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Abstract

Explainable Artificial Intelligence (XAI) has become
increasingly important in fields where understanding the
decision-making process of a model is critical. Various XAI
methods have been proposed to interpret the black box of
deep learning. However, these methods have been chal-
lenged for their lack of consistency. Several studies have
been conducted to enhance the consistency of XAI, utilizing
a convolutional neural network (CNN) model and Grad-
CAM as the target XAI technique. These studies showed
that improving consistency improves not only image classi-
fication accuracy but also classification accuracy on fine-
grained datasets and in limited-label data environments.
However, traditional methods to enhance consistency in
large pre-trained models such as ViT and CLIP are com-
putationally expensive, and fine-tuning does not produce
significant results. This paper introduces a combined fine-
tuning approach utilizing VPT: Visual Prompt Tuning and
a regularization term designed for application with large
pre-trained models and extensive datasets. Additionally, we
present the evaluation metrics to assess consistency more
precisely.

1. Introduction

The field of computer vision has achieved outstanding
performance in the era of deep learning. Although it has
been achieved state-of-the-art on the vision task, the neural
network is a black box since we don’t understand how the
model makes a decision making. For instance, when diag-
nosing cancer in the medical field, it was a critical problem
not knowing how the model diagnose it with which vari-
ables [5]. Hence, it’s essential to understand how the model
processes decision-making [17]. It led to how we can in-
terpret and know how the model works. Then, various XAI
methods have been proposed to interpret the Deep Neural
Network. Recent methods for image classification tasks
have been proposed and can be applied to classification acti-
vation maps or attention maps. Since the model can explain
decision-making by XAI methods, it is utilized in various
applications. However, XAI methods have been challenged

for the lack of consistency [3]. For instance, when an image
is classified into a class, it does not work as intended by a
person. Despite the position transformation of the image,
the decision-making of the model is carried out based on
some areas of the image that are completely different from
the original image. It is related to the reliability and whether
the model is working properly. Furthermore, consistency
affects the performance of the deep learning model. A
model that does not guarantee consistency has not been gen-
eralized and is biased toward a specific dataset [10]. In par-
ticular, consistency tends to be worse on fewer datasets, af-
fecting model performance [11]. Several studies have been
conducted to enhance the consistency of explainable artifi-
cial intelligence (XAI) [11, 12]. These studies utilized a
convolutional neural network (CNN) model as a foundation
and Grad-CAM, a commonly used method in vision, as the
target XAI technique. To improve the consistency of Grad-
CAM, a regularization term was added to the loss function
to ensure that Grad-CAM results were consistent with one
another. The model was then retrained with a new regular-
ization term. The results of these studies demonstrate that
enhancing consistency not only improves image classifica-
tion accuracy but also enhances performance in fine-grained
datasets and limited-label data environments.

Large pre-trained models such as ViT [6] and CLIP [13]
are becoming increasingly prominent in vision tasks. As
shown in Figure 1, after transforming the image, the XAI
method focuses on different parts of the image compared
with the original image in the ImageNet1000 dataset in the
ViT as same as the CNN network. This trend is evident
in both attention and Grad-CAM methods. However, the
computational cost of using traditional methods to enhance
consistency in such large models is prohibitively high. As a
result, we introduce a cost effective, fine-tuning approach
utilizing VPT: Visual Prompt Tuning combined with a
regularization term. This method has been specifically de-
signed for applications involving large pre-trained models
and extensive datasets. Moreover, we have introduced an
evaluation metric to measure consistency, aiming to demon-
strate the improvements our approach and measure the con-
sistency of explanations precisely.

Our contributions are as follows:



Figure 1. Example of consistency problem in Vision transformer, (a): origin, (b): rotation (c): flipped, (d): zoom-in. Each transformed
image is pointing to a different object.

• We confirmed that both attention-based and Grad-cam-
based methods have consistency issues in large models
such as vision transformers.

• Instead of Conventional fine-tuning, we chose to use a
method that combines VPT with the existing regular-
ization term approach. This approach is more effective
as it reduces the computational cost and allows us to
utilize prompt information.

• We improved the evaluation method used in previous
studies.This method allows for a more detailed analy-
sis of consistency than previous methods, thereby pro-
viding more objective and intuitive results.

2. Related works
This section provides an overview of relevant existing

works on consistency in explanations, with a specific focus
on the Vision Transformer model, which is the primary sub-
ject of our research.

2.1. Explanations

Deep learning models are often referred to as ”blackbox”
due to their lack of interpretability. Various methods have
been proposed to address it. Class Activation Mapping-
based(CAM-based) techniques offer intuitive interpretabil-

ity and several benefits. It’s designed in such a way that you
can generate a heatmap that highlights the areas in the in-
put image that contributed most to the final decision of the
model. This can be used to understand why a model made a
certain prediction. Grad-Cam is one of the methods. It use
the gradients of the class scores with respect to input image
during the backpropagation process to compute the impor-
tance of each location. However, deep learning model does
not always produces consistent explanations. Slight trans-
formation that are not change the semantics to input images
change the explanations frequently.

2.2. Consistency

Several methods have been proposed to achieve consis-
tency in explanations. One approach, presented in [14],
incorporates domain knowledge to align explanations with
prior knowledge. Another method, discussed in [8], uti-
lizes adversarial perturbations to ensure explanation consis-
tency. Additionally, [18] employs causal masking to gen-
erate contrastive images, aiming to improve interpretability,
and [7] introduces a perceptual consistency prior to atten-
tion heatmaps in the context of multi-label image classifi-
cation. This approach is based on the notion that the CAM
attention heatmap should undergo the same transformation
as the image if it is transformed.

In the pursuit of reducing spurious correlations in inter-



Figure 2. An illustration of the method of CGC loss. We extract the picture in [11]

pretation heatmaps, [11, 12] focus on contrastive learning.
These approaches aim to mitigate undesired correlations
and enhance the consistency of interpretation heatmaps.
The CGC method in Figure 2 is designed to make the model
produce more consistent explanations. The authors adopt
ideas from contrastive self-supervised learning and apply
them to the interpretations of the model rather than its em-
beddings. The CGC method works by encouraging the
Grad-CAM of an image to be close to the Grad-CAM of an
augmented version of the same image while being far from
the Grad-CAM of other random images. This is achieved by
designing a loss function that takes into account these fac-
tors. The CGC method acts as a regularizer and improves
the accuracy of limited-data, fine-grained classification set-
tings. Through the use of contrastive learning, they try to
generate explanations that are both meaningful and consis-
tent. The same author has proposed a similar method. This
method involves generating a larger composite image using
a 2x2 grid, where four images are randomly placed within
the grid’s cells [12]. The model is then trained to mini-
mize the difference between the interpretations of the orig-
inal image and the composite image. However, applying
this method to Vision Transformers can be challenging. We
adopt the CGC method [11] as a baseline.

2.3. Vision Transformer

Vision Transformer [6] is significant in that the archi-
tecture of the Transformer is used for image processing.
When attention techniques are used in the existing com-
puter vision field, they are primarily used with CNN or

used to replace only specific components while attracting
the entire CNN structure. However, the vision transformer
showed better performance than the existing CNN-based
model by applying a transformer that uses a sequence of
image patches as an input value without relying on CNN.

Vision Transformer (ViT) constructed a model in the
form of directly putting the image itself into the standard
Transformer. To this end, the image was divided into patch
units. By applying linear embedding to the patch, it can
be transmitted as a Transformer input value in the form of
a sequence. When training on a medium-sized data set, it
does not show good performance compared to the exist-
ing ResNets model. This reason can be confirmed that the
Transformer structure itself lacks inductive bias compared
to the CNN structure, and generalization is not achieved
without a large amount of data. However, when training
a large data set of 14 million to 300 million pages, it was
shown to overcome the structural limitation. To improve
the computationally intensive vision transformer, an effi-
cient vision transformer model called the DeiT [16] model
has also been studied. We used both ViT and DeiT in this
study.

3. Proposed methods
In existing CNN-based methods, a regularization term

is added to consider the consistency of Grad-CAM during
learning. To apply these methods to large models such as vi-
sion transformers, fine-tuning is necessary. In general, there
are two types of fine-tuning methods that utilize a large pre-
trained model to learn data, (a) linear probing and (b) end-



Figure 3. Example of the fine-tuning case, (a): linear probing (b):
end-to-end fine-tuining

to-end fine-tuning as depicted in figure 3.

End-to-end fine-tuning involves learning at a high rate
on a new dataset, resulting in a good performance but high
training costs due to the need to update new parameters.
Linear probing, on the other hand, involves freezing the
pre-trained model parameters and adding a linear layer for
training. Sometimes, it is good to add a few MLP layers
and a head layer. This approach is often used to analyze the
performance of existing multimodal encoders.

In the case of linear probing, the performance is inferior
to full fine-tuning because only the linear layer is trained,
and end-to-end fine-tuning takes a long time. Specifically,
applying the method used in our previous method paper [11]
to end-to-end fine-tuning would consume a considerable
amount of time, thus diminishing its effectiveness.

Therefore, we will adopt a new tuning method, which
will be introduced in the following section.

3.1. VPT: Visual Prompting Tuning

Prompt learning has recently been applied to various
fields for in-context learning of large language models. In
[9], the pre-trained vision transformer model was enhanced
by adding learnable prompts to the input path, resulting in
significant improvements in downstream task performance.
This method can be applied to a range of tasks, including
classification, segmentation, and object detection. Figure 4
from the original paper illustrates how visual prompt tun-
ing is performed(We took this figure in the original paper).
In (a), learnable parameters are prepended to the input of
each Transformer encoder layer (VPT-Deep), while in (b),
prompt parameters are only inserted into the first layer’s in-
put (VPT-shallow). During downstream task training, only
the prompt and linear head parameters are updated while
the entire Transformer encoder remains frozen.

We will investigate the extent to which visual prompting
aids in achieving consistency. This will involve breaking
the process down into steps and examining each method se-
quentially to assess its individual usefulness.

3.1.1 Visual Prompting Tuning: Shallow and Deep

In this approach, the prompt will be a vector of the same
size as the image token, which will undergo training. The
initial prompt is generated from a random vector that fol-
lows a Gaussian distribution and is subsequently updated
using a loss function tailored to the downstream task. For
instance, in classification tasks, the prompt vector can be
updated with a cross-entropy loss.

As previously discussed, there are two strategies for
visual-prompt tuning: VPT-Deep, which learns the visual
prompt and head by feeding the learnable visual prompt
through the transformer encoder at each step, and VPT-
Shallow, which only learns the visual prompt and head, al-
lowing the visual prompt to be learnable solely for the first
input, thus having the fewest parameters.

Even though VPT-Deep requires learning more parame-
ters than the Shallow method, it still involves learning less
than 1% of the parameters compared to the end-to-end fine-
tuning of the entire model. Consequently, we will initially
experiment with visual prompting tuning rather than end-
to-end fine-tuning on pre-trained ViT and DeiT models.

3.1.2 Visual Prompting with Contrastive Grad-CAM
Loss

In this approach, we will train the pre-trained model us-
ing contrastive Grad-CAM loss as presented in the paper
[14]. Instead of employing CGC loss solely for fine-tuning,
we combine CGC loss with cross-entropy loss for visual
prompting tuning. Regrettably, the resulting accuracy is
subpar, and the process is quite time-consuming due to
the requirement of multiple gradient calculations for Grad-
CAM. Given the low accuracy, we are not confident in the
evaluation metric, so these findings are excluded from the
results.

3.1.3 Interpreting Image Tokens with Visual Prompt

During visual prompting tuning, the prompt token learns
and adapts. We have observed that new information is
gained in this process, suggesting that if we can better inter-
pret the visual prompting and align it with the image data,
we may enhance the consistency of Grad-CAM. A simple
approach to achieve this would be to average the visual
prompt tokens and incorporate them into each image.

To explore a more sophisticated technique, we are
searching for research papers utilizing the application of
clips to visual prompting, aiming to improve alignment with
images and overall consistency.



Figure 4. Visual Prompting tuning framework, (a): Learnable parameters are prepended to the input of each Transformer encoder layer
(VPT-Deep), (b): Prompt parameters are only inserted into the first layer’s input (VPT-shallow). We extract the picture in [9]

Figure 5. An illustration for content heatmaps

4. Experiments

4.1. XAI-methods

We used Grad-CAM, Grad-CAM++ [15], Score-CAM
[19], and RollOut [2] as XAI Method for evaluation. The
first three methods are class-activation map-based, while
the last is attention-based. Our investigation of consistency
trends according to various XAI methods will focus solely
on Grad-CAM++, Score-CAM, and RollOut. For evalua-
tion against the baseline, however, we will exclusively em-
ploy the Grad-CAM technique. This decision is justified by
the desire for a fair comparison, as [11] also utilizes Grad-
CAM in its analysis. Techniques that perform effectively
for Grad-CAM are expected to demonstrate similar effec-
tiveness for attention-based methods in the future.

4.2. Implementation details

In our work, we utilized the pre-trained ViT(“vit-
base-patch16-224”) trained on JFT-300M dataset and
DeiT(“deit-tiny-patch16-224”) models trained on Ima-
geNet1000 data. We are implementing the pre-trained
model while our results thus far have been obtained using
Torch Hub [1]. Both models are also used in our base-
line and proposed method. For the fine-grained dataset em-

ployed in our study, overtraining could lead to overfitting
due to its limited size. Consequently, during end-to-end
fine-tuning on the CUB200 dataset, we utilized a batch size
of 32 for 10 epochs with DeiT and a batch size of 64 for 7
epochs with ViT. The AdamW optimizer was employed for
training using a learning rate of 1e-4, resulting in successful
learning. To address potential underfitting in the DeiT vi-
sual prompting tuning, we increased the epochs to 20, con-
sistently implementing this adjustment for both VPT-deep
and VPT-shallow. During the evaluation process of VPT-
deep(mean) and VPT-deep(shallow), the VPT model simply
integrated the average of the prompt values into the image
tensor.

Our exploration of CGC loss encompassed various ex-
perimental approaches. Initially, the existing CGC loss
method applies Grad-CAM at the onset of contrastive learn-
ing. In contrast to CNN models, applying Grad-CAM to
transformers produces noisy results due to multiple objects
being captured in underfitting situations. This interference
hinders achieving accurate learning. To overcome this chal-
lenge, we trained models using two techniques and selected
the top-performing model. We experimented with modi-
fying the λ value of the CGC loss regularization term and
utilizing a two-phase approach, wherein initial training was



DEIT VIT
Acc Base CH(%) ↑ Reverse CH(%)↓ Zoomin CH(%)↑ Acc Base CH(%)↑ Reverse CH(%)↓ Zoomin CH(%)↑

Base 72.25 67.97 59.14 62.68 79.55 85.86 75.79 82.52
CGC 72.90 69.06 60.15 63.75 81.62 83.14 72.46 76.96

VPT-deep 63.79 79.53 71.48 75.13 81.03 82.09 76.54 81.47
VPT-deep(mean) 79.45 71.56 75.19 80.14 75.60 80.04

VPT-shallow 64.61 72.62 58.55 64.74 77.06 67.50 56.47 64.10
VPT-shallow(mean) 72.45 58.43 64.47 61.52 50.43 57.60
VPT-shallow+CGC 58.77 70.70 55.50 61.33 - - - -

VPT-shallow(mean)+CGC 70.35 55.20 61.30 - - -

Table 1. Accuracy and Content Heatmap for CUB200-2011 test set

conducted using cross-entropy loss followed by additional
training with the CGC loss term. Our findings indicate that
the CGC method, though ineffective in the transformer con-
text, warrants further investigation for application in CNN
models.

4.3. Baseline

We present the baseline methods outlined in Table 2.

1. Base The pre-trained model undergoes end-to-end
fine-tuning with cross-entropy loss.

2. CGC The pre-trained model is end-to-end tuned using
CGC loss.

3. VPT-deep Deep visual prompt tuning is applied to the
pre-trained model.

4. VPT-shallow Shallow visual prompt tuning is imple-
mented on the pre-trained model.

5. VPT-deep(mean), VPT-shallow(mean) Same as
VPT-deep, VPT-shallow, but When calculating Grad-
CAM for evaluation, the mean of the prompt token is
added to the image token.

6. VPT-shallow+CGC Deep visual prompt tuning with
CGC loss is applied to the pre-trained model. We only
trained VPT-shallow with CGC because of computa-
tion resources.

It is important to note that when computing Grad-CAM
for VPT-deep and shallow, only image tokens are consid-
ered, excluding learned prompts. In contrast, for VPT-
deep(mean) and VPT-shallow(mean), the image token cal-
culation incorporates the average of the prompt tokens.

4.4. Dataset

We will make use of small datasets with fine-grained and
bounding box annotations, such as the CUB-200 [20]. For
the dataset, we have implemented a function to assess the
degree of overlap between the bounding box and the Grad-
CAM.

4.5. Evaluation

4.5.1 Base Content Heatmap(BCH)

This metric, introduced in [12], measures the sum of the
ℓ1-normalized heatmap within the annotated bounding box
of an object. If the model interpretation aligns with human
annotations of the object’s location, it can be assumed that
the percentage of the heatmap within the object annotation
mask should be close to 100%. As a result, a high value for
this metric is expected. Refer to the figure 5 (B).

A higher degree of overlap between the bounding box
and model interpretation signifies enhanced localization of
the model interpretation. This can be perceived as increased
consistency, as the model focuses on sparse areas even
when the image undergoes transformations.

4.5.2 Reverse Content Heatmap(RCH)

This metric could represent the sum of the ℓ1 normalized
heatmaps outside the bounding boxes annotated with ob-
jects. In this case, if the model interpretation matches hu-
man annotations concerning object locations, the heatmap
ratio outside the object annotation mask should be low. In
figure 5 (C), one can observe the percentage of model in-
terpretations that correspond to the background outside the
bounding box in the entire figure. Lower values indicate
superior model localization, whereas higher values suggest
noisy model interpretations.

4.5.3 ZOOMin Content Heatmap(ZCH)

This metric might measure the sum of the ℓ1 normalized
heatmaps within the bounding boxes annotated with ob-
jects, focusing on more specific or localized regions rather
than the entire bounding box. Figure 5 (D) illustrates the
distribution of model interpretation within the localized
space, with the bounding box further constricted around the
center. For this metric, a value closer to 100% is deemed
more desirable.”



4.6. Experiment Result

4.6.1 Content Heatmap in ImageNet1000

Prior to conducting our full-scale experiment, we compared
the Grad-CAM-based and Attention-based methods for the
Content heatmap metric on the ImageNet1000 validation
set. While the accuracy was lower than that of ResNet18,
the CH metric was also lower for the transformer series.
For the RollOut method, the CH score was low due to poor
localization on the vision transformer. The following exper-
iments were performed on Grad-CAM.

DEIT VIT ResNet18
Acc Base CH(%) Acc Base CH(%) Acc Base CH(%)

Grad-CAM

72.1

58.4

78.1

52.5

69.7

54.47
Grad-CAM++ 47.8 40.2 -
RollOut 34.4 36.6 -
Score-CAM 54.3 49.7 -

Table 2. Accuracy and Content Heatmap for ImageNet1000 vali-
dation set

4.6.2 GradCAM Content Heatmap in CUB200

Before examining the experimental results, we would like
to clarify our prior understanding: higher values of Base
Content Heatmap and Zoom-in Content Heatmap, along-
side lower values of Reverse Content Heatmap, indicate
better model interpretation alignment to the object rather
than the background. This consistency leads to more robust
model interpretation and improved model prediction.

We conducted experiments in Table 1 with end-to-end
fine-tuning, CGC loss, interpretation of models trained by
visual prompt-tuning (a variant of VPT), and a combina-
tion of VPT and CGC loss, as outlined in the prior sec-
tion. Initially, in DeiT, a relatively small model, we ob-
served high BCH and ZCH values when training solely with
VPT and assessing model interpretation. It can be inferred
that it detects more localized areas effectively; however,
the RCH value is concurrently high, rendering the overall
interpretation rather noisy. It is remarkable that incorpo-
rating VPT and CGC in DeiT resulted in higher BCH and
lower RCH compared to end-to-end fine-tuning outcomes.
In terms of BOR (Base content heatmap over Reverse), VPT
with CGC loss demonstrates higher effectiveness, indicat-
ing that a larger BOR value signifies less noise when local-
ized. Conversely, we noticed that merely combining CGC
with end-to-end fine-tuning had minimal impact. Integrat-
ing CGC with standalone training didn’t yield substantial
benefits for the transformer family of models.

We also discovered that employing prompts in VPT,
which was our initial expectation, did not prove efficacious
for DeiT and ViT. VPT-shallow was even less effective on
ViT. But we believe visual prompting remains a promis-

ing approach. Techniques like CGC continued to exhibit
strong performance when applied in conjunction with vi-
sual prompting. Moreover, there exists research investigat-
ing the concrete implications of learned visual prompting,
often employing clips. [4] We plan to leverage these studies
in the future.

5. Conclusion
In conclusion, we have presented a combined method

that addresses the challenge of consistency in Explain-
able Artificial Intelligence (XAI) for deep learning mod-
els. Our approach combines Visual Prompt Tuning (VPT)
and a regularization term, making it suitable for large pre-
trained models such as ViT and CLIP, as well as extensive
datasets. The proposed method alleviates the computational
expense associated with traditional techniques and yields
improved results compared to fine-tuning, especially in the
DeiT model. Furthermore, we have introduced an evalua-
tion metric to assess consistency. In future work, we plan to
investigate the effective utilization of the tuned prompts in
visual prompt tuning to further enhance interpretability and
performance.
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