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Abstract

To control images oriented towards user’s preference
with simple text prompts, various editing methods have been
proposed in diffusion-based text-to-image models. Since
editing is based on the source image, unedited parts need
to be unaffected by the editing prompt. This forces the use
of deterministic DDIM inversion process in diffusion mod-
els to promise reconstruction performance. Despite their
fine performance, stochasticity of diffusion model is totally
lost which is one of the largest benefit generative models
have.

In this paper, we suggest attachable text generation
model for conditioning prompt that adds stochasticity to
text-to-image diffusion models. We add variance in 1) null-
text embedding or 2) conditional editing text embedding
used in classifier-free guidance that gives diversity in gen-
erated image. Our methods enable local editing with varia-
tion in image features presented through diversity obtained
in the text domain.

1. Introduction
Diffusion-based text-to-image models [29, 31, 33, 40]

have shown tremendous performance on generating images
with semantic meanings described in text features. This
property of large-scale language-image(LLI) models made
it possible to edit synthesis or real images by adjusting
only text prompts [4, 10, 24]. For editing synthesis im-
ages through an inverse diffusion process, one can rely on
randomness of diffusion latent space expressed in DDPM-
based sampling [11] strategies to generate various edited
images.

However, such stochasticity not only changes the whole
structure of the original image but also changes key fea-
tures from the original image which are not intended to be
edited. Besides, when editing is done on real image, deter-
ministic diffusion inversion and sampling processes must be
promised to ensure reconstruction capability such that edit-
ing can be done while keeping the unedited features. These

deterministic processes removes the stochasticity described
above, leaving no variance in generating images.

Although a DDIM inversion [6, 34] has reconstruction
ability based on the deterministic diffusion process, it is
found lacking when guidance with text prompts is used
during the sampling process [12]. In the text-guided dif-
fusion models, guidance is essential to fully express the text
prompt in the sampled image. For this reason, a pivotal in-
version method [30] was used in diffusion model to fit the
latent codes obtained in the classifier-free guidance-based
sampling process to the pivots, which correspond to the la-
tent codes obtained from the DDIM inversion process [24],
on each time-step by optimizing the null-text embedding.

However, the stochastic feature of the diffusion model
is lost by using the deterministic forward and reverse pro-
cesses. That is, only a single edited image is obtained in a
given pair of original and editing prompts. Since the natural
language has implications in that a single word can repre-
sent an infinite possibility of images, varying images should
be generated given an editing prompt. This way, users may
choose the favored images while taking away the ones with
low-quality or with no preference.

In this paper, we propose two methods of adding stochas-
tic features in text embedding. First, we sample various
null-text embeddings from the separate generative model
with the variational auto-encoder structure [18], denoted
VAE, that ensure reconstruction of the original image. Sec-
ond, we sample various embeddings of the editing prompt
using the VAE. Using the CLIP loss [9, 26], VAE is ex-
pected to learn the CLIP space [27] according to a given
text prompt and sample various features that the language
implicates.

To ensure diverse embedding outputs in both methods,
diversity loss [20] is added with KL divergence loss as orig-
inally proposed in VAE [18]. Methods that we propose do
not affect the diffusion model weights and therefore keep
the prior knowledge of the model. These attached-type
models make it widely applicable and are novel in that it
samples various text embeddings correlated to the image
generation model.
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2. Related Works
Inversion Process Most current diffusion models used

for image editing employ DDPM [11] to achieve diversity
sampling. However, this approach presents the challenge
of reconstructing the image, that is the output may differ
substantially from the input. As a solution, DDIM inver-
sion [6,34] offers the advantage of deterministic properties,
allowing a single image to be sent as a fixed latent code.
However, it is known that DDIM inversion exhibits lower
reconstruction quality than the VQ auto-encoder method.
[7] Furthermore, it has been noted that the reconstruction
performance declines significantly when sampling is con-
ducted using classifier-free guidance [12] to improve the fi-
delity of the sampled image. To resolve this issue, Mokady
et al [24] suggest Pivotal Inversion with null-text optimiza-
tion. In our work, we explore sampling various null-text
embeddings rather than a simple empty string from the VAE
architecture.

Image Editing Models Large-scale diffusion model,
such as Imagen [33], DALL-E 2 [29], Parti [40], Stable Dif-
fusion [31] achieves the state-of-the-art performance in text-
to-image synthesis which aims to generate realistic images
from a text description. Despite their impressive perfor-
mance, they are not directly suitable for text-guided image
editing tasks [3,9,17,19,23] that necessitate the controllable
editing over desired parts of a given image. Even minor
modifications to the textual input can result in a drastically
different output image. For example, adding the adjective
”classic” to the prompt ”car” often results in an image of a
car with a completely different composition.

One commonly adopted strategy for addressing this lim-
itation involves the use of masks, which can either be pro-
vided by the user [1, 2, 25] or generated automatically us-
ing an appropriate procedure [4]. However, these mask-
based methods may lead to the removal of critical informa-
tion and the inability to modify complex structures or back-
grounds. Hertz et al [10] suggest an intuitive editing tech-
nique, named ”Prompt-to-Prompt” which utilizes internal
cross-attention maps to modify global or local image details
via minor adjustments to the text prompt. Besides, Con-
trolNet [41] employs a novel convolution layer called zero
convolution as a residual, which facilitates the learning of
task-specific input conditions in large-scale diffusion mod-
els without disturbing the prior knowledge. As part of our
study, we investigate generated images from off-the-shelf
diffusion models, conditioned by text embedding produced
by our VAE model.

Transformer-based VAE trained by CLIP loss The
success of StyleCLIP [26] in text-driven image manipu-
lation has inspired numerous studies to explore the po-
tential of CLIP for addressing various manipulation tasks.
[9, 36, 38, 39]. The proposed method involves the mapping
of a text prompt to an input-agnostic global direction within

Figure 1. Sampling in arbitrary time step by Sampled Null-Text
embedding. Given the null-text embedding ϕ and the time-step
t, VAE outputs stochastic version of the null-text embedding, ϕ′

t.
Using these null-text embeddings ϕ′

ts, diffusion sampling is ad-
vanced via classifier-free guidance.

StyleGAN’s style space [15, 16], In contrast to these text-
guided latent manipulation methods, we utilize CLIP loss
to acquire a diverse range of meanings present in natural
language. The transformer-based VAE [13, 21, 35] is con-
sidered as a well-suited architecture for leveraging the in-
formation of sequential data in natural language processing.
Based on this knowledge, we adopt the same architecture in
our approach.

3. Method
Using the Stable Diffusion model with the CLIP text en-

coder, we sample various text or null-text embeddings using
VAE architecture. When a text or null-text embedding with
the time-step used in diffusion process are given as input,
VAE encoder produces the mean and standard deviation in
lower-space manifold with respect to the given input. When
sampling is done via reparameterization trick in the latent
space, various text embeddings are produced. We freeze
the diffusion model and the CLIP encoder parameters and
train only the VAE parameters. Different loss functions are
used depending on which embedding the VAE model takes
as input; the conditional text embedding or the null-text em-
bedding.

3.1. Sampling Null-text embeddings

The goal is to sample various null-text embeddings that
can reconstruct the original image. The fact that the opti-
mized null-text embeddings which fit the latent codes ob-
tained from each DDIM inversion and classifier-free guid-
ance sampling process are not the same with the embed-
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ding of the editing prompt [24] implies that there exists var-
ious null-text embeddings with reconstruction ability. With
different null-text embeddings, we can expect the different
output images when sampled via classifier-free guidance.
During the classifier-free guidance sampling, the noise pre-
diction with conditional text and the one with null-text are
extrapolated to emphasize the power of conditional text em-
bedding. Since the noise prediction with the null-text em-
bedding works as a reference point, changing it will output
whole different image. Sampling procedure is depicted in
Figure 1.

For training, we follow the original training procedure
used in DDIM [34] together with the KL divergence loss
used in VAE [18]. Mean Squared Error loss is given as a
reconstruction loss Lrec and regularization loss Lreg fol-
lows the exact KL divergence metric used in VAE [18]. The
overall loss function is,

Lϕ = αϕLrec + βϕLreg (1)

where αϕ, βϕ are given as hyperparameters to weight im-
portance of each loss.

3.2. Sampling Conditional text embeddings

Overall architecture is the same with the method in Sec
3.1 and the sampling procedure is shown in Figure 2. How-
ever, the training procedure is done on matching a generated
output image to the editing text prompt in CLIP embedding
space. Therefore, CLIP loss [26] is used rather than direct
L2-norm reconstruction loss.

LCLIP = λDCLIP (EI(I ′′), C′) +

(1− λ)DCLIP (EI(I ′), C′′) (2)

where I ′ is the generated image using editing text embed-
ding C′, and I ′′ is the generated image using stochastic ver-
sion of editing text embedding C′′ with EI indicating the
CLIP image encoder. To guide the image with insecure text
embedding, we cross-match the pairs {C′, I ′′}, {C′′, I ′}
when calculating the CLIP distance. Unlike Method 1 de-
picted in Sec 3.1, edited images are used in the training pro-
cess and we take the Prompt-to-Prompt [10] as our baseline
editing method. No reconstruction loss is needed since we
expect the fixed attention maps will keep the unedited con-
texts as described in Prompt-to-Prompt. In addition, the di-
versity loss [20], which forces the variation in the output im-
ages, is added. Since we aim to sample images with various
features, negative perceptual loss [14] is used in diversity
loss. When N diverse images are generated, let the output
images {I ′′

1 , I ′′
2 , ..., I ′′

N}. Let {P1, P2, ..., PN} be the iden-
tity ordering and {Q1, Q2, ..., QN} be the random reorder-
ing of images {I ′′

1 , I ′′
2 , ..., I ′′

N} satisfying Pi ̸= Qi [20].

The diversity loss is given as follows:

Ldiv =
1

N

N∑
i=1

||Φ(Pi)− Φ(Qi)||1 (3)

where Φ denotes the VGG-16 perceptual model to collect
image features. The overall loss function is,

LC′ = αC′LCLIP + βC′Lreg + γC′Ldiv, γ < 0 (4)

where αC′ , βC′ , γC′ are given as hyperparameters.
In the training process, it is impractical to use images

sampled through all the DDIM timesteps when training. It
is possible to sample latent codes starting from the standard
noise using generated text embedding C′′ as condition in
every training iteration, but it takes much longer time com-
pared to the original training procedure used in DDIM [34].
Therefore, we slightly mimic the original training proce-
dure. First, we keep the latent codes xT , xT−1, ..., x0 sam-
pled using the original editing prompt C′. Then, as we iter-
ate using gradients, we forward the U-Net architecture only
once from the kept latent code xt in the random timestep t
using the generated editing prompt C′′ and predict the image
x0 using DDIM sampler. Then, this predicted image can be
used when calculating the CLIP loss. Remember that we
do not directly use the norm between original edited image
I ′ and predicted image as reconstruction loss. CLIP loss
let the CLIP embedding C′′ get close to the corresponding
CLIP latent in the image domain.

Since VAE generates from the probability with respect
to the given input, it can learn various features of the edit-
ing prompt. Therefore, we plan to experiment in two set-
tings: 1) A single (Image, Text) pair editing or 2) Single
text(Class) editing.

4. Experiments

4.1. Training Plan

We begin by conducting experiments to verify the feasi-
bility of our proposed idea using the architectures depicted
in Figure 1 and Figure 2. Initially, we use a toy example
consisting of a single image and a single text pair to vali-
date our approach. This allows the VAE model to overfit
to a single image, simplifying the training process. Subse-
quently, we expand the scope of the VAE model to include
various images, while still limited to a single text prompt.
This model can be trained using the ImageNet dataset with
one class.

Single image Single text pair editing For the purpose
of verifying whether appropriate variance is added to the
text embedding, editing is performed for a single image and
a single text pair using a toy example. For this, VAE is
made using a simple MLP structure. We examine that the
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Figure 2. Sampling by Sampled Conditional Text embeddings overview. Given the editing text embedding C′ and the time-step t as input,
VAE outputs stochastic version of editing text embedding, C′′

t . From these C′′
t s, edited image I ′′ is generated.

generated image reflects the modification of a text query
while referencing the original image.

Single text Editing ImageNet dataset [5] is used to re-
trieve the class of the caption [24] where prompt engineer-
ing [28] is used to generate text embedding representing the
corresponding class. Here, a bank of 80 different sentence
templates is used and the CLIP text embeddings are aver-
aged. All images belonging to the corresponding class are
used as train dataset. VAE structure is made using MLP or
self-attention structure.

Synthesized Image Editing Since training with real im-
age requires diffusion inversion process, training becomes
more time-consuming. Therefore, when checking the feasi-
bility of our model and the training process, we use synthe-
sized images as training set instead.

Based on the training plans, we perform training for the
null-text embedding and conditional text embedding. How-
ever, for null-text embedding case, which aims for recon-
struction, we only use real image dataset for training. This
means we do not conduct Synthesized Image Editing and
focus only on Single image Single text pair editing and Sin-
gle text Editing.

4.2. Evaluation

Various text-to-image editing methods have been intro-
duced, but are primarily compared qualitatively since con-
fidence numerical evaluation metric is lacking. We get the
most out of proposed metrics to quantitatively measure the
editing performance of our model with Promp-to-Prompt
and Diffedit editing methods as baselines. In addition, we
measure the diversity of the generated text embeddings,
which is the novel work we make. In the case of sampling
various null-text embeddings, reconstruction performance
is measured. As editing is done on user’s preference, we
express qualitative results as well.

Reconstruction Reconstruction loss is used to create
null-text embedding with variance. Therefore, it is nec-
essary to verify the quality of reconstruction for various

null-text embeddings. For this purpose, we use PSNR and
SSIM [37] scores.

Editing To check the editing performance, we will use
the CLIP, LPIPS and classification score as evaluation met-
rics. First, CLIP score, the cosine similarity in the mul-
timodal CLIP space, is calculated between editing text C′

and image I ′′(CLIP-T) to verify text fidelity or between
I ′ and I ′′(CLIP-I) [32]. Second, LPIPS score is calcu-
lated between the original image I and the edited images
{I ′′

1 , I ′′
2 , ..., I ′′

N}(lower the better) to see whether the edited
image I ′′ contains unedited features of the original im-
age I. Lastly, classification score is verified to ensure that
the edited class is well represented even with the modified
prompt embeddings.

Variance In contrast to previous models, we incorporate
diversity in diffusion-based editing. Since image features
are well represented through convolution networks, we once
again use the LPIPS score to evaluate variance of features in
edited images. Generally, LPIPS score is used to evaluate
fidelity between the original image and the output image
as depicted in Subsection Editing; lower the better. For
diversity, however, higher is the better [22, 32].

LPIPS(I, I ′) ≥ LPIPS(I ′, I ′′) (5)

To evaluate variance in editing, we calculate the LPIPS
score between I ′ and I ′′ both created from the same condi-
tional text embedding C′. As I and I ′ are generated from
different conditional text embeddings C and C′, respectively,
LPIPS(I, I ′) must be bigger than LPIPS(I ′, I ′′), as
described in Equation 5. The difference of the features
would be bigger when compared in different text prompts,
implying that diversity would be largest when the equality
holds. That is, LPIPS(I, I ′) acts as the upper bound and
if LPIPS(I ′, I ′′) gets closer to the upper bound, variance
is proved.

When training VAE for sampling various null-text em-
beddings ϕ′

t, we conduct evaluation based on the aforemen-
tioned metrics.
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When stochastically sampling the conditional editing
text embeddings C ′′, however, only editing is done and
there is no need to evalute the reconstruction ability. There-
fore, editing performance and variance of generated images
are measured.

5. Results
First, the results of the single-image-single-text toy ex-

ample are depicted below. We expect the variation the
VAE should have will be learnt through the diversity dif-
fusion model has when using clip loss as the training mea-
sure. For sampling null-text embeddings, the diversity of
the sampled images will be automatically satisfied through
classifier-free guidance when the null-text embeddings are
in the manifold that reconstruct the latents well in each
timestep. That is, when the VAE learns the region the null-
text embeddings show probable capability of reconstructing
original image, classifier-free guidance will extrapolate the
latent noise to diverse space, showing various image fea-
tures at last.

To check the validity of adding variation in generated
images through text conditions, we first add random noise to
the replaced token for editing using Prompt-to-Prompt [10]
method. Since our method changes the whole conditional
CLIP text embeddings, the variation found in this process
would be the lower bound of what we expect. As described
in Figure 3. , we can find various dog images which are not
constrained to a single identity. It is therefore reasonable to
disturb conditional text embeddings for generating various
images using diffusion model.

5.1. Analysis of Null-text embeddings

Using the training process described in section 3.1, the
semantic meanings or the overall structure of the original
prompt are effectively showcased, although complete re-
construction is lacking in representation. (See Figure 4)

However, when sampling is done via editing text embed-
ding using Prompt-to-Prompt [10] method, some semantics
remain but most features previously shown in the original
image are lost. We suspect two main reasons in this issue.
First, modified null-text embedding losses text features that
CLIP text encoder provides. The output of the VAE model
may reconstruct the image latent with the generated null-
text condition ϕ′ well, but the null-text condition itself does
not have the text modality that CLIP formulates. Therefore,
we assume it would be better to take the text embedding
through VAE before processing through CLIP text encoder.

Figure 5 is the result from the order of CLIP text encoder
to VAE, but sequential semantics that CLIP provides will be
kept when we reverse the forwarding order: The VAE first,
then the CLIP text encoder.

Second, due to shortage of time, experiments with vari-
ous model architectures have not yet been made. Also, the

training process lacks an adequate number of iterations so
far. As training is done for only one time-step in DDIM
sampler process in each iteration, much more iterations are
required for training the VAE model along with the time-
step positional embedding.

5.2. Analysis of Conditional text embeddings

CLIP loss ablation study For the CLIP loss,
we weighted sum the DCLIP (EI(I ′′), C′) and
DCLIP (EI(I ′), C′′). However, while DCLIP (EI(I ′′), C′)
uses loss gradient backproped through diffusion model,
DCLIP (EI(I ′), C′′) only uses gradient from the text VAE
model. Therefore, adversary example is likely to take
in place for the use of DCLIP (EI(I ′), C′′). This causes
generated image to be unrealistic while the CLIP cosine
similarity is very high.

Pre-training VAE We conducted VAE Pretraining based
on the assumption that if a VAE is capable of reconstruct-
ing various texts like ”A photo of a {class}”, it would be
able to learn text features. Therefore, we adopted the zero-
shot ImageNet prompt engineering approach [28] for VAE
pretraining. During this process, we utilized cyclic schedul-
ing [8] to prevent the KL divergence loss from converging
to 0.

However, far from our expectation, the simple VAE
model was not sufficient enough to learn the text features.
This can be seen from the fact that output image from the
pre-trained VAE model is not any different from the one
using initialized VAE model from scratch in that it had no
semantics; consisting of pure noise texture implying no se-
mantic meanings indicated in the conditional text embed-
ding. In addition, for simple MLP-based VAE model, val-
idation performance while pre-training showed lacking ro-
bustness. Therefore, the transformer architecture is needed
to learn text modality and one example to validate the effi-
cacy of this transformer architecture is training some por-
tion of the pre-trained CLIP encoder transformer. Another
example is to use knowledge distillation for transferring
CLIP text encoder knowledge to smaller model. These are
left to future research. It is important to note that VAE does
not need to have full generation capability of text embed-
ding; it only needs to make diversity given the input data.

VAE model architecture Multi layer perceptron archi-
tectures are compared in model complexities; token-level
MLP and sequence-level MLP. The token-level MLP ap-
plies the same linear operation on every tokens, whereas
the sequence-level MLP operates on the whole flattened se-
quence. The token-level MLP leads to a problem where
the image texture becomes uniform, as shown in Figure 6
As a result, the VAE model struggled to perform accurate
reconstruction. Therefore, a more complex structure, was
necessary, which involved distinguishing and operating on
individual tokens. To solve this problem, instead of apply-
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Figure 3. Edited images from a prompt with a random noise token. The images in the first and second column are generated from the
original prompt and edited one, respectively, by applying Prompt-to-Prompt [10] method. The last four columns show images from text
embedding, which is added random noise to the replace token (”dog”).

Figure 4. Generated Images at different iterations. It shows that the quality of the reconstruction exhibits enhancement with the progressing
of the iterations.

ing the same MLP-based VAE to each token, We flattened
embeddings and conducted MLP operations. Additionally,
to overcome memory constraints, we utilized 1x1 convolu-
tions to reduce the number of channels.

Training limitation Besides, conducting training from
scratch with a combination of CLIP loss and reconstruction
loss reveals the ability to preserve the semantic meanings
derived from edited text prompts. However, to optimize the
CLIP loss, it is necessary to perform backpropagation in a
pixel-level rather than in the U-Net latent space. Conse-
quently, significant GPU memory is required for computing
the decoder part of the stable-diffusion auto-encoder. This
limitation also prevents us from conducting training experi-
ments in a diverse manner of VAE architecture. The training
time substantially increases when clearing cache midway to
conserve memory due to the impact of Prompt-to-Prompt
method. We presumed the resulting text embedding from
the VAE is not noticeably different from the original one.
Therefore, during training, only reconstruction loss is em-
ployed and the reconstruction capability is shown in Figure
6. For further reconstruction and variation capability, CLIP
loss will be incorporated at a later stage. The result is yet

obtained and more training iterations are needed to see the
result. Extensive ablation study with different VAE archi-
tectures along with diverse hyperparameter for training is
required to fully examine the idea of adding stochasticity in
text condition when editing via diffusion model.

6. Conclusion

To the best of our knowledge, there has not been an at-
tempt to add stochasticity in text-to-image editing process.
We bring up the problem of the ODE solver restricting the
sampling ability, which is one of the most important fea-
ture of generative models, when faced in the situation of the
fixed latent and seed environment. Such process is indis-
pensable when editing is done via changing latent in diffu-
sion process. In this paper, we make an attempt to solve
the deterministic text-to-image editing methods in multi-
modality aspect by adding stochasticity in conditional text
embeddings.

We examined the possibility of our model by inject-
ing random noise and conducted experiments using a sim-
ple MLP VAE model. Additionally, we reported the re-
sults based on different model size, indicating the ability
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Figure 5. Edited Images from various Null-text embeddings sampled from VAE. The image in the first column is generated from the
original prompt with the original null-text embedding and the images in the remaining columns are generated from editing text embedding
with the generated null-text embeddings.

Figure 6. A Comparison of edited images at different diffusion
steps using two simple MLP architectures. The reconstruction
quality improves as the diffusion steps increase, with the lower
steps depicted on the left and the higher steps on the right.

to achieve better performance than initially proposed.
Successful outcomes of our proposed experiments will

lead us to develop a powerful editing technique that can
generate diverse images by conditioning them on a single
editing prompt. The embeddings produced by our attach-
able VAE model can be applied to any existing diffusion
model and provide a means of guiding the generator to syn-
thesize images with stochastic properties. We anticipate that
our approach will have a positive impact on the field of text-
guided image synthesis.
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