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Abstract

With the recent rise of multi-modal learning, many of the
developed models are task-specific, and, as a consequence,
lack generalizability when applied to other types of down-
stream tasks. One of the representative models that over-
comes this issue of generalizability is CLIP, which attacks
downstream tasks using cosine similarity metric. However,
CLIP has shown relatively low cosine similarity between
text and image vector representations. For this reason,
we aim to develop a new approach that more accurately
maps the hyperplanes of text and image embeddings, and
thus, achieves a high-quality text-image modality transla-
tion. To this end, we propose a new conditional encoder-
decoder model that maps a latent space of one modality
given another modality as a condition. We observe that
our model is a general method that can be used with var-
ious latent encoders and decoders, which are not limited
to multi-modal models. Experiments show that conditional
encoder-decoder achieves comparable results with the pre-
vious state-of-the-art on several downstream tasks.

1. Introduction
Multi-modal learning has recently gained significant at-

tention as a promising approach to solving various down-
stream tasks effectively. One of the representative models,
CLIP [26], aligns image and text embeddings in the same
hyperspace, and has been widely used in tasks such as text-
to-image generation and image captioning. However, the
cosine similarity of image and text embeddings extracted
by CLIP is found to be relatively low, hovering around
0.3. Extensive studies have been conducted to enhance the
cosine similarity and evaluate the performance in various
downstream tasks. For instance, unsupervised T2I genera-
tion models have exploited CLIP and simply add Gaussian
noise [35] to enhance the mapping within the same hyper-
space as CLIP, surpassing its performance.

To overcome these challenges, we propose a novel ap-
proach that can effectively map the hyperplanes of two en-
coders, enabling robust solutions for a wider range of down-

stream tasks. Our proposed model is not dependent on
a particular latent encoder-decoder model and can be ap-
plied to various architectures. We extract latent vectors of
each modality using various latent encoders. For text, we
use BERT [3] and the text encoder of CLIP, while for im-
ages, we utilize DINOv2 [22] and the image encoder of
CLIP. Since we employ pretrained encoders, no training
is required in this process. Next, we define the bidirec-
tional translation between latent vectors of two modalities
by training conditional encoder-decoder model correspond-
ing to the conditional DDIM using a modified version of the
latent DDIM proposed in the Diffusion Autoencoders [25].
We define the conditional DDIM using the latent vector of
one modality as the condition to predict the latent vector of
another modality.

Furthermore, we evaluate our proposed model on vari-
ous downstream tasks, including image generation, image
retrieval, image captioning, and image classification, and
achieve comparable results. These evaluations demonstrate
that our model effectively maps the hyperplanes of both en-
coders.

Our contributions can be summarized as follows:

• We propose a general method that does not rely on a
specific latent encoder-decoder architecture.

• We propose an algorithm that aims to effectively map
the hyperplanes of both encoders, facilitating seamless
integration between modalities.

• We conduct extensive experiments across diverse down-
stream tasks to validate the performance of our method,
yielding comparable results.

The remaining sections of our paper are structured as
follows. In Section 2, we provide an overview of the re-
lated work on multi-modal feature representation, Diffu-
sion Probabilistic Models, and various downstream tasks in
multi-modal learning. In Section 3, we present the main
idea behind our approach. The experiment and implemen-
tation details are discussed in Section 4. We present the
experimental results in Section 5, and finally, in Section 6,
we conclude this paper.



Model dim

CLIP ViT-B/32 [26] 512
CLIP ViT-L/14 [26] 768
CLIP RNx50 [26] 640
BERT [3] 768
DINOv2 [22] 1024
DALL-E-2 [27] 768
CapDec [21] 640
ClipCap [20] 640

Table 1. Embedding dimensions among different models.

2. Related Work

2.1. Multi-modal Feature Representation

Transforming data into latent vectors is a crucial step in
handling multi-modal data such as images, text, and au-
dio. Two types of embedding models, namely encoders
and decoders, play key roles in this process. Encoder en-
codes the data into an embedding vector, while decoder
decodes the embedding vector back into the corresponding
data. Numerous pretrained models have been developed us-
ing various training methods. The most widely recognized
model for image-text multi-modal embedding is CLIP [26]
and Flamingo [1], which is trained using contrastive learn-
ing with image-text pairs. Moreover, LAFITE [35] and
CapDec [21] have incorporated Gaussian noise into CLIP
embeddings. Pix2pix-zero [24] has improved the accuracy
of text embedding by leveraging the captioning model of
BLIP [15], while DALLE-2 [27] has been trained with an
explicit prior model. Additionally, unimodal embedding
models can also be selected as latent embedding models.
Examples of these include StyleGAN [13] and VQ-GAN
[6] for images, BERT [3] and SimCSE [7] for text. In our re-
search, we adopt the CLIP model as the baseline embedding
model, along with DALLE-2 as the image decoder, BERT
as the text encoder, and CapDec as the text decoder. The
embedding dimensions of these models used in our paper
are presented in Table 1.

2.2. Diffusion Probabilistic Models

Conditional Denoising Diffusion Implicit Models. To
generate a data sample, modeling data distribution is a very
significant task. In recent years, diffusion-based models are
widely used to model the manifold of dataset. Especially,
Denoising Diffusion Implicit Model (DDIM) [32] enables
more accurate modeling compared to previous generative
models. First step is called forward process, which pertur-
bates data points x0 by adding gaussian noise for T steps:

xt =
√
αtx0 +

√
1− αtϵ (1)

where αt is defined using variance of each forward process
and ϵ ∼ N (0, I) is a gaussian noise. In second step, which
is called denoising step, network ϵθ(xt, t, c) is trained to fit
the noise ϵ, with training objective introduced in [10]:

Et,x0,ϵ

[
∥ϵ− ϵθ (xt, t, c) ∥2

]
(2)

At inference, xt−1 is sampled from xt using deterministic
process:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t, c)√

αt

)
+
√
1− αtϵθ(xt, t, c)

(3)

Classifier-Free Guidance. To improve the sampling per-
formance of diffusion models, Classifier-Free Guidance
(CFG) [11] can be applied to diffusion models. For train-
ing, a given condition c is substituted to an unconditional
setting ϕ with a constant probability p, and network is op-
timized using Eq. (2). For inference, predicted noise ϵ̃ is
sampled using positive weight on conditional noise sample
and negative weight on unconditional noise sample:

ϵ̃ = (1 + ω)ϵθ(xt, t, c)− ωϵθ(xt, t, ϕ), (4)

where scalar ω is a guidance scale. Then, xt−1 is sampled
using Eq. (3) with ϵ̃ instead of ϵθ(xt, t, c).

2.3. Downstream Tasks

In recent years, there has been a significant increase in
the number of studies exploring the use of multi-modal
learning to effectively solve various downstream tasks, in-
cluding text-to-image generation [27, 34, 35], image cap-
tioning [15, 20, 21], image classification [26] and retrieval
[19, 34].

Text-to-Image Generation. Recent advances in text-to-
image generation have shown great potential for generating
high-quality images from textual description. CLIP-based
methods have emerged as a promising approach, with mod-
els such as LAFITE [35] and CLIP-GEN [34] leveraging
CLIP’s properties to train text-to-image generation models
in language-free setting. Stable Diffusion [28] also gets
CLIP text embedding and uses attention mechanism to gen-
erate high-resolution images. On the other hand, DALL-E-
2 [27] proposes a two-stage model that leverages CLIP rep-
resentations for image generation. Our model, similar to the
previously mentioned model, utilizes text embeddings to ef-
fectively address the image generation task. These mod-
els highlight the advantages of using pre-trained text-image
multi-modal models to guide image generation.

Image Retrieval. Image retrieval is a task of finding im-
ages in a large-scale dataset that are most relevant to the text
query given by user. Multi-modal models can be applied to
this task. For example, CLIP [26] can be applied to retrieval
tasks and shows good performance. CIRPLANT [19] uses
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Figure 1. High-level overview of the model structure. Parts of the model that were subject to training are indicated in red.

metric learning to leverage a transformer-based model ar-
chitecture, which modifies the image embedding extracted
from pretrained image-text model to obtain more relevant
representation conditioned on the text input.

Image Captioning. Image captioning can be achieved by
leveraging two modalities (text and image) to generate cap-
tions that describe the visual content in an image. CapDec
[21] is a model for image captioning that aims to train
CLIP [26] solely on text samples by introducing zero-mean
Gaussian noise into the text embeddings prior to decod-
ing. Furthermore, ClipCap [20] utilizes the CLIP frame-
work and a pre-trained language model GPT-2 to achieve
a comprehensive understanding of both visual and textual
data. BLIP [15] presents a novel approach to solve the im-
age captioning task by effectively leveraging noisy web data
using bootstrapping for captions.

Image Classification. Image classification is a task that
involves categorizing objects in an image into different
classes. CNN-based classification, such as ResNet [8],
VGGNet [31], and Inception [33], has been a commonly
adopted approach for this task. However, with the advent of
Vision Transformer (ViT) [5], it has been shown that a pure
transformer applied directly to sequences of image patches
can perform well on image classification tasks. Moreover,
the CLIP [26] model, which extends the transformer-based
architecture into multi-modalities, has shown effectiveness
in image classification, particularly in zero-shot image clas-
sification.

3. Method
3.1. Conditional Encoder-Decoder

In this work, we propose a model for the latent space pre-
diction across different modalities. High-level structure of
our model is presented in Fig. 1. Given text and image data,
latent encoders pθxtxt and pθximg extract the text and image
embeddings ztxt and zimg, respectively. Then a conditional
encoder-decoder is used to perform a bidirectional trans-
formation between two latent vectors. Finally, transformed
embeddings are converted to the image and text modalities
via latent decoders pθximg and pθxtxt .

The goal of our model, referred as conditional encoder-
decoder, is to predict a latent vector of a particular modality
(i.e. target vector), using a latent vector of another modal-
ity as a condition (i.e. condition vector). For instance, the
conditional encoder, qϕzimg (zimg|ztxt), aims to predict an
image embedding given a text embedding, while the con-
ditional decoder, qϕztxt (ztxt|zimg), operates in the opposite
direction.

For the architecture of our model, we use a modified ver-
sion of the latent DDIM proposed in [25], which has the
backbone of stacked MLPs with skip connections as they
were found to be well-performing and sufficiently fast. Un-
like the latent DDIM, our modified model is conditioned
on both time and condition vector to perform a transfor-
mation between two different modalities. We use resid-
ual connections for layers which injects condition vector to
DDIM. Also, we apply classifier-free guidance [11] to im-
prove the performance of diffusion model’s sampling proce-



dure. Condition and target vectors’ dimensions, which are
denoted as h1 and h2, are changed according to the applied
model as shown in Table 1.

3.2. Sampling Strategy

We denote z as a target vector, ẑ as a prediction of z, and
c as a condition vector. Then, we propose a novel method
for sampling ẑ, estimated target vector. Using our model,
we derive the sample ẑ conditioned on c:

ẑ = cM+ γF(c), (5)

where M ∈ Rh1×h2 is an additional parameter called map-
ping matrix, γ ∈ R is a hyperparameter, and F(c) ∈ Rh2 is
defined as

F(c) = Normalize(CDIM(c)). (6)

CDIM(·) denotes conditional DDIM model. With Eq. (5),
we can estimate the target vector in an accurate way, which
is justified by Proposition 1.

Proposition 1. For a given value of γ > 0, our method
ensures that cosine similarity between target vector z and
estimated target vector ẑ to be greater or equal than con-
stant α with probability at least:

P (Cosine-Sim(z, ẑ) ≥ α)

= 1−
∫ β

−1

Γ(h2/2 + 1/2)√
πΓ(h2/2)

(1− u2)h2/2−1du (7)

where β is a scalar calculated with α, γ, c.

For the detailed explanation and proof, see Appendix B.

Figure 2. Sampling strategy of our model. Projection from the
target hyperplane (Htarget) onto the column space of conditional
hyperplane (C(Hcond)) is predicted using mapping matrix (M),
and perpendicular residuals are estimated using conditional DDIM
(CDIM(·)).

3.3. Training

In order to train our model, we used conditional DDIM
loss in Eq. (2). However, DDIM loss does not guarantee
guidance for the exact prediction of the latent vector. For
this reason, we also use a reconstruction loss to obtain more
accurate predictions:

Lrecon = Ez,c[∥z− ẑ∥1], (8)

Finally, our training objective is defined as a weighted sum
of the DDIM (Eq. (2)) and reconstruction (Eq. (8)) losses.
We optimize both M and qϕ, which are mapping matrix and
parameters of conditional DDIM, respectively:

min
qϕ,M

λ1 Ez,c[∥z− ẑ∥1]

+ λ2Et,z,ϵ

[
∥ϵ− ϵθ (zt, t, c) ∥2

]
,

(9)

where λ1, λ2 are hyperparameters. Note that our model,
conditional encoder-decoder, consists of mapping matrix
and conditional DDIM.

Lemma 1. Optimization of Eq. (9) guides the first term
of Eq. (5) to predict a projection of target vector z onto
the column space of the hyperplane aligned with a condi-
tion vector c, while the second term is guided to predict a
residual term which is perpendicular to the column space.

In other words, our model learns the projection (cM)
between two different hyperplanes that correspond to each
modality, and the residual representation (F(c)) for each
condition vector, together. This process is visualized in Fig.
2, and the proof of Lemma 1 is provided in Appendix A.

4. Experiment

4.1. Datasets

We conduct main experiments on three widely-used pub-
lic datasets to evaluate text-to-image generation tasks: MS-
COCO [17]1, CC3M [30]2 and CelebA [18]3. The MS-
COCO dataset, released in 2014, comprises 82K training
images and 40K validation images. On the other hand,
the CC3M dataset contains 3.3M training examples and
16K validation examples. Unlike the MS-COCO images,
which have been carefully selected, the Conceptual Cap-
tions images and their accompanying descriptions are col-
lected from the internet, and thus, offer a broader range of
styles. CelebA dataset contains 200K images of celebrities.
We only use CelebA for validation, not for training.

1MS-COCO: https://cocodataset.org
2CC3M: https : / / ai . google . com / research /

ConceptualCaptions
3CelebA: https://mmlab.ie.cuhk.edu.hk/projects/

CelebA.html

https://cocodataset.org
https://ai.google.com/research/ConceptualCaptions
https://ai.google.com/research/ConceptualCaptions
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html


4.2. Evaluation Protocol

For evaluation metrics, we report the Simtxt and Simimg ,
which are calculated using the validation dataset. Simtxt

is determined by computing the expected cosine similarity
between the ground truth and predicted text features, while
Simimg is computed by measuring the similarity between
the image and its inferred embeddings.

For the image captioning downstream task, we intend
to utilize the BLEU [23] and ROUGE-L [16] evaluation
metrisc. The BLEU score calculates precision of n-gram
overlaps between the generated caption and the ground-
truth captions. ROUGE-L measures the length of the
longest common sequence among the captions. To evalu-
ate and compare the visual quality of the generated images
in the text-to-image generation task, we have chosen the
Frechet Inception Distance (FID) [9] and Inception Score
(IS) [29] metrics. The FID score indicates the visual sim-
ilarity between the real and generated images, with lower
scores being preferable. Conversely, the IS score measures
the quality of the generated images, with higher scores in-
dicating better performance. Lastly, for image classification
task, we employ accuracy as the evaluation metric.

4.3. Implementation Details

Conditional encoder-decoder is implemented using the
backbone of Diffusion Autoencoders [25]. For the imple-
mentation of matrix M and function F(·) in Eq. (5), we use
1 FC layer with bias and modified architecture of Diffusion
Autoencoders, respectively. Especially, we stacked 10 MLP
layers with skip connections, and added layer normalization
and dropout at the end of each layer for conditional DDIM.
We trained our network with fixed learning rate of 10−4 and
weight decay of 10−2. Probability for unconditional sam-
pling and classifier-free guidance [11] scale is set to 0.05
and 5.0, respectively. In case of batch size, we used 256 for
training both qϕztxt and qϕzimg . Also, we empirically choose
γ = 1.0, and set the value of λ1 and λ2 in Eq. (9) to 1.0 and
2.0, respectively.

5. Results
5.1. Modality Translation Results

Table 2, 3, 4 present the results of the image-text modal-
ity translation task on the MS-COCO [17], CC3M [30], and
CelebA [18] datasets. We report cosine similarity between
ground-truth and estimated target vector.

As shown in Table 2, our model outperforms all base-
line models by a significant margin, and achieves better
performance than VDLGAN [12] on modality translation.
This result suggests that our novel and general architecture
has the ability to capture relevance between two modali-
ties better than previous methods. We also show that our
method can be applied to unimodal encoders (e.g. BERT,

Dataset MS-COCO [17] CC3M [30]

Method Simtxt Simimg Simtxt Simimg

LAFITE [35] 0.0965 - 0.0912 -
CLIP-GEN [34] 0.3042 - 0.2896 -
VDLGAN [12] 0.6104 0.7655 0.6237 0.7105
Ours 0.8394 0.8233 0.7389 0.7443

Table 2. Results of cosine similarity between z and ẑ from text,
image modalities. We used CLIP ViT-B/32 [26] model for both
pθztxt and pθzimg . Bold number indicates the best performance
among the column and ’-’ indicates unavailability.

Dataset MS-COCO [17]

pθztxt pθzimg Simtxt Simimg

CLIP ViT-L/14 [26] CLIP ViT-L/14 0.7765 0.8192
CLIP ViT-L/14 BERT [3] 0.9745 0.7796
DINOv2 [22] CLIP-RNx50 0.7917 0.5207

Table 3. Results of cosine similarity between z and ẑ from text,
image modalities using various type of latent encoders.

Dataset
MS-COCO [17]
→ CelebA [18]

CC3M [30]
→ MS-COCO

pθztxt , pθzimg Simtxt Simimg Simtxt Simimg

CLIP ViT-B/32 [26] 0.8237 0.5974 - -
CLIP ViT-L/14 0.6885 0.5993 0.6817 0.7300

Table 4. Results of cross-domain experiments. We train our
model on bigger dataset, and measure the cosine similarity be-
tween ground truth and predict target vector on a relatively small
dataset.

DINOv2) in Table 3, proving the possibility of attacking
various downstream tasks by utilizing the most powerful
encoder corresponding to the particular modality. Table 4
represents cross-domain experiments, which imply that our
model once trained on one dataset can be applied to an-
other dataset without losing the representation power of la-
tent vectors.

5.2. Text-to-Image Generation

For the text-to-image generation task, we extract text em-
beddings using CLIP ViT-L/14 [26] model, then apply our
model to obtain image embeddings. Finally, these embed-
dings are fed into a Karlo [4] decoder model to generate
256×256 images. Examples of generated images are shown
in the Fig. 3 (a).

5.3. Image Retrieval

To perform image retrieval task, we use our encoder to
predict an image embedding given a text embedding. Then
we calculate cosine similarity of the obtained image embed-



A white boat floating on 
a lake under mountains

Downstream tasks

A woman is walking a dog 
in the city

A room with blue walls 
and a white sink and door

A large passenger airplane 
flying through the air

CLIP Ours
A pedestrian traffic light with street name and 

pedestrian crossing signs

CLIP Ours
A white bird starts flying from the water

CLIP Ours
A man that is standing in the grass with a soccer ball

(a)

(b)

CLIP Ours
Graffiti covered train stopped at the train platform

Figure 3. Results of the (a) Text-to-Image Generation, (b) Image Retrieval downstream tasks.

ding with images from the validation dataset, and retrieve an
image with the highest similarity score. Fig. 3 (b) compares
images obtained via our model with those retrieved using
CLIP ViT-B/32 [26].

5.4. Image Captioning

After generating the text embedding with our model for
a given input image, an arbitrary text decoder can translate
the vector back for image captioning. In this section, we
used CLIP-RNx50 [26] for the encoder and ClipCap [20]
and CapDec [21] for the decoders. The results are reported
in Table 5. Our model performs comparably to CapDec and

slightly underperforms than ClipCap. We closely examine
images from validation data in Fig. 4. While most cap-
tions are generated (a) correctly or (b) similarly, (c) some
were confused about related objects such as a laptop and a
mouse, and (d) some focused on different objects like man
over muffin.

5.5. Image Classification

For image classification task, we utilize the CIFAR-10
dataset [14]4 as the basis for our experimentation. We em-

4CIFAR-10: https://www.cs.toronto.edu/˜kriz/
cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


Downstream tasks

(a)

Ours + CapDec
Ours + ClipCap

A man holding a tennis racquet on a tennis court
A man holding a tennis racquet on a tennis court

References A person holding a tennis racket in the air on a tennis court
A man with a hat and sunglasses playing tennis
A man holding a tennis racquet on a tennis court
A man in sunglasses and a hat is getting ready to hit a tennis ball
A tennis player hits the ball back to his opponent

(b)

Ours + CapDec
Ours + ClipCap

A little girl that is holding a toothbrush in her mouth
A child is brushing her teeth with a toothbrush

References A small girl with long hair brushing her teeth
A little girl brushing her teeth with an electric toothbrush
a close up of a small child brushing her teeth
A girl in pajamas brushing her teeth with an crayon toothbrush
A little girl brushing her teeth with a tooth brush

(c)

Ours + CapDec
Ours + ClipCap

A cat laying on top of a laptop computer
A cat laying on top of a laptop

References A cat that is laying with its head down on a mouse
A white cat laying on the computer mouse
A white cat is taking a nap on a mouse
a kitty sleeping on a mouse pad and a mouse 
A cat is sleeping on a desk with its head on a computer mouse

(d)

Ours + CapDec
Ours + ClipCap

A man is preparing food in a kitchen
A person in a kitchen baking food in a oven

References a person with a black oven mit is taking a pan out of the oven
A person reaches into an oven to take out some muffins
A person getting muffins out of an oven
A man in black jacket removing tin of muffins from oven
A muffin tray that is inside of a oven

Figure 4. Results of the Image Captioning downstream task.

ploy the CLIP VIT-L/14 [26] and CLIP ViT-B/32 models
to extract class embeddings in the form of “a picture of a
{class name}”. Furthermore, we extract image embeddings
using CLIP and subsequently apply our proposed model to
obtain text embeddings. Finally, by comparing the text em-
beddings from the images with the class embeddings, we

calculate the cosine similarity and derive accuracy metrics
for the image classification task. Classification results are
reported in Table 6.



Method B@1 B@4 R-L

ClipCap [20] 74.7 33.5 -
CapDec [21] 69.2 26.4 51.8

Ours + ClipCap 65.9 23.6 47.7
Ours + CapDec 67.7 25.5 48.7

Table 5. Results for image captioning on MS-COCO dataset.

Method Accuracy (%)

CLIP ViT-L/14 [26] 85.05
CLIP ViT-B/32 69.69

Ours + CLIP ViT-L/14 77.11
Ours + CLIP ViT-B/32 60.74

Table 6. Results for image classification on CIFAR-10 dataset.

Dataset MS-COCO [17]
MS-COCO

→ CelebA [18]

Method Simtxt Simimg Simtxt Simimg

w.o / Projection 0.6280 0.6155 - -
w.o / DDIM 0.8386 0.8199 0.8145 0.5922
Ours 0.8394 0.8233 0.8237 0.5974

Table 7. Ablation study on our conditional encoder-decoder
model. Note that “w/o Projection” means only using the second
term in Eq. (5), while “w/o DDIM” corresponds to using only the
first term.

5.6. Ablation Study

We report our ablation study results in Table 7. Abla-
tion study shows that using both projection matrix and con-
ditional DDIM in Eq. (5) gives the best performance for
modality translation for both in-domain and cross-domain
experiments.

6. Conclusion
We presented a diffusion-based encoder-decoder archi-

tecture for translation between different modalities. Our
model achieves highest similarity between the image and
text modalities on several datasets, with arbitrary encoders
and decoders attached to our model. We also conducted ex-
periments on various downstream tasks and demonstrated
effectiveness and versatility of our model. Our model can be
further extended to sound modality though there are no pub-
licly available encoder and decoder models for audio dataset
currently to the best of our knowledge. Additionally, be-
cause our model is based on diffusion, the overall training
takes relatively long compared to other models. We leave
the exploration of injecting lightweight models or adopting
efficient diffusion methods for future studies.
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Appendix

A. Proof of Lemma 1.
Lemma 1. Optimization of Eq. (9) guides the first term
of Eq. (5) to predict a projection of target vector z onto
the column space of the hyperplane aligned with a condi-
tion vector c, while the second term is guided to predict a
residual term which is perpendicular to the column space.

Proof. Let z ∈ Htarget and c ∈ Hcond, where Htarget and
Hcond denote a hyperplane aligned with the target and con-
dition vectors, respectively. Recall that our method’s recon-
struction loss is defined as

Ez,c[∥z− ẑ∥1], (10)

and for the proper value of hyperparameter γ such that γ ≥
1/2∥z− cM∥1, inequality

Ez,c[∥z− ẑ∥1] ≥ Ez,c[∥z− cM∥1] (11)

holds. So minimizing the reconstruction loss in Eq. (10) in-
duces the optimization of the right term of Eq. (11). Recall
that in the least squares,

∂

∂M
∥Z−CM∥2 = 2C⊤(CM− Z) (12)

where C,Z are the matrices corresponding to
Htarget,Hcond, and the solution of Eq. (12) is

M̂ = (C⊤C)−1C⊤Z. (13)

Then we define the Projection matrix P as

P = C(C⊤C)−1C⊤, (14)

and cM̂ = Pz is a vector on the column space of Hcond,
denoted as C(Hcond).

From the optimization of Eq. (12), when loss terms
are fully optimized, we can assume that M = M̂ and so

cM ∈ C(Hcond). (15)

For each data point, there is a residual vector defined as ẑ−
cM, and we model this using conditional diffusion model,
denoted as γF(c). With the assumption used in Eq. (15),
we can derive Eq. (16),

γF(c) ∈ C(Hcond)
⊥. (16)

B. Proof of Proposition 1.
Proposition 1. For a given value of γ > 0, our method
ensures the cosine similarity between target vector z and
estimated target vector ẑ to be greater or equal than con-
stant α with probability at least:

P (Cosine-Sim(z, ẑ) ≥ α)

= 1−
∫ β

−1

Γ(h2/2 + 1/2)√
πΓ(h2/2)

(1− u2)h2/2−1du (17)

where β is a scalar calculated with α, γ, c.

Proof. Using Eq. (15) and (16), cosine similarity between
z and ẑ is calculated as:

Cosine-Sim(z, ẑ)

= z · Normalize(cM+ γF(c))

= z⊤
cM+ γF(c)

∥cM+ γF(c)∥2

=
z⊤cM+ γz⊤F(c)√

(cM)⊤cM+ 2γzMF(c) + γ2∥F(c)∥22

=
z⊤cM+ γz⊤F(c)√

(cM)⊤cM+ γ2∥F(c)∥22
, (18)

Using the property of projection matrix, Eq. (19) and (20)
holds,

z⊤cM = z⊤Pz = z⊤P⊤Pz = (Pz)⊤Pz, (19)

cM = Pz, (20)

and the cosine similarity is simplified as

Cosine-Sim(z, ẑ) =
(Pz)⊤Pz+ γz⊤F(c)√
(Pz)⊤Pz+ γ2∥F(c)∥22

=

∑
i ai

2 + γz⊤F(c)√∑
i ai

2 + γ2
, (21)

Note that {ai} in Eq. (21) are defined as the coefficients of
linear combination of {ei} to represent Pz, where {ei} are
defined as orthonormal basis of C(Hcond).

Using the cumulative distribution function of the in-
ner product of random vectors x,y on the sphere derived
in [2], we can derive:

P (x⊤y ≤ z) =

∫ z

−1

Γ(d/2 + 1/2)√
πΓ(d/2)

(1− u2)d/2−1du, (22)

where d is the dimension of a random vector, and Γ(x) is
gamma function defined as Γ(x) =

∫∞
0

ux−1e−udu.
Combining Eq. (21) and (22), we can derive that for a given
value of γ > 0, our method ensures the cosine similarity



between original latent vector z and predicted latent vector
ẑ to be greater or equal than constant α with probability at
least:

P (Cosine-Sim(z, ẑ) ≥ α)

= 1−
∫ β

−1

Γ(h2/2 + 1/2)√
πΓ(h2/2)

(1− u2)h2/2−1du (23)

where β = (α
√∑

i ai
2 + γ2 −

∑
i ai

2)/γ, ahd h2 is a
dimension of target vector.
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