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Abstract

In numerous practical scenarios of visual control prob-
lems, it is common for the target environments to differ from
the environments in which the policy was trained. To over-
come this challenge, recent studies have introduced method-
ologies to develop generalizable policies or automatically
adapt learned policies to target environments. Unfortu-
nately, these existing methods cannot be generally applied
to arbitrary pretrained policies, since they require addi-
tional assumptions about the pretraining phase such as mul-
tiple pretraining environments or specific auxiliary loss in
the pretraining phase. In this study, we propose a simple
yet effective adaptation method that is agnostic to the pre-
training process. Our approach enables warm-starting the
policy in the target environment, using only the learned pol-
icy and a few episodes from the pretraining (source) envi-
ronment. To do so, we adapt the learned representations
of the policy to the target environment by minimizing the
discrepancy between source and target environments while
preserving essential information for reinforcement learn-
ing. We demonstrate that the proposed method efficiently
accelerates policy learning in test environments.

1. Introduction

Recent Reinforcement Learning (RL) methods have
shown promising results in various control tasks directly
from high-dimensional observation [18, 19,32]. One of the
most significant hurdles in vision-based RL studies is ob-
taining low-dimensional latent representations from high-
dimensional raw observations, which is crucial for training
downstream RL agents. Thus, prior studies over the past
few years, focusing on learning representations, have led to
remarkable improvements by proposing to pretrain the en-
coder [3, 16,24], or learn the representations alongside the
RL agent with auxiliary tasks [19,23].

However, one of the long-standing challenges in vision-
based RL research still limits the applicability of the previ-
ous approaches; the difficulty of generalizing an RL agent
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learned in one domain to a new environment. This limi-
tation is particularly exacerbated in real-world problems.
Consider an RL agent trained in a simulation or training
environment. When this agent is applied to real-world sit-
uations, even a small amount of disturbances in the envi-
ronment (e.g. camera configurations or the texture of the
object) can lead to severe performance degradation of the
agent, and the agent requires a significant amount of target
domain data to re-train or fine-tune the RL agent.

To address such overheads on applying the agents in the
target environment, previous methods have been proposed
to learn generalizable policies or adapt the learned poli-
cies to target environments. Unfortunately, the majority of
previous works assume access to multiple pretraining envi-
ronments to train robust policies against distracting (task-
irrelevant) elements [2, 12, 15,27]. This assumption implies
that they are aware of which aspects will change in the test
environment and can generate diverse environments with
variations during pretraining, which is quite unrealistic in
real-world problems.

While a few studies have attempted to adapt policies
from a single pretraining environment to unseen target en-
vironments without relying on multiple pretraining envi-
ronments, these approaches still have certain limitations.
They are only capable of handling a limited range of vari-
ations [34], demonstrate their effectiveness solely in low-
dimensional observations [7], or rely on the assumption that
specific auxiliary losses need to be employed during the pre-



training process, which becomes a limitation when we have
access only to a pretrained model and cannot modify the
pretraining process [11].

In this work, we consider practical scenarios of domain
adaptation where modification of the pretraining is NOT
possible, and only the learned policy with a small amount
of data from the pretraining environments is available. We
propose a few-shot domain adaptation approach for an RL
agent, allowing the policy network to be effectively warm-
started in the target environment without relying on addi-
tional assumptions during the pretraining phase. To effi-
ciently restore the performance of the policy network in
the target environment, the proposed algorithm first adapts
the encoder of the visual controller by jointly optimizing
the adversarial domain adaptation loss alongside RL task-
aware loss with few-shot data. Then, we fine-tune the pol-
icy network in the environment to succeed in the new task
quickly. We demonstrate several experiments on visual con-
trol tasks to explore the effectiveness of the proposed adap-
tation method.

2. Related work

Representation Learning for Visual Policies It is one of
the most challenging and costly parts of vision-based RL
that extracting low-dimensional latent vectors from high-
dimensional raw observations for an agent to learn an op-
timal policy. To enhance data efficiency and address this
challenge in visual control problems, previous studies have
made notable improvements by adopting contrastive learn-

ing [19,20], data-augmentation techniques [18, 32], image
reconstruction [14, 16], and leveraging various task-aware
supervisions [11, 33]. In this work, we also utilize the

aforementioned data augmentation techniques and auxiliary
tasks for quick adaptation to the target domain with few
transition data.

Adversarial Domain Adaptation Domain adaptation is
a critical aspect of machine learning, which aims to im-
prove the performance of models when faced with differ-
ent source and target distributions by leveraging knowledge
learned from the source domain and adapting it to the target
domain. In recent studies, adversarial domain adaptation
(ADA) methods [6,21,22,25] have emerged as prominent
deep learning architectures, yielding state-of-the-art results.
Inspired by generative adversarial networks (GANs) [&],
these approaches address domain shift through an adver-
sarial min-max game involving two players: a feature ex-
tractor that acts as a generator and a domain classifier that
acts as a discriminator. One of the pioneering efforts in
this field, domain-adversarial training of neural networks
(DANN) [5], employs a gradient reversal layer as a domain
discriminator to differentiate between source and target dis-
tributions, while concurrently training a deep classification

model to produce transferable representations that are in-
distinguishable to the domain discriminator. Moreover, ad-
versarial discriminative domain adaptation (ADDA) [28]
has been introduced, which involves using the training data
from the source domain to initialize the target model. This
is followed by an adversarial adaptation process, which ul-
timately results in a target domain-specific classifier. The
impressive performance of adversarial learning in domain
adaptation has prompted extensive research in various tasks
beyond image classification [21,25], encompassing seman-
tic segmentation [29,3 1], object detection [9, | 3], and natu-
ral language processing (NLP) tasks [4,30].

Adaptations for Visual Policies Visual control tasks
have been developing over the last few years. Some studies
have proposed methodologies for automatically adapting a
learned policy to the target environment. The majority of
the previous works utilized domain randomization or meta-
learning methodologies, which not only have the disadvan-
tage of needing to generate a plethora of training environ-
ments during learning, but also require the test environment
to be included within the distribution of the training envi-
ronments. Other attempts have been made, such as the con-
cept of bisimulation [34] or generalization of representation
learning through data augmentation during training [12, | 5].
Each of these has its drawbacks: the bisimulation requires
an invariant representation that should also be preserved
in the test environment, and the augmentation cannot be
generalized in test environments that deviate from the do-
main adaptation applied during training. In other words,
these methodologies can handle domain shifts such as sim-
ple background changes, color shifts, or those within the
range of the domain adaptation applied during training, but
they cannot be applied in other unseen environments. There
have been a few previous studies that proposed methodolo-
gies applicable to unseen environments [7, | I ]. However, in
this case of [11], it requires a specific auxiliary loss during
training, and its effect diminishes when the degree of do-
main shift is severe. Furthermore, [7] has the limitation that
it has only demonstrated performance in state-based tasks,
not in visual control tasks.

Contrastive  Self-supervised Learning Contrastive
learning [10] and self-supervised learning have emerged
as effective strategies to leverage unlabeled data in visual
tasks. Contrastive learning aims to learn rich represen-
tations by contrasting similar and dissimilar instances in
the representation space, thereby improving downstream
task performance. Meanwhile, self-supervised learning
is a learning paradigm that capitalizes on unlabeled data
by formulating auxiliary tasks. It leverages the inherent
structure of data to learn useful representations without
the necessity of explicit supervision. Combining these two
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Figure 2. To adapt the visual controller to the target tasks in a new environment, the proposed method first adapts the encoder of the
policy network by jointly optimizing the RL task-aware loss alongside auxiliary adversarial loss (Phase 1.). Then, ours fine-tune the policy
network in the target environment to achieve the new task quickly (Phase 2.).

powerful paradigms, the SImCLR [1] has been developed.
It creates positive and negative pairs from the data to
teach the model about similarity. A positive pair is two
differently augmented versions of the same instance, and
negative pairs consist of different instances. SimCLR
uses a base encoder and a projection head to map these
images to a latent space, where a contrastive loss is used to
maximize agreement between augmented views. SimCLR
has achieved top performance in various tasks, highlighting
its potential in improving learned representations.

3. Preliminaries

Problem Settings We consider a Markov Decision Pro-
cess (MDP) with a tuple (O, A, T,R,7), where o, € O,
ar € A, T(ok+1log,ar), R : O x A — R and ~ indi-
cates high-dimensional observation at timestep k, action at
timestep k, transition function, reward, and discount factor
respectively. Also, the RL agent in our framework employs
the encoder ¢ : O — S, where S is the low-dimensional
latent space. We note that the superscript s and t across this
manuscript indicate the source and target respectively.
Suppose that there are two environments with different
domains of observation: a source environment Env® and a
target environment Env®. From an interaction with Env®,
we observe 0o° € (O, which is a realization from a ran-
dom variable O°. From interacting with Env"®, we are given
ot € O, which is a realization from a random variable O?.
Accordingly, O and O? represent a source domain and a
target domain, respectively. We assume that there exists a
domain shift between O° and O, such that their marginal
probability distributions are different (i.e., p(O%) # p(O")).
Our goal is to adapt an RL agent trained in the source
environment Env® to the target environment Env' through
few-shot interactions. For every interaction ¢, an agent ac-
quires a tuple of data, (0;,a;,7;) (0 € O: observation,
a € A: action, r € R: reward). We assume that the
agent stores a fraction of source data D* = {(of, a;, ;) }},

from its previous source training, and acquires target data
t . .

D' = {(ot, a;,r;)}"_, sampled from few-shot interactions

with the target environment.

Discussion on Data Pairing The previous approach in
the interim report (“Method 1) assumes that we have
n samples from the target data, each of which can be
matched sample-by-sample with the corresponding sample
from the source data. That is, we assume that the tuples
of D® and D! form pairs, and the only difference between
them is the appearance discrepancy caused by domain shift.
((Uor), ar,1¢)* = (0, az, 74)").

However, the feedback received during the interim re-
view highlighted that this assumption of collecting paired
samples may not hold in real-world scenarios outside of
simulated environments. Upon careful consideration, we
have realized that relying on the ability to pair samples
between the source and target data is not always feasible
in practical situations. If the process of pairing samples
between source and target data is easily achievable, then
there is no need for training. In such cases, we can di-
rectly employ the source model in the target environment
by transforming the target observations (o?) into the format
of source observations (0*) through Q=1 (o?) = 0°.

Hence, in this final report, we present an alternative ap-
proach (“Method 2”) where samples from different do-
mains are not necessarily correlated with one another. We
define a domain shift from a broader perspective as a
change in marginal probability distributions in the observa-
tion space between two environments, as described earlier
in this section. Consequently, we have made modifications
to previous adaptation methods, which will be introduced in
the following section.

4. Methods

In this work, we aim to adapt the encoder ¢ for few-
shot supervised domain adaptation, addressing shifted ob-



servations in the target environment. Specifically, our ap-
proach involves a two-step process for adaptation: (1) per-
forming few-shot task-aware adversarial domain adaptation
to bridge the gap between source and target domains by
leveraging data from D® and D' (Phase 1 in Fig. 2), and
(2) initiating a warm-start with the adapted encoder in the
target environment (Phase 2 in Fig. 2). To optimize the
encoder during the domain adaptation phase, we employ a
loss function that simultaneously learns robust feature rep-
resentations that capture the dynamics of the environment,
as described by the MDP components 7 and R, and ad-
versarially reduces discrepancies between source and target
domains.

4.1. Representation Learning for Downstream RL

To learn effective low-dimensional latent representations
from high-dimensional observation images, we adapt the
pretrained encoder to the target environment using the few-
shot target dataset D*. By leveraging reward prediction and
successor feature representation auxiliary loss, the encoder
can be fine-tuned to better adapt to the target environment,
focusing on relevant dynamics while maintaining informa-
tiveness for the downstream RL agent. The adaptation pro-
cess minimizes the discrepancy between source and target
domains while preserving essential environment dynamics,
enabling the RL agent to warm-start in the target environ-
ment and perform well despite the domain shift.

Reward prediction The reward prediction focuses on
learning a latent state representation that captures the en-
vironment’s reward structure. The encoder ¢ is trained
to extract informative features for reward prediction head
r¢ which predict ground truth rewards rgr from the latent
states s; = ¢(o0;). This task facilitates the learning of rep-
resentations that are informative about the rewards, which
are critical for downstream RL agents to make optimal de-
cisions. The loss for reward prediction is defined as the L2-
norm between the predicted rewards r¢(s;) and the ground
truth rewards rgr:

Lre = E[||ro(s¢) — rarl|2] 9]

Successor feature representation The successor feature
representation, which is inspired by [17], aims to learn a la-
tent state representation that captures the long-term dynam-
ics of the environment. By training the encoder ¢ to satisfy
the condition ¢(s;) = 1 4 v¢(s¢+1), the model learns to
predict the expected future states given the current state and
action, enabling the RL agent to plan ahead. The loss for
successor feature representation is defined as the L2-norm
between the current latent state and the expected future la-
tent state:

Lser = E[[[¢(s1) — [1 +v¢(se11)] 2] @)

By optimizing the encoder ¢ with these auxiliary tasks,
we ensure that it learns a latent representation that cap-
tures essential information about the environment dynam-
ics. This representation serves as a foundation for subse-
quent adaptation to the target environment, enabling the RL
agent to warm-start and perform well in the new domain.

4.2. Auxiliary Adversarial Domain Adaptation Loss

To adapt the encoder for the target environment, we pro-
pose two different approaches for few-shot adversarial do-
main adaptation. Method 1 will assume that there exist
paired samples from source and target domains and present
how to take advantages of these samples. On the other hand,
Method 2 have no assumptions on data pairing, which al-
lows us to use data samples collected from source and target
domains independently.

Method 1 (Paired Samples) In this approach, we use
paired data from D* and D* and optimize the encoder ¢ to
minimize the domain discrepancy between the source and
target domains. Given an anchor image, which is a cropped
region from source s at time p, 0‘;, we define the relation-
ships {G1, G2, G3, G4} for the adversarial training, utiliz-
ing other random cropped regions from the paired-image
set {of,, o;, 0y, ofI}: (1 associates the anchor with another
region within the same image o, G2 connects the anchor
with a region from the target domain at the same timestep
as o;, ('3 links the anchor to a region from the source do-
main but at a different timestep from o7, and G4 associates
the anchor with a region from a target domain at a different
timestep from ofz. Utilizing these relationships, the adver-
sarial domain adaptation loss can be defined as follows:

Lapar = —Elya, log(¥((G2))) — ya, log(v(4(Ga)))]

3)
where y¢, is a label of G, 9 is a discriminator, and ¢ is the
encoder, which plays a similar role with the generator from
GANSs. Also, the discriminator is jointly optimized to guess
the label of each group using the following loss:

LapAL—-p = —E[Z ya, log((6(G:)))] “4)

Method 2 (Independent Samples) The main goal of this
method is to discriminate whether given two images are
from the same domain or not. The two images are sam-
pled independently and do not need to correspond to each
other. For this task, we make two groups of data; The first
group G5 consists of pairs of two randomly sampled im-
ages, both from the source domain, which is equivalent to
the union of G; and G'3. The second groups G consists of
two randomly sampled images, one from the source domain
and the other from the target domain, which is equivalent to



the union of G5 and G4. Then, for the discriminator ¢, we
train it to properly discriminate whether a given image pair
belongs to either G5 or G, which is given by

6
Lapap = —E[D_ye log((6(G))], ()
=5

On the other hand, we update the encoder ¢ in a way that the
discriminator v cannot distinguish between groups 5 and 6.
Thus, the adversarial loss for the encoder is defined as

LapaL = —E[yg, log(¥(6(Gs)))], (6)

which forces the encoder ¢ to deliberately mislead the dis-
criminator v by falsely claiming that a pair of images be-
long to the same domain, even though they do not.

4.3. Auxiliary Instance Discrimination Loss

To address the absence of time-wise comparisons in
adversarial learning, we integrate InfoNCE loss based on
SimCLR [I] as an auxiliary loss. This instance discrim-
ination loss enables our model to discriminate samples
from different time periods based on self-supervised learn-
ing, enhancing temporal understanding and overall perfor-
mance. Specifically, we establish a contrastive prediction
task for every minibatch containing B samples from the tar-
get dataset. This task involves creating pairs of augmented
examples within the minibatch, resulting in a total of 2B
data points. In this task, a positive pair consists of the
same example, but with different augmentations. The other
2(B — 1) augmented examples are considered as negative
examples. Then, we define the loss function for a positive
pair of examples (i, j) as

exp(sim(¢;, ¢;)/T)
Ziil Lipq) exp(sim(ei, o) /T) 7

(7N
where sim(¢;, ;) = ¢ ¢/ billlld;

Lscir(7,7) = —log

, T represents a tem-
perature parameter, and Lirta) is an indicator function,
which returns 1 if £ # ¢ and O otherwise. We sum up the
losses of all positive pairs for each minibatch for training.

4.4. Total Loss

Finally, the total losses for the encoder ¢ and the dis-
criminator v for the adversarial domain adaptation can be
represented as follows:

mdin Lre + Lspr + aLapaL + BLscLr ()

n}/}in L ADAL-D; ©)

where « and 3 are the hyperparameters that balance the rep-
resentation learning task losses and the auxiliary losses. The
losses 8 and 9 are updated alternately. When 8 is optimized,
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(a) Cartpole swingup (b) Cheetah run (c) Walker walk

Figure 3. The images of each experiment and domain shift. From
left to right, each experiment is cart-pole swingup, cheetah run,
and walker walk. The upper setting is original source setting and
the lower setting is target setting which changed the camera angle

we freeze the discriminator ¢. Similarly, when 9 is opti-
mized, we freeze the encoder ¢. This adversarial training
process leads the encoder to learn features that are not only
useful for reinforcement learning tasks but also more ro-
bust to differences between the source and target domains,
thereby enabling warm-starting in the target environment.

5. Experiment details

We evaluate the proposed framework on a visual-control
task on the DeepMind Control Suite (DMC) [26]. We se-
lected three RL tasks from it, named cart-pole swing-up,
cheetah run, and walker walk. Each example image used
for training on each RL task is shown in figure 3. The above
images are the setting from original source settings, and the
below images are domain-shifted images with camera set-
tings changed. Here are a brief explanations of each task.

Cartpole swingup has two components, a cart, and a
pole. The cart is used as a base and the pole is connected to
the cart. Also, the cart can only move on one dimension. By
applying force on the cart, we balance the pole to maintain
the pole pointing up. Also, it is a swing-up task, thus pole
is initially pointing downwards.

Cheetah run is a task for making a cheetah-shaped
structure go forward. The dimension of action of the chee-
tah is 6. The reward is given by the speed of going forward,
with a maximum value limit.

Walker walk is similar to the cheetah run task. There
is a planar shape with a body and feet with an action di-
mension of 6. By applying force, the walker should walk
forward and its velocity is used for the reward.

On evaluation, we executed 35k steps on the cart pole
swing-up task, and 100k steps on other tasks. For stabil-
ity, we tested three random seeds of each experiment and



averaged them.

5.1. Baseline

As a base structure of RL, we used the CURL [19]. We
used two baseline settings, including “from scratch” and
“source encoder”.

From scratch is a naive approach that used a randomly
initialized encoder and trained it from scratch. We skipped
the pretraining step and directly started training on the target
environment. We trained with a learning rate of Ir = 2 x
10~* on the cheetah run task and used a learning rate of
Ir =1 x 1073 on other tasks.

Source encoder setting means we used the pretrained
encoder trained on the source domain. Then without do-
main adaptation, the pretrained encoder is fine-tuned on the
target environment. On fine-tuning, we used Ir = 2 x 107°
for the cheetah run task and I = 1 x 10~ for the remain-
ing tasks as a learning rate which is 1/10 value of the “from
scratch” setting.

5.2. Domain Adaptation

Our Domain Adaptation Method In the domain adapta-
tion training step (Phase 1 of figure 2), we used 2000 sets of
images from the target environment for training. The dis-
criminator and encoder (generator) trained alternately in an
adversarial fashion with a ratio of 1:1 and the total iteration
was 250 epochs. We set the learning rate of the discrimina-
tor, encoder, and reward head as 1 x 1073,1 x 1074, 1 x
1073, respectively. The coefficient of auxiliary adversar-
ial loss and SimCLR loss was set with & = 0.1, 5 = 0.3
on equation 8. Moreover, the temperature of SIimCLR loss
was 7 = 0.07 on equation 7 and other hyperparameter on
equation 2 was set to v = 0.99

We used 2000 steps of additional adaptation on the tar-
get environment before evaluating the result as a warm
start(Phase 2 of figure 2). Thus we subtracted these 2000
steps on evaluation. Same as the source encoder setting,
we used Ir = 2 x 107° for the cheetah run task and
Ir =1 x 10~ for other tasks.

Domain Adaptation Baseline For comparing the do-
main adaptation ability with other methods, we used Pol-
icy Adaptation during Deployment method (PAD) [11] as a
domain adaptation baseline. However, there is a slight dif-
ference in the problem setting between our algorithm and
PAD; PAD does not utilize a reward signal and RL fine-
tuning, but instead employs an auxiliary loss (inverse dy-
namics prediction) in an online adaptation fashion. For fair
comparisons, we adjusted our algorithm to align with the
setup of PAD. First, we removed the RL objectives and aux-
iliary losses related to reward signals in adaptation. Also,
following PAD, we adapt the encoder in an online adapta-
tion fashion. The main difference between PAD and ours

is the use of adversarial domain adaptation loss and in-
stance discrimination loss (SimCLR), alongside the original
PAD auxiliary loss (inverse dynamics prediction). We eval-
uated these adaptation methods for two settings each chang-
ing the number of adapted episodes. We tried using 1 and
10 episodes for adapting and denoting after the adaptation
with -(For example, PAD-10 means PAD method with 10
adapted episodes). Especially on comparing with PAD, we
experimented with two domain shifts, including color shift
and viewpoint shift.

6. Results
6.1. Domain Adaptation Evaluation

We first evaluated the proposed framework with base-
line settings(“from scratch” and “source encoder”). Cor-
responding steps-return graphs are displayed in figure 4.
The experiment settings are distinguished by the colors and
shading indicates a standard deviation across 3 seeds.

On cheetah run and walker walk tasks, our method shows
similar or slightly lower returns on early steps (before 20k
steps) and gives considerably better returns after 20k steps.
The returns increase over 20 and 60 on each “from scratch”
and “source encoder” setting of the cheetah run task. More-
over, on the walker walk task, returns improved by over 60
on both baselines. However, on the cart-pole swing up task,
our method shows lower returns on most of the steps and fi-
nally becomes similar performance on convergence. It can
be seen as a slow convergence.

Discussion As discussed earlier, we observed that perfor-
mance improvement is not immediate during the early steps
of adaptation. We speculate that this is due to the RL pol-
icy network which requires time to learn the specifics of
the target domain. Especially in the initial steps of fine-
tuning in the target environment, the RL policy network
learns the actor and critic network from the new features
extracted by the updated encoder. After the initial steps for
RL fine-tuning, we observed that the encoder’s capabilities
contribute to performance enhancement and these capabili-
ties lead to higher performance in the target environment.

Moreover, our framework did not demonstrate improve-
ment in the cartpole swingup task. We believe this is due
to the minimal domain shift present in the cartpole task.
This means that utilizing only RL objectives rather than the
joint objectives for domain adaptation might be sufficient:
the inclusion of auxiliary objectives can have a negative im-
pact on RL performance in tasks with minimal domain shift,
such as cartpole.

As a result, we conclude that our method possesses do-
main adaptation capabilities and can enhance the perfor-
mance of the RL model when adequately trained on the tar-
get domain over a sufficient number of steps.
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Figure 4. Steps-return graphs of our framework and baseline without domain adaptation on three different RL tasks.

6.2. Comparing with Other Method

As mentioned in section 5.2 we compared our framework
to the existing domain adaptation method, PAD, and the re-
sult is displayed in table 1. First, on the color shift task,
which the PAD had targeted, Ours-10 shows the best result
on the walker walk, and PAD-10 gives the best result on
the cheetah run. On cart-pole swing up, the model without
adaptation shows the best result. Moreover, on viewpoint
shift, the Ours-10 showed better results than PAD on ev-
ery task. These results show our method has considerable
domain adaptation ability compared to the existing method.

6.3. Ablation study

We conducted three ablation studies to analyze the im-
pact of each design in our framework, and the correspond-
ing return graphs are presented in Figure 5.

Auxilary loss Removing each auxiliary loss term resulted
in a decrease in performance on both the cheetah and walker
tasks. The effect was particularly significant on the walker
task, with noticeable reward gaps. These findings indicate
that each auxiliary loss term contributes to performance im-
provement.

Pretrained RL network Surprisingly, we observed that
employing a pretrained RL network from the source envi-
ronment did not contribute to learning in the target envi-
ronment. In certain environments like Walker, the use of
pre-trained RL networks even led to a decline in adaptation
performance. We speculate that although the distribution of
encoded features in the target observations resembles that of
the source observations, extensive training of the RL agent
is still required due to substantial domain shifts, and thus,
utilizing a re-initialized RL agent could yield better perfor-
mance.

Adversarial Objective Considering that Method 1 relies
on the strong assumption of paired samples in the target
and source environments, but offers only marginal benefits

compared to Method 2, we argue that utilizing paired data
for Method 1 does not provide significant advantages over
Method 2 in our settings.

Table 1. Comparison on return with domain adaptation baseline

Color Shift || w/oadapt | PAD-1 | PAD-10 | Ours-1 | Ours-10
cartpole 626 638 316 533 528
walker 280 464 373 380 503
cheetah 138 221 263 161 226
Viewpoint w/o adapt | PAD-1 | PAD-10 | Ours-1 | Ours-10
cartpole 494 321 96 345 336
walker 44 29 32 51 54
cheetah 3 2 0 17 31

7. Conclusion

In this paper, we propose a simple yet effective
pretraining-agnostic adaptation approach for RL agents,
with only the learned policy and a few episodes of source
and target environments. This method overcomes the limi-
tations of existing approaches, particularly the over-reliance
on the pre-training phase and the assumption that the source
and target environments will be similar. It effectively min-
imizes the discrepancy between source and target environ-
ments while preserving vital information essential for rein-
forcement learning, by integrating adversarial domain adap-
tation and auxiliary instance discrimination techniques.

We evaluated on the DeepMind Control Suite (DMC)
and demonstrated the advantages in terms of adaptability
and efficiency of our approach. It effectively facilitates the
process of warm-starting especially when the domain shift
is large, which plays an instrumental role in expediting the
policy learning process within the target environment. In
comparison with existing methods, ours require only a few
episodes of target environments to adapt the learned policy,
which drastically reduces the dependency on vast data col-
lection. Notably, our approach is practically agnostic to the
pretraining phase, thus making it especially fitting the real-
world scenarios where environmental conditions are likely
to significantly deviate from training settings.
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Figure 5. The steps-return graphs of each ablation study. (A) The ablation study of each auxiliary loss term. (B) The ablation study using
pretrained RL network. (C) The experiment of changing data on adversarial adaptation training. (Methods mentioned on section 4.2)

Limitations and Future Works. While the proposed
method shows potential in addressing the challenges of pol-
icy adaptation to the target environment with limited infor-
mation about the pretraining phase, it still has some lim-
itations. Firstly, our method still requires a considerable
number of interactions with the target environment, as the
policy network needs to be fine-tuned in the target environ-
ment. Additionally, in cases with small domain shifts, such
as color shifts(Table 1), the advantages of our method over
the baseline (PAD) are not significant.

Recognizing these limitations, we acknowledge that fur-
ther improvements can be made to our method. One in-
teresting avenue for future exploration is the integration of
the adaptation phase and fine-tuning phase. Currently, these
phases are treated separately, but combining them could al-
low us to leverage the auxiliary losses during the fine-tuning
phase in the target environment, probably leading to im-
proved data efficiency.

Another interesting future direction involves finding al-
ternatives to the fine-tuning phase in the target environment.
While our method successfully adapts the pre-trained en-
coder to the target environment, utilizing the pre-trained ac-
tor/critic network does not yield better performance com-
pared to re-training the actor/critic from scratch in our set-
tings. In this regard, we believe that there might be a way
to adapt the pre-trained actor/critic network to the target en-
vironment as well as the encoder, without requiring a sig-
nificant number of interactions in the target environment.

We briefly share a snippet of our idea on how this could be
achieved:

* Learn the quantized representations on the source en-
vironment using VQ-VAE, and train policy networks
that utilize these quantized representations as input.

* Adapt the encoder to the target environment.

* Instead of retraining the policy from scratch, solely
find the mapping from learned embeddings to new em-
beddings.

2. Adapt encoder

o] [

1. Learn quantized |_||_||_||_|
representations RL Policy
H|N]N!
[ a)
1o ol MMM
| © Matching o I
— e, Ly

3. Find the best mappings between the embeddings

Figure 6. A snippet of the idea for utilizing the pre-trained actor
and critic network for better data efficiency.
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