exp⟨h̄l
n, ti⟩

, (4)

Negative pairs, such as {(ti, h̄l
n) | y(ti) ̸= y(h̄l

n), ti ∈ T l
N}, play a significant role in the perfor-176

mance of contrastive learning Chen et al. [2020a], Khosla et al. [2020]. Since tz ∈ DZ remains177

constant for each label z, many negative pairs overlap without the noise ϵ in the equation (2). The178

noise injection ensures 1) each negative pair is unique and 2) Lbatch optimizes similarity between179

feature vectors and vectors near the label embedding vectors.180

4



We also introduce another embedding contrastive loss. The dictionary contrastive loss replaces T l
N181

with D̂
Z

l :182

D̂
Z

l := {avgpooll(tz) + ϵ | tz ∈ DZ
l and ϵ ∼ N(0,

1

C2
l

)}. (5)

Accordingly, the dictionary contrastive loss becomes:183

Ll
dict(h̄

l
n, D̂

Z

l ) = − log
exp⟨h̄l

n, t
+⟩∑

ti∈D̂
Z
l
exp⟨h̄l

n, ti⟩
, y(t+) = y(h̄l

n) (6)

Lbatch requires N label embedding vectors, whereas Ll
dict only needs Z (the number of classes)184

embedding vectors. As long as Z < N (which is usually the case), Ll
dict comes with less memory185

overhead. However, each embedding loss has its advantage and disadvantage. Details are discussed186

in Section 4.3 and 4.4.187

Lbatch and Ldict are inspired by InfoNCE van den Oord et al. [2018], but we employ the dot product188

as a similarity measure instead of the cosine similarity, unlike many other works leveraging InfoNCE189

Radford et al. [2021], Yu et al. [2022], Park et al. [2020]. As the ablation results in the table 6 show,190

the dot product results in significantly greater performance compared to the cosine similarity. The191

hypothesis for the results is discussed in Section 4.4.192

3.2.2 Feature Contrastive Loss193

For the batch of N normalized mean feature vectors Ĥ l
N = {ĥl

1, . . . , ĥ
l
N}, let:194

Ĥ l
+(z) := {ĥl

n | z = y(ĥl
n) for ĥ

l
n ∈ Ĥ l

N}, (7)
195

Ĥ l
−(z) := Ĥ l

N − Ĥ l
z. (8)

Ĥ l
+(z) denotes the set of feature vectors positive to the label z; positive feature vectors share the196

same label z. Likewise, Ĥ l
−(z) denotes the set of feature vectors negative to the label z, such that197

negative feature vectors correspond to any label but z. Then, the feature contrastive loss for the ĥl
n is:198

Ll
feat(ĥ

l
n, Ĥ

l
N ) = − log

 1

|Ĥ l
+(z)|

∑
ĥl

+∈Ĥl
+(z)

exp
(
⟨ĥl

n, ĥ
l
+⟩/τ

)
∑

ĥl
−∈Hl

−(z) exp
(
⟨ĥl

n, ĥ
l
−⟩/τ

)
 , z = y(ĥl

n), (9)

where τ is a temperature hyperparameter. In our experiments, we use τ = 0.07. Minimizing Lfeat199

maximizes agreement between feature vectors that belong to the same label and minimizes agreement200

between feature vectors with different labels.201

3.2.3 Total Local Loss202

The total local loss function for the l-th layer is as follows:203

Ll
total({hl

1, . . . ,h
l
N}, DZ) =

1

N

N∑
n=1

(λ1Ll
batch(h̄

l
n, T

l
N ) + λ2Ll

dict(h̄
l
n, D̂

Z

l ) + λ3Ll
feat(ĥ

l
n, Ĥ

l
N )),

(10)
where λ3 = 1 across all experiments. Training with both embedding losses did not result in204

improvement over using only Lbatch, so we use only one of the embedding losses. Thus, we set205

λ1 = 0 for Ll
total-D and λ2 = 0 for Ll

total-B. The ablation experiments in Section 4.4 highlight that206

training with Lfeat alone results in significantly poor performances, in contrast to Lbatch and Ldict207

which still manage to perform well when used alone. Regardless, Lfeat makes the representation of208

feature vectors more disentangled and improves performance when used in conjunction with Lbatch,209

as discussed in Section 4.4.210

4 Experiments211

4.1 Datasets212

We test our method on MNIST LeCun and Cortes [2005], CIFAR-10, and CIFAR-100 Krizhevsky213

[2009] datasets. The MNIST dataset consists of 60000 training samples and 10000 test samples,214

5



each of which is a 28× 28 grayscale image. The CIFAR-10 and CIFAR-100 datasets each contain215

50000 training samples and 10000 testing samples of 32 × 32 RGB images. There are 100 fine-216

label classes in CIFAR-100. Every five fine-label classes belong to one coarse-label class; the217

100 fine-label classes are grouped into 20 coarse-label classes. For example, fine-label classes218

{maple, oak, palm, pine, willow} constitute the tree coarse-label class. In zeroshot experiments219

in Section 4.4, we use interpolation of fine-label embedding vectors for zeroshot prediction of the220

coarse-labels.221

4.2 Training Details222

Each CFL model is compared with the three baseline methods: BP, FA, and DFA. Each CFL model223

and its baseline models share the same architecture except for the label embedding dictionary DZ
224

and the stop gradient operators. Thus, the difference in the number of parameters in Table 1 comes225

from DZ . The architecture details are in Table 4. Since each layer f l of the CFL model updates its226

weights independently of error gradients in other layers, it is possible to fine-tune the learning rate of227

every layer. For the simplicity of testing and comparison, however, we use the same learning rate for228

all layers. Moreover, each CFL model and its baseline models are trained using the same training229

hyperparameters listed in Table 5.

MNIST CIFAR-10 CIFAR-100
Params Test err Params Test err Params Test err

DRTP FC (Frenkel et al. [2021]) 1.80M 3.9 4.09M 51.06 19.2M 88.32 ∗

DRTP CONV (Frenkel et al. [2021]) 6.28M 1.33 16.54M 30.59 46.42M 65.02∗

FF (Hinton [2022]) 1.87M 1.36 18.93M 41 19.2M 99∗

CAFO (Zhao et al. [2023] 243K 1.20 243K 32.6 2.43M 59.2
PFF (Ororbia and Mali [2023]) 23M 1.34 32.37M 50.14∗ 32.73M 81.3∗

Symba (Lee and geun Song [2023]) 1M 1.65 16M 41.2
Symba (Lee and geun Song [2023]) 11M 1.42 31M 40.9 31M 70.7
CFL FC (Ltotal-B) 1.88M 1.69 18.93M 33.97 19.23M 68.4
CFL FC (Ltotal-D) 1.88M 1.55 18.93M 33.78 19.23M 67.38
CFL conv256 (Ltotal-B) 153.8K 2.96 155K 24.24 201.1K 51.1
CFL conv256 (Ltotal-D) 153.8K 2.66 155K 24.56 201.1K 51.4
CFL conv256 (Ltotal-B without fL) 151.2K 2.8 152.4K 24.77 175.4K 51.34
CFL conv256 (Ltotal-D without fL) 151.2K 2.74 152.4K 27.5 175.4K 61.65
CFL conv512 (Ltotal-B) 1.34M 1.36 1.341M 16.31 1.433M 50.43
CFL conv512 (Ltotal-D) 1.34M 1.25 1.341M 16.49 1.433M 49.76
CFL conv512 (Ltotal-B without fL) 1.335M 1.47 1.336M 16.67 1.382M 51.01
CFL conv512 (Ltotal-D without fL) 1.335M 1.34 1.336M 16.84 1.382M 55.84
BP FC 1.871M 1.29 18.93M 35.96 19.21M 67.3
FA FC 1.87M 1.51 18.93M 39.33 19.21M 69
DFA FC 1.87M 1.75 18.93M 45.55 19.21M 86.42
BP conv256 151.2K 2.63 152.4K 22.52 175.4K 48.72
BP conv512 1.335M 1.31 1.336M 14.05 1.382M 46.4
FA conv256 151K 2.85 152K 27.65 175K 52.57
FA conv512 1.33M 1.3 1.34M 19.67 1.38M 52.93
DFA conv256 151K 9.4 152K 45.83 175K 68.56
DFA conv512 1.33M 4.39 1.34M 35.7 1.38M 69.06

Table 1: Classification Accuracy Results. The underlined models are BP baselines trained with the
cross entropy loss. The underlined results outscore those of the baselines. The highlighted results
indicate best scores among the backprop alternatives. Scores with ∗ are reproduced results.

230

4.3 Results231

We also compare our CFL models against other forward learning models. Table 1 lists the number232

of parameters for each model and its best test accuracy. For the MNIST dataset, CAFO Zhao et al.233

[2023] still performs best. However, for more complex datasets—CIFAR-10 and CIFAR-100—our234

6



method outshines other forward learning approaches. Our best model, CFL conv512, outperforms235

other forward learning models by a large margin. Moreover, our smallest model, CFL conv256236

(without fL), still outperforms all other forward learning models although its number of parameters is237

much smaller than those of other forward learning models. Our fully connected model, CFL FC, also238

outperforms other fully connected models —DRTP, FF, and Symba. Overall, for each architecture239

type, our method performs and scales better than other forward learning methods.240

CFL performances on MNIST and CIFAR-10 come close to the BP baselines, with both CFL FC241

models outperforming their BP baseline on CIFAR-10. CFL conv512 (Ltotal-D) also outperforms its242

baseline on MNIST. On CIFAR-100, however, the performance gap is larger for the convolutional243

models. The performances of Ltotal-B and Ltotal-D are on par with each other when the models are244

trained with the final classifier fL. However, without fL, the models trained with Ltotal-D exhibit poor245

performance compared to those of the models with fL. Furthermore, for CIFAR-10 and CIFAR-100,246

our models (except for Ltotal-D without fL) outperform FA and DFA for each architecture.247

4.4 Zeroshot and Ablation Experiments248

The models trained on CIFAR-100 fine-labels can make zeroshot inferences on CIFAR-100 coarse-249

labels. By averaging five fine-label embedding vectors belonging to each coarse-label, we obtain 20250

coarse-label embedding vectors from 100 fine-label embedding vectors. Then, we can make zeroshot251

prediction using the equation (1).252

The results in Table 2 stress the importance of the noise injection and Lfeat, without which the253

performances worsen across all architectures. This observation is consistent with CIFAR-10 and254

CIFAR-100 ablation results on Table 6. Figure 1 highlights that zeroshot scores and CIFAR-100255

scores are highly correlated. The better the label-specific representation of embedding vectors,256

the more accurate the embedding interpolation and zeroshot prediction become. Thus, zeroshot257

performance can serve as a metric for representation learning in our method. For convolutional258

models, the gap between zeroshot performance and its end-to-end baseline is smaller for the larger259

conv512 model. This trend is also observed in zeroshot performances of BP models trained with260

LL−1
total , although the gap between zeroshot performance and its end-to-end baseline is overall smaller261

for BP. On the other hand, zeroshot performance of our largest model, CFL FC, is on par with its262

end-to-end baseline. Yet, a larger label embedding vector size does not necessarily result in better263

performance. FC (K = 1) and FC (K = 4) has 3072 and 512-dimensional label embedding vectors264

respectively, but the bigger the embedding vector size, the worse their performances become.265

Figure 1: Correlation between zeroshot
accuracy and CIFAR-100 fine-label pre-
diction accuracy

The impacts of noise injection and Lfeat are less obvious in266

Table 6, but the ablation experiments stress the importance267

of Lbatch. Dropping Lbatch results in significant drops in268

accuracy, across all architecture. The poor performances269

without Lbatch is in stark contrast to Wang et al. [2021],270

where Lfeat alone maximizes the mutual information be-271

tween intermediate features and labels I(h, y). Without272

auxiliary networks to process intermediate features further,273

I(h, y) obtained from Lfeat alone seems limited. The ex-274

periments demonstrate that Lbatch, maximizing similarity275

between features and labels, extracts I(h, y) much more276

effectively, even without auxiliary networks.277

Moreover, the use of dot product is crucial for Lbatch, as278

underlined by the severely impaired performance of the279

models with the cosine similarity on Table 2 and 6. Figure280

2 illustrates how the dot product between feature vectors281

and label embedding vectors helps detect salient regions282

in images, even in early layers. Since we use the mean283

feature vector h̄l
n to represent each image in Lbatch and Equation (Equation 1), prediction and feature284

extraction are based on the average dot product between feature vectors and label embedding vectors.285

Yet, the magnitude of salient vectors should contribute more to the dot product than that of non-salient286

feature vectors. If we normalize the magnitude as in the cosine similarity, we discard this valuable287

information. Thus, with the dot product, a small number of salient feature vectors can have more288

7



"votes" in prediction, as small regions of high attention are observed in some top-1 predictions in289

Figure 4n, 4f, 5b, 4b, and 3b.290

Overall, Lbatch and Lfeat are best used in conjunction, as they generate the best performances together.291

Furthermore, features generated using both in Figure 7c are more disentangled than features generated292

using only one, as displayed in Figure 9c and 8c.293

CIFAR-100 Coarse Labels

Networks Test error std(%)

CFL conv256 (end-to-end) 42.38
CFL conv512 (end-to-end) 40.46
CFL FC end-to-end 59.02
CFL Zeroshot conv256 (Ltotal-B) 49.85 0.279
CFL Zeroshot conv256 (Ltotal-D) 51.58 0.243
CFL Zeroshot conv256 (fixed DZ) 57.25 0.541
CFL Zeroshot conv256 (without ϵ) 58.23 0.465
CFL Zeroshot conv256 (Lbatch) 58.88 0.709
CFL Zeroshot conv256 (Ldict) WIP WIP
CFL Zeroshot conv256 (cosine similarity) 80.92 0.761
CFL Zeroshot conv512 (Ltotal-B) 46.73 0.377
CFL Zeroshot conv512 (Ltotal-D) 47.04 0.54
CFL Zeroshot conv512 (fixed DZ) 50.64 0.497
CFL Zeroshot conv512 (without ϵ) 51.22 0.449
CFL Zeroshot conv512 (Lbatch) 53.03 0.534
CFL Zeroshot conv512 (Ldict) WIP WIP
CFL Zeroshot conv512 (cosine similarity) 66.25 0.686
CFL Zeroshot FC (Ltotal-B) 59.85 0.212
CFL Zeroshot FC (Ltotal-D) 60.5 0.217
CFL Zeroshot FC (fixed DZ) 59.562 0.299
CFL Zeroshot FC (K = 1) 67.95 0.209
CFL Zeroshot FC (K = 4) 61.178 0.387
CFL Zeroshot FC (without ϵ) 59.76 0.418
CFL Zeroshot FC (Lbatch) 62.1 0.444
CFL Zeroshot FC (Ldict) WIP WIP

Table 2: Zeroshot inference results on CIFAR-100 coarse-labels. The table lists the mean and standard
deviation computed across five runs. Note that Lfeat does not use DZ , so zeroshot inference is not
possible with models trained only with Lfeat.

5 Discussion294

Labels with similar label embedding vectors (in Figure 10a) tend to be close to each other in feature295

space. Label embedding vectors of animals are in general similar to each other. Likewise, animals are296

clustered to the left in Figure 7c. However, similarity between embedding vectors does not necessarily297

imply similarity between features or between prediction. For example, in Figure 10a, non-animal298

label embedding vectors are not similar to one another, but they are clustered to the right in Figure299

7c. Moreover, dog and airplane embedding vectors are most similar, but they are not next to each300

other in feature space. Further, the confusion matrix in Figure 10b indicates that the models rarely301

misidentify labels of similar embedding vectors, except for dog and cat. This observation highlights302

that learning and inference rely on the interaction between features and label embedding vectors,303

rather than embedding vectors or features alone.304

Biological Plausibility By eliminating BP, our method makes each local layer free of biologi-305

cally implausible weight symmetry. Thus, each local layer can represent a non-symmetric, locally306

connected neuron compartment Guerguiev et al. [2016], Endo et al. [2021]. The label embeddings307

8



CIFAR-10 CIFAR-100

CFL Architecture Test error std(%) Test error std(%)

FC (Ltotal-B) 34.27 0.217 68.70 0.181
FC (Ltotal-D) 33.78 0.238 67.71 0.261

FC (fixed DZ) 34.11 0.212 68.59 0.238
FC (K = 1) 43.34 0.185 76.32 0.449
FC (K = 4) 37.8 0.216 70.79 0.128

FC (K = 12) 35.21 0.097
FC (without ϵ) 34.26 0.411 68.86 0.213

FC (Lbatch) 36.75 0.343 69.238 0.126
FC (Ldict) WIP WIP WIP WIP
FC (Lfeat) 43.34 0.058 70.818 0.149

conv256 (Ltotal-B) 24.39 0.137 51.71 0.476
conv256 (Ltotal-D) 24.96 0.237 51.59 0.244

conv256 (fixed DZ) 25.10 0.131 58.71 0.166
conv256 (without ϵ) 25.34 0.142 59.08 0.709

conv256 (Lbatch) 26.31 0.504 61.21 0.646
conv256 (Ldict) WIP WIP WIP WIP
conv256 (Lfeat) 44.16 0.488 73.24 0.163

conv256 (cosine simiarity) 40.64 0.712 72.62 0.138
conv512 (Ltotal-B) 16.57 0.182 50.61 0.132
conv512 (Ltotal-D) 16.66 0.128 50.5 0.675

conv512 (fixed DZ) 16.89 0.26 54.25 0.42
conv512 (without ϵ) 17.16 0.15 54.85 0.363

conv512 (Lbatch) 17.22 0.24 56.53 0.22
conv512 (Ldict) WIP WIP WIP WIP
conv512 (Lfeat) 38.97 0.292 68.48 0.274

conv512 (cosine similarity) 36.14 0.556 68.08 0.273

Table 3: Ablation Results on CIFAR-10 and CIFAR-100. The table lists the mean and standard
deviation computed across five runs. When training with cosine similarity, softmax sharpening
temperature τ = 0.07 was used.

can be considered as the high-order neural representation of the labels. Accordingly, Lbatch mirrors308

the top-down interaction between the high-order label representation and the features in bottom-up309

processing layers Gilbert and Li [2013].310

Our method also bears a resemblance to the models of pattern recognition in cognitive psychology:311

the template matching model, prototype matching, and feature matching models Shu-gen [2002].312

According to each model, we recognize objects by comparing our perception of objects with templates,313

prototypes, or features, respectively. Label embedding vectors can be considered all templates,314

prototypes, and features; each label embedding vector embodies the prototypical feature of the label.315

The models without the linear classifier fL on Table 1 predict labels by choosing the label with the316

highest dot product (1). Likewise, as shown in the dot product over the feature map (Figure 2), we317

may recognize the label whose embedding representation matches the image the most.318

Conclusion In this work, we propose contrastive forward learning with label embeddings (CFL)319

as an alternative to the end-to-end training with BP. Unlike local learning which still leverages BP320

in auxiliary networks, CFL completely eliminates BP and therefore the biologically implausible321

weight symmetry. Freedom from BP makes CFL models completely forward and backward unlocked,322

allowing each layer to update its weights after a forward pass. Unlike existing local and forward323

learning approaches, CFL can leverage BP architectures with minimal modification, requiring no324

specialized architecture, auxiliary network, input distortion, or local projection. Furthermore, the325

biologically plausible label embedding grants interpretability and allows for zeroshot inference326

through interpolation of label-specific representation. In addition to the above, CFL outperforms327

existing forward learning approaches on non-trivial datasets such as CIFAR-10 and CIFAR-100.328

9



References329

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by330

back-propagating errors. Nature, 323:533–536, 1986.331

Paul J. Werbos. Beyond regression : "new tools for prediction and analysis in the behavioral sciences.332

1974.333

Timothy P. Lillicrap, Daniel Cownden, Douglas Blair Tweed, and Colin J. Akerman. Random334

feedback weights support learning in deep neural networks. ArXiv, abs/1411.0247, 2014.335

Timothy P. Lillicrap, Daniel Cownden, Douglas Blair Tweed, and Colin J. Akerman. Random synaptic336

feedback weights support error backpropagation for deep learning. Nature Communications, 7,337

2016.338

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In NIPS, 2016.339

Charles Gilbert and Wu Li. Top-down influences on visual processing. Nature Reviews Neuroscience,340

14:350–363, 2013.341

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.342

In ECML/PKDD, 2014.343

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. ArXiv,344

abs/1901.06656, 2019.345

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.346

ArXiv, abs/1901.08164, 2019.347

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random348

learning signals allow for feedforward training of deep neural networks. Frontiers in Neuroscience,349

15, 2021.350

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations, 2022.351

Charlotte Frenkel, J. D. Legat, and David Bol. A 28-nm convolutional neuromorphic processor352

enabling online learning with spike-based retinas. 2020 IEEE International Symposium on Circuits353

and Systems (ISCAS), pages 1–5, 2020.354

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word355

representations in vector space. In International Conference on Learning Representations, 2013.356

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep357

bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL358

http://arxiv.org/abs/1810.04805.359

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for360

contrastive learning of visual representations. ArXiv, abs/2002.05709, 2020a.361

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for362

contrastive learning of visual representations. ArXiv, abs/2002.05709, 2020b.363

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron364

Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. ArXiv, abs/2004.11362,365

2020.366

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive367

coding. ArXiv, abs/1807.03748, 2018.368

Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired369

image-to-image translation. In European Conference on Computer Vision, 2020.370

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,371

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.372

Learning transferable visual models from natural language supervision. In International Conference373

on Machine Learning, 2021.374

10

http://arxiv.org/abs/1810.04805


Pierre Baldi and Peter Sadowski. A theory of local learning, the learning channel, and the optimality375

of backpropagation. Neural networks : the official journal of the International Neural Network376

Society, 83:51–74, 2015.377

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale378

to imagenet. ArXiv, abs/1812.11446, 2018.379

P. Pathak, Jingwei Zhang, and Dimitris Samaras. Local learning on transformers via feature recon-380

struction. ArXiv, abs/2212.14215, 2022.381

Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao Huang. Revisiting locally supervised learning:382

an alternative to end-to-end training. ArXiv, abs/2101.10832, 2021.383

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle384

for unnormalized statistical models. In International Conference on Artificial Intelligence and385

Statistics, 2010.386

Alexander Ororbia and Ankur Arjun Mali. The predictive forward-forward algorithm. ArXiv,387

abs/2301.01452, 2023.388

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional interpreta-389

tion of some extra-classical receptive-field effects. Nature Neuroscience, 2:79–87, 1999a.390

Tommaso Salvatori, Yuhang Song, Yujian Hong, Simon Frieder, Lei Sha, Zhenghua Xu, Rafał391

Bogacz, and Thomas Lukasiewicz. Associative memories via predictive coding. Advances in392

neural information processing systems, 34:3874–3886, 2021.393

Alexander Ororbia and Daniel Kifer. The neural coding framework for learning generative models.394

Nature Communications, 13, 2020.395

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional interpreta-396

tion of some extra-classical receptive-field effects. Nature Neuroscience, 2:79–87, 1999b.397

Heung-Chang Lee and Jeong geun Song. Symba: Symmetric backpropagation-free contrastive398

learning with forward-forward algorithm for optimizing convergence. ArXiv, abs/2303.08418,399

2023.400

James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-401

drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis402

Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic403

forgetting in neural networks. Proceedings of the National Academy of Sciences, 114:3521 – 3526,404

2016.405

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,406

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL407

http://arxiv.org/abs/1706.03762.408

Praveen Badimala, Chinmaya Mishra, Reddy Kumar Modam Venkataramana, Syed Bukhari, and409

Andreas Dengel. A study of various text augmentation techniques for relation classification in free410

text. pages 360–367, 02 2019. doi: 10.5220/0007311003600367.411

Qiying Yu, Jieming Lou, Xianyuan Zhan, Qizhang Li, Wangmeng Zuo, Yang Liu, and Jingjing Liu.412

Adversarial contrastive learning via asymmetric infonce. ArXiv, abs/2207.08374, 2022.413

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 2005.414

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.415

Gongpei Zhao, Tao Wang, Yidong Li, Yi Jin, Congyan Lang, and Haibin Ling. The cascaded forward416

algorithm for neural network training. ArXiv, abs/2303.09728, 2023.417

Jordan Guerguiev, Timothy P. Lillicrap, and Blake A. Richards. Towards deep learning with segregated418

dendrites. eLife, 6, 2016.419

11

http://arxiv.org/abs/1706.03762


Masaaki Endo, Hisato Maruoka, and Shigeo Okabe. Advanced technologies for local neural circuits420

in the cerebral cortex. Frontiers in Neuroanatomy, 15, 2021.421

Wang Shu-gen. Framework of pattern recognition model based on the cognitive psychology. Geo-422

spatial Information Science, 5:74–78, 2002.423

Appendix A Implementation Details and Visualization424

FC (MNIST) FC (CIFAR-10) FC (CIFAR-100) conv256 conv512
DZ 10x98 10x128 100x256 10X256 (100x256) 10x512 (100x512)
K 8 24 12

Input Size 784 3072 3072 3x32x32 3x32x32
1 FC 1024 FC 3072 FC 3072 CONV(3x3x64,1,0) CONV(3x3x64,1,0)
2 ReLU ReLU ReLU Batchnorm Batchnorm
3 Layernorm Layernorm Dropout 0.3 ReLU ReLU
4 FC 1024 FC 3072 LayerNorm CONV(3x3x256,2,1) CONV(3x3x256,2,1)
5 ReLU ReLU FC3072 Batchnorm Batchnorm
6 Layernorm Layernorm ReLU ReLU ReLU
7 FC 10 FC 10 Dropout 0.3 Global Avg Pooling CONV(3x3x512,2,1)
8 Layernorm FC 10 (100) Batchnorm
9 FC 100 ReLU
10 Global Avg Pooling
11 FC 10 (100)

Table 4: Architectures used in the experiments. CFL and BP share the same architecture, except for
DZ . CFL (without fL) and BP (LL−1

total ) both share the same architecture, devoid of the final FC layer.

Epochs Learning Rate Decay Milestones
MNIST FC 150 0.0005 50 100 125

CIFAR-10 FC 400 0.0002 50 150 200 350
CIFAR-100 FC 200 0.0001 50 100 150
MNIST conv 150 0.0075 50 75 100 125

CIFAR-10 conv 500 0.0075 100 200 300 400 450
CIFAR-100 conv256 400 0.0075 100 200 250 300 350
CIFAR-100 conv512 200 0.0075 50 75 100 125 150

Optimizer Batch size Learning rate decay rate
All experiments AdamW 512 0.5

Table 5: Hyperparameters.

12



(a) Ship (b) Layer64 (ship)

(c) Layer256 (ship)

(d) Layer512 (ship)

(e) Layer64 (airplane)

(f) Layer256 (airplane)

(g) Layer512 (airplane)

Figure 2: Attention maps of the dot product between intermediate layer features and label embedding
vectors. The redness denotes high values, whereas the blueness represents low values. 2a is the ground
truth image and label. The column 2b, 2c, and 2d corresponds to the top-1 predicted label, whereas
the column 2e, 2f, and 2g corresponds to the top-2 predicted label. With the "ship" embedding
vector, more attention is given to the water and the hull of the ship. The attention to the hull starts at
Layer256. In contrast, with the "airplane" embedding vector, more attention is given to the upper
body of the ship and the sky.

CIFAR-10

CFL Architecture Params Test error

ViT BP 3.19M 23.27
CFL ViT (Ltotal-B) 3.22M 37.73

DRTP FC (Frenkel et al. [2021]) 4.09M 51.06
DRTP CONV (Frenkel et al. [2021]) 16.54M 30.59

FF (Hinton [2022]) 18.93M 41
CAFO (Zhao et al. [2023] 243K 32.6

PFF (Ororbia and Mali [2023]) 32.37M 50.14∗
Symba (Lee and geun Song [2023]) 16M 41.2
Symba (Lee and geun Song [2023]) 31M 40.9

Table 6: Preliminary Results of ViT on CIFAR-10

13



(a) horse (b) top1:horse (c) top2:deer (d) top3:cat

(e) horse (f) top1:horse (g) top2:dog (h) top3:bird

(i) horse (j) top1:deer (k) top2:horse (l) top3:cat

Figure 3: Attention maps for horse images. The third row represents the misclassification case.

14



(a) frog (b) top1:frog (c) top2:cat (d) top3:bird

(e) truck (f) top1:truck (g) top2:airplane (h) top3:automobile

(i) cat (j) top1:cat (k) top2:ship (l) top3:automobile

(m) dog (n) top1:dog (o) top2:cat (p) top3:bird

(q) airplane (r) top1:airplane (s) top2:bird (t) top3:horse

Figure 4: Attention maps for the correct top-1 classification cases.

15



(a) airplane (b) top1:truck (c) top2:airplane (d) top3:ship

(e) deer (f) top1:dog (g) top2:cat (h) top3:deer

(i) bird (j) top1:cat (k) top2:ship (l) top3:automobile

(m) cat (n) top1:dog (o) top2:cat (p) top3:automobile

(q) automobile (r) top1:truck (s) top2:automobile (t) top3:ship

Figure 5: Attention maps for the top-1 misclassification cases.

16



(a) 64 dimensional features from the first layer (b) 256 dimensional features from the second layer

(c) 512 dimensional features from the third layer

Figure 6: t-SNE of MNIST features from the CFL conv512 model.

17



(a) 64 dimensional features from the first layer (b) 256 dimensional features from the second layer

(c) 512 dimensional features from the third layer

Figure 7: t-SNE of CIFAR10 features from the CFL conv512 model. Animals are clustered to the
left, while non-animals are clustered to the right.

18



(a) 64 dimensional features from the first layer (b) 256 dimensional features from the second layer

(c) 512 dimensional features from the third layer

Figure 8: t-SNE of CIFAR10 features from the CFL conv512 (Lfeat) model.

19



(a) 64 dimensional features from the first layer (b) 256 dimensional features from the second layer

(c) 512 dimensional features from the third layer

Figure 9: t-SNE of CIFAR10 features from the CFL conv512 (Lbatch) model. Without Lfeat, features
are less disentangled than those in Figure 7c.

20



(a) Label Embedding Similarity Matrix

(b) Prediction Confusion Matrix

Figure 10: Similarity and Confusion Matrix for CFL conv512 on CIFAR-10

21


	Introduction
	Related Works
	Local Learning
	Forward Learning

	Contrastive Forward Learning with Label Embeddings
	Label Embedding
	Training Loss
	Embedding Contrastive Loss
	Feature Contrastive Loss
	Total Local Loss


	Experiments
	Datasets
	Training Details
	Results
	Zeroshot and Ablation Experiments

	Discussion
	Implementation Details and Visualization

