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Abstract

Multi-animal tracking (MAT), a type of Multi-object
tracking (MOT), is a challenging task in computer vision
that has great importance in various fields, including neuro-
science, wildlife conservation, and ecology. However, MAT
remains largely unexplored, and the unique characteristics
in motions and appearance similarities of animals, resulting
in frequent identity switches, make this task even more chal-
lenging. To address these challenges, we propose a novel
approach that goes beyond traditional reliance on 2D mo-
tion and high-level visual cues. Our approach incorporates
comprehensive visual features for robust tracking, specifi-
cally leveraging depth information and multi-level appear-
ance cues to tackle the notorious identity switch problems
in MAT. By utilizing depth information, one can reframe the
2D tracking problem into 3D framework, thereby enhanc-
ing the differentiation, especially after occlusions. Multi-
level appearance cues are the fused low-level and high-level
feature representations, which can capture more details of
each animal. Built upon the DeepSORT algorithm, our pro-
posed model significantly improves the performance of the
baseline, especially in the association task, shown by the
increase in IDF1 score. Next, we investigate the contribu-
tions of each proposed visual feature—depth and multi-level
appearance feature— by conducting ablation study. We fur-
ther dissect the effects of each feature by analyzing each
feature’s effect in sequence-level, which shows that these
features —depth in particular— contribute a lot in improv-
ing association quality of the tracker.

1. Introduction

Multi-object tracking (MOT) is a popular yet challenging
task in computer vision. It aims to locate multiple objects
of interest in a video sequence and generate each object’s
trajectory, while maintaining their identities. Particularly,
multi-animal tracking (MAT), a kind of MOT, is critical for
animal motion and behavioral analysis, and thus has great
importance in neuroscience, wildlife conservation and ecol-

Figure 1. The distance between visual features of the objects in
two consecutive frames

ogy, to name a few.
Despite its importance, MAT is highly unexplored. Most

MOT studies have focused on tracking pedestrians or vehi-
cles [10, 13, 31, 60]. However, animals have certain char-
acteristics in their motions and appearance patterns that are
significantly different from humans or vehicles, making the
task more challenging [55]. While humans and vehicles
have various visual cues to distinguish them (e.g., colors
and shapes), animals have extremely high visual similarity
to each other. This makes it difficult to rely solely on these
appearance cues for tracking, which often results in iden-
tity switches. The pose variations (e.g., flying, swimming
and walking) and resulting complexity in motion patterns
also pose a challenge in detecting and tracking animals. In-
deed, most trackers targeting pedestrians or vehicles show
significant performance drop when tested on animal track-
ing dataset from [55]. It raises the need to propose a novel
approach, dedicated to tracking multiple animals.

Previous approaches in MOT, let alone MAT, have pri-
marily relied on 2D motion information and/or appearance
cues [2,4,6,51,58]. More precisely, motion information in-
cludes the x, y coordinates and velocity of detected bound-
ing boxes. Appearance cues are usually represented as high-
level visual features of each object, and are commonly used
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in re-identification. Nonetheless, these approaches fail to
offer reliable tracking in multi-animal scenarios due to chal-
lenges such as high visual similarity, irregular motions, fre-
quent interactions, and resulting occlusions.

To address this challenge, we propose a novel approach
that incorporates comprehensive visual features for robust
tracking, moving beyond the conventional reliance solely
on 2D motion and high-level visual cues. Our first pro-
posed visual feature is image depth. In Figure 1, we illus-
trate the difficulty of distinguishing the target object from
a candidate object using high-level image feature distances,
as these distances are nearly identical (0.0067 and 0.0066).
However, by leveraging depth information, we can dis-
tinctly identify the target object, which exhibits a distance
ten times closer to that of the candidate object. This sug-
gests that expanding the 2D-context to 3D has the potential
to solve the occlusion problem, which is common in MAT.
To further enhance the model’s ability to identify each an-
imal, we seek to capture each individual’s appearance cues
in more detail, by utilizing low-level features along with
high-level features. This approach is expected to be es-
pecially helpful for tracking animals, given their extremely
high visual similarity and the common failure to capture the
identity only with high-level features [55]. Finally, we con-
duct ablation studies to investigate the contribution of each
proposed visual feature in MAT performance.

Our contributions can be summarized as follows:

• We propose a novel approach for MAT, which is to
leverage a depth module. To the best of our knowl-
edge, it is the very first attempt to directly utilize depth
information extracted from 2D videos within the con-
text of MAT.

• We further propose to utilize multi-level appearance
representation, which is expected to solve the homo-
geneous appearance problem in animals.

• We analyze the effect of different features –depth-
incorporated motion, and multi-level appearance cues–
in tracking animals.

We hope these novel approaches and following analysis to
facilitate meaningful discussions in the under-explored field
of MAT.

2. Related Works
2.1. Multi-Object Tracking Algorithms

Tracking-by-Detection (TD) is a predominant paradigm
in MOT, which decomposes the MOT task into two sub-
tasks: object detection and data association. In the object
detection task, [23,43] instances are detected in each frame
using pretrained detectors such as YOLO [41]. In the data

association task, the detected instances are associated with
object identity to generate trajectories using optimization
techniques (e.g., Hungarian algorithm [4] and network flow
algorithm [9]).

SORT [4] is an online TD MOT framework that utilizes
the Kalman filter [19] for velocity model estimation and the
Hungarian algorithm for data association, and this design
has been widely adopted in recent MOT models. Deep-
SORT [51] mitigated the identity switching and occlusion
issue of SORT by using nearest-neighbor queries and ap-
pearance feature representations. OC-SORT [7] harnessed
observation-centric re-update for reducing the accumulation
of errors. QDTrack [35] aimed to enhance data matching by
using contrastive learning to learn the similarity between
instances. ByteTrack [56] achieved state-of-the-art perfor-
mance by recovering true object identities from low-score
bounding boxes instead of neglecting them.

There are multiple paradigms other than TD in MOT.
Tracking-by-segmentation (TS) leverages image segmenta-
tion models such as Mask R-CNN [14] to utilize pixel-level
information of instances. MOTS [46] has demonstrated that
MOT and image segmentation tasks can be effectively cou-
pled. Utilizing an explicit store of memory for segmentation
has been suggested in space-time memory (STM) [33]. By
extracting memory embedding from each frame, features
that exist over multiple frames could be effectively utilized
for tracking. This idea has been expanded in XMem [8]
by using multiple memory stores inspired by the neurologi-
cal model of memory. Recently, Track Anything framework
[52] showed that using segment anything model (SAM) [20]
in conjunction with XMem can achieve robust performance.

Besides TD and TS, tracking-by-regression (TR) and
tracking-by-attention (TA) paradigms have been suggested.
Tracktor [2], which is a TR model, used an object detector
with a bounding box regression head and an object clas-
sification head, which efficiently handles the occlusion of
tracks. CenterTrack [59] is a simple TR model that rep-
resents objects as points and associate the instances using
greedy matching. Trackformer [29] is a TA model that uti-
lized transformer encoder-decoder architecture for MOT.

2.2. Multi-Animal Tracking Algorithms

For MAT, several models based on existing MOT algo-
rithms have been suggested. DeepLabCut [28] is an exten-
sion of the multi-human pose estimation model DeeperCut
[17], which is based on ResNet [15]. While the DeepLab-
Cut model showed state-of-the-art performance in animal
body part tracking, it only had limited capability for MAT.
IDtracker.ai [45] is a CNN-based MAT framework that uti-
lizes a specialized crossing detector to segment videos into
non-occluded chunks with respect to each instance. TRex
[47] is a TS-based MAT model that achieved performance
comparable to IDtracker.ai with improvement in the pro-
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Figure 2. Architecture of the proposed MAT model leveraging comprehensive visual features.

cessing speed. SLEAP [36] is a general multi-animal pose
tracking framework that offers both visual feature-based
tracking and flow-shift tracking.

2.3. Object Tracking Using Depth

Traditional object tracking models [2, 4, 51] that depend
only on RGB image decreased accuracy when distinguish-
ing objects with similar appearances, such as objects with
similar textures. To address this limitation, algorithms have
been suggested that utilize both RGB images and depth in-
formation.

VGG3D using RGB-D [61] proposed a method to im-
prove object recognition accuracy by including 3D shape
and distance information of objects using deep convolu-
tional neural networks (DCNN) trained on RGB-D images.
DAL [37] proposed a method that utilizes depth information
in the field of Long-term Tracking. The results achieved
high tracking accuracy and stability compared to previous
Long-term Tracking methods. And the algorithm also per-
formed well on large-scale datasets and was sensitive to ob-
ject size and distance. Some works focused on reducing
occlusion by integrating depth with MOT. 3DT [16] and
AB3DMOT [50] aimed to resolve the occlusion problem
in MOT by using depth information to generate 3D trajec-
tories.

In order to utilize these methods, depth information, ob-
tained through specialized devices such as RGB-D, LiDAR,
or GPS, is required. However, these types of data are not
generally available for MAT tasks. This issue can be miti-
gated by extracting depth information from RGB images us-

ing depth estimation models. DET [24] and DP-MOT [38]
are pioneering works that integrated depth estimation from
RGB images with conventional TD-based MOT.

Depth estimation is a common task in computer vision
where the goal is to predict the distance of objects or scenes
from one or more images. There are three types of depth
estimation: monocular (using one image), binocular (using
two images), and multi-view (using more than two images)
[27]. For our research, we will be focusing on monocular
depth estimation (MDE) methods because they can predict
a wider range of depth [1, 34]. Deep learning-based meth-
ods have become highly effective for monocular depth es-
timation, demonstrating superior performance compared to
other approaches. These methods can be broadly classified
into two categories based on their underlying architecture:
convolutional neural network (CNN)-based [11, 22, 32, 53]
and Transformer-based [5, 39, 54] methods. In recent
years, researchers have explored more advanced architec-
tures [5, 11, 12, 12, 30] to further improve the accuracy of
monocular depth estimation, demonstrating promising re-
sults.

3. Method

Following the tracking-by-detection paradigm, the pro-
posed method combines depth-incorporated object posi-
tions and multi-level appearance feature representations of
detected objects. The extracted features are then used in as-
sociation step, when computing the similarity between cur-
rent detections and the estimated state of existing objects
in current frame. The proposed pipeline in illustrated in
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Fig. 2. In the following sections, the method is described
in detail by its main components, 1) detection, 2) depth-
incorporated track handling, and 3) multi-level appearance
feature extraction and association.

3.1. Detection

To locate animals in each incoming frame, we utilize
YOLOv5 [18]. YOLOv5, similar to other detectors, con-
sists of three key components. The first component is a
CNN-based backbone that extracts image features. The sec-
ond component consists of the neck layers, which combine
and integrate image features before forwarding them for
prediction. The final component is the detection head, re-
sponsible for predicting object classes and bounding boxes.
YOLOv5 utilizes the architecture of CSPDarknet53 [48]
with an SPP layer serving as the backbone, PANet [25] as
the neck layers, and a YOLO detection head [42]. Due to
its notable reputation and user-friendly nature as a one-stage
detector, we select YOLOv5 as our detection module.

3.2. 3D Tracking

3.2.1 Depth Estimation

One of the main ideas of the proposed method is to lever-
age depth value for each detected object (i.e., extending the
2D image space into 3D) (Fig. 2 2 ). While occluded ob-
jects are likely to share the same 2D coordinates, the 3D
coordinates are guaranteed to be unique for each object.
Therefore, we expect this approach to solve the occlusion
problem, which is frequent in multi-animal settings.

To get the depth value of each detection, we utilized pre-
trained MiDaS (dpt-beit-large-512) [40] as our depth esti-
mation model. This model is pre-trained on 12 datasets
(ReDWeb, DIML, Movies, MegaDepth, WSVD, TartanAir,
HRWSI, ApolloScape, BlendedMVS, IRS, KITTI, NYU
Depth V2) of several depths and environments. After ob-
taining the entire depth map of a given frame with MiDaS,
the bounding box region of each object is cropped from the
depth pixels.

The depth map of each bounding box is divided into 9
patches for each detection, and only the central patch is used
for depth estimation. This is to prevent the background pix-
els affecting the z coordinate of the bounding boxes. The
center z coordinate of each bounding box is calculated by
the median, and the length along the z-axis was calculated
by the IQR of depth values. Combined with the 2D co-
ordinates obtained from the detection step, the z-axis co-
ordinates are used to represent the 3D coordinates of each
detected animal.

3.2.2 3D State Estimation

For state estimation (Fig. 2 4 ), we adopt a 3D Kalman fil-
ter based on [19] to predict the 3D coordinates of existing

objects in current frame t, based on frame t − 1. Kalman
filter uses a linear constant velocity model, based on coor-
dinates from the previous frames. The standard deviation of
the positions and velocities were scaled by the height of the
respective bounding box. We assumed that the z-axis mo-
tion is more nonlinear than the x-y plane motion, and thus
scaled the z-axis standard deviation by a factor of 4. For IoU
calculation, the 3D bounding boxes were projected to the x-
y, y-z, and x-z planes, and the IoU was calculated on each
plane. 3D IoU was obtained by calculating the weighted
mean of 2D IoUs on the three planes.

3.3. Association

Association is done by computing the similarity between
the latest detections and the estimated state of existing ob-
jects (i.e., tracks), and assigning each detection with the
closest object. Building upon the DeepSORT [51] algo-
rithm, we employ a comprehensive approach that combines
both motion and appearance information to effectively ad-
dress the assignment problem. Moreover, we employ a
novel multi-level appearance feature extractor that utilizes
low-level features, enabling the capture of finer details in
images.

3.3.1 Multi-Level Appearance Feature Extractor

We utilize a convolutional neural network (CNN) to extract
appearance features. CNNs are designed to better compre-
hend the overall semantics of an image as the receptive field
expands. As a result, high-level features in CNNs typically
reflect abstract semantics, while low-level features capture
finer details. To address the significant visual similarities
among animals, we employ a multi-level feature extractor
that utilizes detailed information.

The overall architecture is illustrated in Figure 3. It be-
gins with a 3×3 convolutional layer, which transforms the
input image into concise high-dimensional feature maps.
These feature maps then undergo processing through four
consecutive convolutional blocks. Each block consists of a
3×3 convolution, followed by a ReLU activation function,
and another 3×3 convolution. This hierarchical arrange-
ment enables the extraction of features at different levels.
Throughout this process, the channel dimensions of the fea-
ture maps increase, while the spatial resolution remains un-
changed.

Next, we combine the four multi-level features using fu-
sion operations. Three different fusion operations are ex-
perimented. The first function is a simple addition, and the
second one is concatenation followed by a fully connected
layer. The last operation is a gate fusion that computes a
weighted average of features using trainable coefficients:

σ(FWF )F (1)
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Figure 3. Architecture of the multi-level appearance feature extractor

where F represents the matrix form of the multi-level fea-
tures, and WF denotes a trainable parameter that maps the
features to one-dimensional gate vectors.

Following the fusion operation, additional convolutional
layers and an average pooling layer are added to extract the
features for the the tracking algorithm. Then the network is
trained on the ID classification task, which involves classi-
fying the individual IDs of the provided animal images. To
facilitate this task, additional dense layers are introduced.
These layers are only employed during the training phase
and are not activated in the tracking algorithm.

3.3.2 Assignment

To assign the detected animal to a proper object, we cal-
culate the weighted sum of distances (cij) of each feature
embedding (Fig. 2 5 ):

cij = λd
(1)
ij + (1− λ)d

(2)
ij . (2)

Here, dij represents the distance between 3D coordinates
(d(1)) and appearance feature (d(2)) of i-th detected object
and the estimated state of j-th existing object for the current
frame, respectively.

Based on the similarity score, the Hungarian algorithm
[21] assigns each detected object to an existing track. Once
the match is done, Kalman filter is updated with the newly
associated object (Fig. 2 6 ).

4. Experiments
Within this section, we assess the efficacy of the pro-

posed method by presenting a comprehensive analysis of

experimental results. The conducted experiments serve to
address a set of research questions (RQs):

• RQ1: How does the performance of the proposed
method compare to baseline approaches?

• RQ2: What impact does the utilization of each com-
prehensive visual feature has on the results?

• RQ3: How does the performance of the method vary
across different animal species?

4.1. Experimental Settings

4.1.1 Dataset

AnimalTrack AnimalTrack [55] dataset is a fully anno-
tated video dataset dedicated to MAT in the wild. It con-
tains 32 videos (11,500 images) for training and 26 videos
(13,200 images) for testing. There are total 10 animal cate-
gories and each video contains only one category of animal.
The video frame rate is 30 FPS and every frame is anno-
tated. The annotation includes animal trajectory ID, coordi-
nates, size and visibility ratio of the detected animals.

4.1.2 Evaluation

To evaluate the tracking performance, we use multiple met-
rics including commonly used CLEAR MOT [3] metrics
and more recently proposed HOTA (higher order tracking
accuracy) [26] metrics.

HOTA [26] is a commonly used metric that takes into
account both detection and association quality. This makes
HOTA a balanced metric compared to MOTA (multi-object
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Tracker HOTA MOTA IDF1 IDP IDR IDSW↓ MT PT ML↓ FP↓ FN↓ FM↓
JDE [49] 26.8 27.3 31.0 51.0 22.0 3,187 106 414 584 17,887 155,623 5,031
FairMOT [57] 30.6 29.0 38.8 62.8 28.0 2,335 143 462 499 17,653 152,624 5,447
CenterTrack [58] 9.9 1.6 7.0 8.9 5.8 89,655 265 423 416 32,050 117,614 7,583
Tracktor++ [2] 44.2 55.2 51.0 58.5 45.1 1,976 364 472 268 25,477 81,538 4,149
ByteTrack [56] 40.1 38.5 51.2 64.9 42.3 1,309 310 465 329 31,591 116,587 3,513
Trackformer [29] 31.0 20.4 36.5 40.9 32.8 4,355 230 491 383 70,404 118,724 3,725
DeepSORT [51] 32.8 41.4 35.2 49.7 27.2 3,503 213 452 439 14,131 124,747 4,527
Ours 32.5 41.0 37.4 41.6 34.0 6,215 383 432 295 46,417 90,892 5,360

Table 1. Evaluation results of different trackers on AnimalTrack

Multi-level Depth HOTA MOTA IDF1 IDP IDR IDSW↓ MT PT ML↓ FP↓ FN↓ FM↓
- - 32.4% 41.1% 37.0% 41.4% 33.5% 6,345 377 440 293 45,109 91,811 5,319

✓ - 32.5% 41.1% 37.4% 41.9% 33.8% 6,351 371 447 292 45,122 91,799 5,337

- ✓ 32.4% 40.9% 37.6% 41.7% 34.1% 6,275 376 442 292 46,537 90,816 5,371

✓ ✓ 32.5% 41.0% 37.4% 41.6% 34.0% 6,215 383 432 295 46,417 90,892 5,360

Table 2. Evaluation results of ablation and final models

tracking accuracy) [3] and IDF1 [44], which are also com-
monly used but more biased towards detection and associa-
tion quality, respectively.

MOTA [3] takes into account FP (false positives), FN
(false negatives), and IDSW (ID switches). FP and FN indi-
cates the total number of false-positive and -negative tracks,
and IDSW measures the total number of identity switches
across the entire dataset.

Identification (ID) metrics from [44] are also the main
metrics of our interest. They include IDF1, IDP (ID preci-
sion), and IDR (ID recall). IDF1 is calculated as the ratio
of correct detections to the average of ground-truth and pre-
dicted detections.

Since our approach primarily aims to increase associa-
tion quality in MAT, we focus on HOTA and ID metrics,
including IDF1 and IDSW.

4.2. Overall Comparison (RQ1)

4.2.1 Baseline Models

To see how existing tracking models perform on multi-
animal dataset, we evaluated 7 widely-used trackers and set
their results as baselines. The included trackers are Deep-
SORT [51], Tracktor++ [2], JDE [49], CenterTrack [58],
FairMOT [57], ByteTrack [56], and Trackformer [29], all
the way from classic models to more recent transformer-
based models. Each model is trained on AnimalTrack train
set with its default architecture, including detector, and
evaluated on the test set.

Figure 4. Example track produced by different trackers

4.2.2 Experimental Results

The overall performance of different tracking algorithms
are summarized in Table 1 [55]. The results reveal the su-
periority of modern models like Tracktor++ [2] and Byte-
Track [56] over other models across multiple dimensions.
Conversely, models based on simpler approaches like our
method and DeepSORT [51] exhibit relatively inferior per-
formance.

However, it is important to highlight that our method sur-
passes the majority of baseline models in the key metric
we focused on, specifically IDF1, which directly addresses
the ID switch problem. Notably, our method demonstrates
superior performance compared to the target model Deep-
SORT [51] in effectively handling the ID switch problem.
This can be observed in Figure 4, where the line colors
represent distinct track IDs. In contrast to baseline mod-
els, which frequently experience ID changes within video
frames, our method ensures consistent tracking without any
ID switches.
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Furthermore, our method exhibits model-agnostic char-
acteristics, making it compatible with a wide range of track-
ers that utilize motion and appearance information. The ob-
served superiority of our method over the target model sub-
stantiates the potential improvement that can be achieved
by integrating our method into other tracking frameworks.
Future research endeavors may explore the integration of
comprehensive visual features into alternative models, leav-
ing room for further advancements in this area.

4.3. Improvement Analysis (RQ2)

Ablation study The performance of our final and abla-
tion models are shown in Table 2. The results show that the
key features of our model, utilization of depth feature and
multi-level appearance feature, contribute to robust perfor-
mance. Moreover, our final model significantly outperforms
DeepSORT (Table 1) in most metrics. Specifically, our
model showed IDF1 2.2%p higher than DeepSORT, which
demonstrates the robust association capability of our model.
More detailed analysis of model performance in each ani-
mal species and video is provided in section 4.4.

Performances w.r.t. Depth Features Our multi-animal
tracker utilizes the depth estimation network to construct
the track of each animal in 3-D space. As shown in Table
2, the integration of the depth feature improved the tracking
performance. Specifically, IDF1 was increased by 0.5%p
by adding the depth feature to the base model. This vali-
dated our hypothesis that depth information can associate
bounding boxes in a situation where 2-D state and appear-
ance embedding cannot provide enough information for the
association.

Performances w.r.t. Multi-level Appearance Features
We propose three distinct operations for the fusion of multi-
level features: summation, concatenation, and a gate mech-
anism. Table 3 reveals that all fusion methods outperform
the base DeepSORT [51] method. While the differences
in performance may not be significant, these findings un-
derscore the potential efficacy of low-level fusion. No-
tably, with regard to ID-related metrics, all fusion methods
demonstrate enhanced performance compared to the base
methods. Among the fusion methods, simple summation
yields the most favorable results. Conversely, the concata-
nation and gate methods, incorporating trainable parame-
ters, exhibit relatively inferior performance. This observa-
tion can be attributed to the relatively simpler patterns in-
volved in the integration of low-level and high-level fea-
tures. The methods employed for feature extraction and
combination at multiple levels hold promise for achieving
further improvements, although such exploration is deferred
as a topic for future research.

Method HOTA MOTA IDF1 IDP IDR
BASE 32.38 41.08 37.04 41.44 33.48
SUM 32.51 41.08 37.41 41.85 33.82
CONCAT 32.20 41.18 37.25 41.67 33.68
GATE 32.36 41.08 37.38 41.81 33.80

Table 3. Performance Comparison of Multi-Level Feature Fusion
Methods

4.4. Qualitative Analysis (RQ3)

To investigate the effects of proposed methods in a more
detailed manner, we compare model performances on each
video sequence. The list of the analyzed models is same
with the one from ablation study (Sec. 4.3.). Figure 5
shows the model HOTA, MOTA, and IDF1 scores on rep-
resentative sequences, where there are significant differ-
ences in model performance. Based on HOTA scores, each
model performance varies a lot between sequences, and
there is no dominant winner in general. While the proposed
method outperforms the baseline model in some sequences
(e.g., zebra2 and penguin2), the baseline model also out-
performs the proposed model in other sequences, such as
deer3. MOTA scores are generally comparable between
models, except for deer1. This may be due to the fact that
MOTA is a metric that is more biased towards detection
than association. Since all models shared the same detector
(fine-tuned YOLOv5), the detection performance would be
similar across all models, leading to similar MOTA scores.
Comparison of IDF1 scores reveals that the proposed model
with depth and multi-level features shows better perfor-
mance than other models in general, and depth information
especially contribute a lot in increasing IDF1 score. This in-
dicates that utilizing depth information and multi-level ap-
pearance features can improve the tracker performance, es-
pecially in association.

Taking a deeper dive, we further investigate the cause of
contrasting effects of proposed methods on different video
sequences. Taking deer3 and zebra2 as examples, we notice
notable differences in camera motion or magnification ratio
that can be an external cause of depth value change. While
zebra2 sequence only has a mild left/right movement (i.e.,
movement along the x and y axis), deer3 sequence shows
a significant camera motion, such as rotation and zoom-
ing in. These external changes (i.e., changes that do not
originate from the animal movement itself) may cause con-
fusion in the proposed model that utilizes depth informa-
tion for tracking. Therefore, it is expected that our pro-
posed model would gain a significant performance boost
after compensating for these camera motions–especially in
z-axis movements– and magnifications, which is a topic for
future research.
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Figure 5. Sequence-level analysis of model performance

5. Conclusion
Our work pioneered the utilization of depth estimation

and multi-level visual feature extraction for multi-animal
tracking. Importantly, we show that both depth estima-
tion and multi-level feature extraction independently con-
tribute to robust tracking performance, enhancing the iden-
tity consistency. Although the limited capability of the base
model, DeepSORT, prevented us from achieving the state-
of-the-art performance, we reason that our two main con-
tributions can be integrated with any tracking model, in-
cluding ByteTrack and Tracktor++, to increase the tracking
performance. Specifically, we show that our techniques sig-
nificantly improve the association performance (IDF1) of
the tracking model, which is the main challenge in MAT
tasks. Hence, we speculate that our findings can be utilized
to build a state-of-the-art MAT model, which would be a
reliable and valuable asset for biomedical researchers.
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