
Diffusing Objects as Points:
One-Stage Object Detection with Diffusion Probabilistic Models

Namgi Kim
IPAI, SNU

rlaskarl77@snu.ac.kr

Inseo Lee
GSDS, SNU

ian.lee@snu.ac.kr

Hoyeon Moon
mhy991011@gmail.com

JooYoung Jang
GSCST, SNU

jyjang1090@snu.ac.kr

Abstract

Diffusion models are crossing the boundary of image
generation and explosively adapted to other tasks like
noise-to-segmentation, and noise-to-detection. Diffusion-
Det [4] was the first approach to adopting diffusion models
to object detection tasks, but due to its two-stage architec-
ture, there are some intrinsic problems with the diffusion
process. In this work, we propose a one-stage object detec-
tion diffusion model, DiffusionPoint, which applies the dif-
fusion process to the heatmap. Our approach outperforms
the baseline [6] at mAP50 by 0.9%, with faster inference
speed, compared to DiffusionDet. This framework does not
need heuristic postprocessing and enjoys the advantages of
diffusion models like iterative refinement.

1. Introduction

Object detection is a computer vision technology that de-
tects the types and positions of objects present in an image.
In recent years, diffusion models such as DDPM [13] have
gained attention in the field of image generation. These
models are capable of generating various samples, which
has led to attempts to apply them to other fields. For in-
stance, there have been efforts to incorporate diffusion into
Text-to-image generation [15], super resolution [24], seg-
mentation [1], and the first attempt to apply diffusion mod-
els to the field of object detection has also emerged with
DiffusionDet [4].

DiffusionDet [4] has a two-stage structure where bound-
ing boxes are extracted through the diffusion model and ob-
jects are detected through RoI pooling. At the inference
step, the detection decoder improves the accuracy of its pre-
dictions by refining them based on Gaussian random boxes
in an iterative process. The final predictions are obtained by

combining the predictions from each sampling step using
Non-Maximal Suppression(NMS).

Although DiffusionDet seems to be good model, there
are still some limits. First, it needs a heuristic box-renewal
process during inference, as using a fixed size of queries
during training. The two-stage structure itself can be a prob-
lem, as making the detection process even slower, while ap-
plying diffusion. Finally, as the diffusion process is done
separately with classification, it might be difficult for the
model to balance the classification-localization tasks.

Therefore, in this work, we present a novel one-stage ob-
ject detection diffusion model, which utilizes the noise-to-
heatmap approach. Our framework, DiffusionPoint, does
not need heuristic procedures like the box renewal and is
faster as a one-staged model. In our framework, the diffu-
sion process considers class priors, so it is easier to balance
between classification and localization tasks.

2. Related Works

Object detection. Object detection is a computer vision
technology that detects the types and locations of objects
present in an image [33]. After convolutional neural net-
works (CNNs) [16] showed high performance on the Ima-
geNet challenge, deep neural networks began to be used for
object detection as well. Models such as RCNN [9], SPP-
Net [12], Fast RCNN [8], and Faster RCNN [22] used CNN
to extract features from images and use them to detect ob-
jects. These models detect objects in two stages to examine
whether real objects exist in those areas. YOLO [21] is a
model that detects objects with only convolutional opera-
tions. SSD [19], RetinaNet [17], which have emerged since
then, also detect objects in one stage. In the case of one-
stage models, the structure is relatively simple and fast, but
there is a disadvantage that the location accuracy is some-
what lower than two-stage models. These are all anchor-

1

based models, while CenterNet [6] presents a method of
detecting the center point of an object rather than a bound-
ing box without anchors. A structure such as DETR [2]
presents a method that applies the Transformer structure to
the detection model.

Diffusion model. The Diffusion model is a generative
model that injects random noise into data such as images
and then learns the reverse process of finding the original
data. Through this, it aims to enable the model to gen-
erate data with a desired shape from completely random
noise. Recently, diffusion models such as DDPM [13] and
DDIM [26] have been in the spotlight in the field of image
generation, and many attempts have been made to incor-
porate them into other fields, paying attention to the point
that diffusion models generate various samples. A grow-
ing number of computer vision fields are using the diffu-
sion model, including Text-to-image generation [15], super
resolution [24], segmentation [1], and object detection [4].

Figure 1. Diffusion model for object detection. The figure is
brought from [4]. They formulated object detection as the denois-
ing process of noisy bounding boxes.

Figure 2. DiffusionDet framework. Figure from [4]. With ex-
tracted image features from the encoder, the detection decoder pre-
dicts class and box coordinates from noisy boxes.

Noise-to-Box Approach. Unlike image genera-
tion models, the diffusion process of object detec-
tion models does not happen in the pixel space or
the latent space. Instead, they sample N samples of
size(xcenter, ycenter, width, height) ∈ R4 ∼ N(0, I).

The method for detecting objects in DiffuseDet is the same
as shown in Fig. 1. It uses a ResNet as a backbone to ex-
tract features from images and object detection is performed
with bounding boxes that have gone through a backward
diffusion process. The overall process is shown in Fig. 2.
It starts with a random Gaussian noise and extracted fea-
ture representation of an input image. The denoising pro-
cess of the decoder computes bounding boxes from noisy
boxes, and successive classification heads predict their cat-
egory and exact box coordinates. This process is called as
noise-to-box approach. During the training, the noisy boxes
are generated by adding Gaussian noise to the ground-truth
boxes. In inference, the noisy boxes are randomly sampled
from the Gaussian distribution.

3. Background

Anchor-free One-stage Detector Our framework is
based on an anchor-free one-stage detection model. The
common point is they are viewing objects as a combina-
tion of key points. This views objects as a set of disjoint
points of the image: center position, box size, and offsets
from the center position. The center position is constructed
with class-wise heatmaps: if the value of (w, h, c) is high,
it is likely that an object from class c is oriented at (w,
h) of the image. Since the heat map can be easily drawn
from GT and it is logical to think of injecting noise as pass-
ing the Gaussian kernel, we can apply the diffusion step
to train this model. To be specific, we used Centernet [6],
and VFNet [11] for our experiment. Both of these two net-
works have a heatmap head that shows the center location
of the object. Then, by using heatmap head it can get cen-
ter points of object P̂c = {(x̂i, ŷi}ni=1 of class c without
any non-maximum suppression (NMS) or post-processing.
Then produce a bounding box at a location

(x̂i + δx̂i − ŵi/2, ŷi + δŷi − ĥi/2,

x̂i + δx̂i + ŵi/2, ŷi + δŷi + ĥi/2),

where (δx̂i, δŷi) = Ôx̂i,ŷi
is the offset head’s prediction

and (ŵi, ĥi) = Ŝx̂i,ŷi
is the size head’s prediction.

Diffusion process. In the diffusion model [25], the pro-
cess of creating noise from the data through diffusion is
called the forward diffusion process, while the process of
the model restoring the original data format is called the
backward denoising process. The forward diffusion process
gradually adds Gaussian noise to the data according to a
variance schedule β1, ..., βT : defined as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) := N(xt;
√

1− βtxt−1, βtI)

(1)

2

and backward denoising process is defined as:

pθ(x0:T) := p(xT)pθ

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) := N(xt−1;µθ(xt, t),
∑

θ(xt, t))

(2)

In DDPM [13], the forward pass can be parameterized
as:

µθ (xt, t) = µ̃t

(
xt,

1√
ᾱt

(
xt −

√
1− ᾱtϵθ (xt)

))
=

1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

) (3)

Through DDPM, we can learn the generative Markov
Chain Process that creates samples while denoising. How-
ever, this process has a limitation in that it requires a lot of
steps in the form of sampling one by one. Therefore, in or-
der to improve this, DDIM [26] generalized this process to
non-markovian.

qδ(xt|xt−1,x0) =
qδ(xt−1|xt,x0)qδ(xt|x0)

qδ(xt−1|x0)
(4)

DDIM’s authors discovered that the objective of DDPM
only depends on the marginal distribution and not directly
on the joint distribution. Then, Eq. (4) can be derived from
Bayes’ rule.

It is known that adopting DDPM for training and DDIM
for inference works best for many image-generation mod-
els. Therefore, we also trained our model by the DDPM
approach and adopted DDIM for inference.

4. Method
4.1. Architecture

Since running the whole model iteratively for the dif-
fusion process is computationally intractable, we followed
the approach of DiffusionDet [4]. The image encoder runs
only once to extract features from the input image, and
the detector head inputs those features as conditions and
goes through the diffusion process to make predictions. For
the image encoder, we used conventional backbones like
ResNet18 and ResNet50, which are often used as a back-
bone in object detection models. Our overall architecture is
shown in Fig. 4 and Fig. 5.

For the detector head, we discussed multiple one-stage
options. First, DETR-like approaches [2] [32] [30] can be a
option. These can be easily modified to a DiffusionDet-like
structure, but due to their heavy computation cost, we do
not use this option. Anchor-free approaches [27] [6] [29]
are structurally different from that of DiffusionDet and the
diffusion process needs to be defined from scratch, but they

are easy to implement and more intuitive in iterative refine-
ment. We chose CenterNet [6] from Objects as Points, and
VFNet [11] as the structure is simple but achieves high mAP
with a smaller model size.

Noise-to-Heatmap approach. In this work, we present
a noise-to-heatmap approach, which is applicable to vari-
ous one-stage object detectors. The most challenging part
of adopting the diffusion process to object detection task is
defining the forward diffusion process. One naive approach
is diffusing in pixel space, viewing the object detection task
as an image-to-image translation task. Draw ground-truth
bounding boxes on the image, inject noise, and denoise with
UNet-like models. The bounding boxes can be retrieved by
comparing the original image with the reconstructed image.
However, this will take too much time to converge, as mere
image generation tasks need vigorous training. Also, dif-
fusing in pixel space is not intuitive, as the bounding boxes
do not move spatially in the forward process.

Another possible solution is diffusing in the latent space.
Each instance has five properties - class, x and y posi-
tion, width and height. However, viewing objects as 5-
dimensional vectors does not solve the problem. The class
information should be considered separately from other
properties since the class is categorical and the others are
continuous. Moreover, there can be an arbitrary number of
objects in one image. Therefore, an excessive number of
proposals is mandatory for inference. This increases com-
putations and also halts performance, as many false posi-
tives are generated.

Figure 3. Noise-to-Heatmap framework. Start from random
Gaussian noise, the heatmap is iteratively refined.

Therefore, our approach is to view objects as points,
which go through a random walk positionally and cat-
egorically, and consider their probabilistic density func-
tion. In the forward process, each object randomly trav-
els in (height, width, class) space. For each position in
(height, width, class), it is equivalent to adding a small
Gaussian noise. Thus, the forward process can be defined
as injecting noise in the heatmaps - the probability distribu-
tions of objects.

Now the forward process can be defined as in training 1.
At t = 0, the initial heatmap H0 can be directly generated
from the ground truth bounding boxes like in CenterNet,
assigning high probability in (height, width, class) when

3

Algorithm 1 Training

Input: total diffusion steps T, image features, ground
truth heatmaps and bboxes D = {(Ik, Hk, Bk)}Kk
repeat

Sample (Ii,Hi) ∼ D
Sample ϵ ∼ N(0, Ih×w×c)
Sample t ∼ Uniform({1, . . . ,T})
βt = 1− cos2 (π(t+1)/2(T+1))

cos2 (πt/2(T+1))

αt = 1− βt

ᾱt =
∏t

s=0 αs

β̃t =
1−ᾱt−1

1−ᾱt
βt

Ĥi = normalize(Hi)
xt =

√
ᾱt · Ĥi +

√
1− ᾱtϵ

x0 = xt − ϵθ(xt, Ii, t)
H̃0 = unnormalize(x0)
xwh = headwh(x0, Ii)
xoffset = headoffset(x0, Ii)

Lcls = Lfocal(H̃t, H0)
Lwh = L1(xwh, B

wh
i)

Loffset = L1(xoffset, B
offset
i)

Ldet = Lcls + λwh ∗ Lwh + λoffset ∗ Loffset

Take a gradient step on Ldet

until convergence

there is an object of class class near (height, width) po-
sition. At t = T , the heatmap would be perfectly random,
like Uniform distribution. As we are assuming the Gaus-
sian noise injection, the heatmap Hi should be projected
to be zero-centered and unit-variance. Therefore, H0 ∈
[0, 1](h×w× c) is nomalized to Ĥ0 = (H0 ∗ 2− 1) ∗ σsnr ∼
N(0, I(h×w× c)), where σsnr is a signal-to-noise ratio.

At inference 2, we sample a Gaussian noise xT ∼
N(0, I(h×w× c)), then compute x0 with backward diffusion
process. The predicted x0 should be unnormalized to be a
heatmap H̃0 = (x0/σsnr − 1)/2 ∈ [0, 1](h×w× c).

We call this a noise-to-heatmap approach. This can work
with an arbitrary number of objects, and this does not need
the heuristic box-renewal process. Also, the class prior is
considered when computing ϵθ(xt, Ii, t).

Detector head. The detector head directly follows that
of CenterNet [6] and VFNet [11]. It takes image features
as input and computes the heatmap Ỹ , offset Õ, and object
sizes S̃ for Centernet version, while the heatmap Ỹ , offset
0̃, and refined offset R̃ for VFNet. From a randomly noised
heatmap, it iteratively refines to predict noise and the refined
heatmap. This can be interpreted similarly to the coarse-to-
fine approach - given an initial guess, finding more precise
detections.

Feature fusion. In our approach, the detector head com-
putes denoised heatmaps, conditioned with the previous
heatmap and encoded image features. We can view this

Algorithm 2 Inference

Input: total diffusion steps T, image feature I
xT ∼ N(0, Ih×w×c)
for t = T, T − 1, . . . , 1 do

Sample z ∼ N(0, Ih×w×c)

βt = 1− cos2 (π(t+1)/2(T+1))
cos2 (πt/2(T+1))

αt = 1− βt

ᾱt =
∏t

s=0 αs

β̃t =
1−ᾱt−1

1−ᾱt
βt

xt−1 = 1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, I, t)) + σtz

end for
H̃0 = unnormalize(x0)
xwh = headwh(x0, I)
xoffset = headoffset(x0, I)

Return Post-process (H̃0, xwh, xoffset).

Figure 4. Overall framework of Centernet-like head. With the
backbone image encoder, image features are extracted. The de-
coder head inputs those features and noised heatmap to predict a
refined heatmap based on CenterNet.

Figure 5. Overall framework of VFNet-like head. With the
backbone image encoder, image features are extracted. The de-
coder head inputs those features and noised heatmap to predict a
refined heatmap based on VFNet.

as computing successful heatmaps repeatedly, and therefore

4

we can follow the structure of CenterTrack [31]. Different
from tracking objects, our diffusion process lacks tempo-
ral consistency and spatial coherence, as random noise is
repeatedly injected at every step. Therefore, we added the
CBAM module [28] to handle this problem. After combin-
ing encoded features and the previous heatmap, three heads
- heatmap head, offset head, and size head or heatmap head,
offset head, and refined offset head- use the computed fea-
ture to generate predictions.

Figure 6. Feature fusion module. Incoming heatmap is added to
encoded image features, passing through 1x1 convolution. Time
embedding with randomly chosen t is added. The attention mod-
ule followed by convolution layers computes the next feature to
predict heatmap, sizes, and offsets.

4.2. Training

Forward Diffusion Step. Following Centernet [6], the
ground truth heatmap Ŷ ∈ [0, 1]C×W

R ×H
R is generated,

where (W,H) is the size of the image and R is the out-
put stride, and C is the number of classes to predict. Sam-
pled noise is added to the initial heatmap until the heatmap
becomes a completely random distribution. The noise is
scaled with αt of time step t from decreasing cosine sched-
ule, following [20].

We tried multinomial diffusion similar to [14] separately
for the class dimension, but the result was not great. There-
fore, we choose to follow the diffusion process of DDPM
[13].

Training loss. Following the original CenterNet, we
used focal loss [17] for the heatmap Ŷ and used L1 loss
for offset Ô and size Ŝ. The total training objective is

Ldet = Lheatmap + λsizeLsize + λoffsetLoffset. (5)

4.3. Inference

Sampling step. We followed DDIM [26] for sampling.
For every step, the predicted heatmap is used to estimate the
heatmap of the proceeding heatmap. The predicted heatmap

is directly used to generate detection results. Unlike Dif-
fusionDet, we do not need a box renewal step, as we do
not need to categorize each prediction into desired or unde-
sired. This makes the sampling step more reasonable and
corresponds with the original DDIM.

5. Experiments
we evaluated our approach on MS-COCO [18] and Vis-

Drone [5]. We used VisDrone dataset to test our model
on small objects. We used Resnet18 and Resnet50 for the
image encoder, and CenterNet-based head for the detector
head. The baseline was tested with implementation from
MMDetection [3].

MS-COCO [18] Coco dataset is a widely used dataset
in the field of object detection. It consists of 328,000 im-
ages containing everyday objects and 1.5 million object la-
bels. We checked the box average precision over average
IoU thresholds (AP), threshold 0.5 (AP50).

VisDrone-DET2019 [5] VisDrone dataset contains im-
ages taken from drone-mounted-cameras. It contains 8.6K
images and 540M labels. As the images are shooted from
long range and high altitudes, the number of objects in one
image is much larger compared to COCO, and also the sizes
of the objects are relatively small.

5.1. Implementation Details

Training. We used ResNet18 pre-trained on ImageNet-
1k. For the optimizer, we used Adam with the initial learn-
ing rate of 2.5 × 10−5 and weight decay of 10−4, follow-
ing DiffusionDet. The training step is a total of 450k itera-
tions. We used only one GPU with a mini-batch size of 16.
We used RandomResizedCrop of the size (512, 512) for our
only augmentation.

Testing. After predicting a heatmap, the decoder head
selects top-k points for inference. We used the top 100
points and the top 300 points, respectively, to generate a
total of 100 predictions after NMS.

5.2. Experiment Result on MS-COCO

We compared our implementation with its baseline Cen-
terNet [6] and VFNet [11] on table 1. Since we were not
able to find an appropriate optimizer setting and the model
is still in its training, the performance is not better than the
baseline. However, with lower IoU, it outperformed the
baseline by 1%. It is most probably due to the low conver-
gence speed of the heatmap head, which is a common prob-
lem in CenterNet structure. Additionally, since COCO has
a class imbalance problem, the heatmap style head might be
not appropriate for this training.

5.3. Experiment Result on VisDrone-DET

We also conducted comparison experiments on the Vis-
Drone validation set. The results are in table 2. As well as

5

Method Backbone AP AP50

CenterNet ResNet18 25.9 42.6
VFNet ResNet101 13.8 32.2
SSD VGG16 26.8 46.5

DiffusionDet(reported) ResNet50 45.5 65.1
DiffusionDet(reproduced) ResNet50 32.0 49.0

DiffusionPoint(ours) ResNet18 27.2 43.5
DiffusionPoint(ours) ResNet50 26.7 49.5
DiffusionPoint(ours) VFNet-ResNet101 11.6 28.8
DiffusionPoint(ours) YoloXm 25.2 43.9
DiffusionPoint(ours) YoloXl 25.2 44.3

Table 1. MS-COCO validation set. The CenterNet is the baseline from MMDetection [3] with ResNet18 backbone and without DCN.
The others are our implementation. We applied no test-time augment.

Figure 7. Heatmap visualization on COCO. The detector head
finds small and dense objects as well.

in the COCO, we did not meet the performance of SOTA
models, due to training issues. Remarkably, mAP at IoU 50
was much better than mAP from an average IoU of 0.5:0.95.
This can be due to the slower convergence speed of the off-
set and size heads.

5.4. Speed test

We conducted an inference speed test between ours
and the baselines. All baselines are modified to use the

Method Backbone AP AP50

CenterNet ResNet18 24.7 49.22
CenterNet ResNet50 28.13 59.51

RetinaNet [17] ResNet50 13.9 23.0
FRCNN [22] ResNet50 21.4 40.7
DiffusionDet ResNet18 21.2 36.5

DiffusionPoint(ours) ResNet18 13.3 30.3

Table 2. VisDrone Validation set. The CenterNet is the baseline
from MMDetection [3] with ResNet18 backbone. The others are
our implementation.

Model Backbone ms per image FPS
CenterNet [6] ResNet18 8.1 123.4

DiffusionDet [4] ResNet18 37.7 26.5
DiffusionDet [4] ResNet50 60.6 16.5

DiffusionPoint(ours) ResNet18 10.2 98.0
DiffusionPoint(ours) ResNet50 15.6 63.9
DiffusionPoint(ours) YoloXm [7] 25.0 40.0
DiffusionPoint(ours) YoloXl [7] 27.2 36.8
DiffusionPoint(ours) VFNet-res50 [7] 33.9 29.5
DiffusionPoint(ours) VFNet-res101 [7] 40.8 24.5

Table 3. Inference speed. The CenterNet is the baseline from
MMDetection [3] and the others are our implementation. Single
RTX3090 is used for inference.

ResNet18 backbone, for a fair comparison. We applied
no test-time augment. Compared to DiffusionDet, our ap-
proach was much faster, as we do not apply RoI pooling.
Although using diffusion sampling for inference, our ap-
proach was not so much slower than the baseline.

5.5. Iterative Refinement

One of the advantages of adopting diffusion models is
that the detection result can go through iterative refinement.
In other detection models, no matter if they are one-stage or

6

Figure 8. Iterative refinement. The left figure is the visualiza-
tion of heatmaps after a single inference. The right one is from
the same image after 4 sequential inferences. Clearly, iteratively
refining heatmaps made the result more clear and sharp.

two-stage, once the image features are used in the detector
head, they are not used again and the detection result cannot
be used as the next refinement stage. On the other hand, Dif-
fusion models can adjust the number of denoising sampling
steps to improve the quality of the output image. The above
figure 8 shows the comparison of heatmap after single infer-
ence and multiple inferences. After repetitive refinement,
the object proposal got more clear and more accurate. Us-
ing this, our architecture can accelerate the inference speed
or iteratively refine detection results, similar to the coarse-
to-fine approach. For example, for a high-resolution image,
first downsize and compute a heatmap. Then resize and crop
the computed heatmap, and use it as a noised heatmap for
partial search. This can be applied to many other tasks like
tracking [31], or hierarchical object search for large images,
like in IterDet [23].

5.6. Limitations

One of the main problems to solve is that our model gen-
erates small objects which hurts mAP performance. There-
fore, we need to figure out ways to filter those issues. An-
other problem is that the regression head doesn’t converge
but only the heatmap head. We also need to figure out
this problem in the future. Finally, since we had lack of
time and computational resources, we only used single GPU
based training, resulting in decreased performance (com-
pare Tab. 1 DiffusionDet reported vs. reporducted).

6. Conclusion and Future Works

In this work, we present a new one-stage detection
model, DiffusionPoint, by applying the diffusion process to
the heatmap. Through this, we showed that the current Dif-
fusionDet, which is proposal-dependent and has a heuristic
box renewal process could be implemented based on one-
stage heatmap based Detector.

We experimented on famous object detection datasets
such as MS-COCO [18] and VisDrone [5] and showed pos-
sibility of our approach. Although the performance of our
framework was not good as expected, there is still room to

improve. Moreover, this approach can be adapted to many
other models.

In future work, we should try our approach in other
datasets such as LVIS [10]. Last but not least, we could
experiment with our model not only on object detection but
also on other tasks, like key point estimation or tracking.

References
[1] Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov,

Valentin Khrulkov, and Artem Babenko. Label-efficient se-
mantic segmentation with diffusion models. arXiv preprint
arXiv:2112.03126, 2021. 1, 2

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part I 16, pages 213–229.
Springer, 2020. 2, 3

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv preprint arXiv:1906.07155, 2019.
5, 6

[4] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffu-
siondet: Diffusion model for object detection, 2022. 1, 2, 3,
6

[5] Dawei Du, Pengfei Zhu, Longyin Wen, Xiao Bian, Haibin
Lin, Qinghua Hu, Tao Peng, Jiayu Zheng, Xinyao Wang, Yue
Zhang, et al. Visdrone-det2019: The vision meets drone ob-
ject detection in image challenge results. In Proceedings of
the IEEE/CVF international conference on computer vision
workshops, pages 0–0, 2019. 5, 7

[6] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In Int. Conf. Comput. Vis., 2019. 1, 2, 3, 4,
5, 6

[7] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021, 2021. 6

[8] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 1

[10] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5356–5364, 2019. 7

[11] Feras Dayoub Niko Sünderhauf Haoyang Zhang,
Ying Wang. Varifocalnet: An iou-aware dense object
detector. In 2005 IEEE computer society conference on
computer vision and pattern recognition (CVPR’21. 2, 3, 4,
5

7

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial pyramid pooling in deep convolutional networks for
visual recognition. IEEE transactions on pattern analysis
and machine intelligence, 37(9):1904–1916, 2015. 1

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models, 2020. 1, 2, 3, 5

[14] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick
Forré, and Max Welling. Argmax flows and multinomial dif-
fusion: Learning categorical distributions. Advances in Neu-
ral Information Processing Systems, 34:12454–12465, 2021.
5

[15] Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu,
Chen Change Loy, and Ziwei Liu. Text2human: Text-driven
controllable human image generation. ACM Transactions on
Graphics (TOG), 41(4):1–11, 2022. 1, 2

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 1

[17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 1, 5, 6

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 5, 7

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In Computer
Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings,
Part I 14, pages 21–37. Springer, 2016. 1

[20] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 5

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 1, 6

[23] Danila Rukhovich, Konstantin Sofiiuk, Danil Galeev, Olga
Barinova, and Anton Konushin. Iterdet: iterative scheme
for object detection in crowded environments. In Structural,
Syntactic, and Statistical Pattern Recognition: Joint IAPR
International Workshops, S+ SSPR 2020, Padua, Italy, Jan-
uary 21–22, 2021, Proceedings, pages 344–354. Springer,
2021. 7

[24] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sali-
mans, David J Fleet, and Mohammad Norouzi. Image super-
resolution via iterative refinement. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 1, 2

[25] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
2

[26] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2, 3, 5

[27] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019. 3

[28] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 5

[29] Philipp Krähenbühl Xingyi Zhou, Vladlen Koltun. Proba-
bilistic two-stage detection. In archive, 2021. 3

[30] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr
with improved denoising anchor boxes for end-to-end object
detection. arXiv preprint arXiv:2203.03605, 2022. 3

[31] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.
Tracking objects as points. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part IV, pages 474–490. Springer, 2020.
5, 7

[32] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 3

[33] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and
Jieping Ye. Object detection in 20 years: A survey. Proceed-
ings of the IEEE, 2023. 1

8

Appendix A.

Figure 9. Qualitative Visualizations on COCO

9

Figure 10. Qualitative Visualizations on VisDrone

10

	. Introduction
	. Related Works
	. Background
	. Method
	. Architecture
	. Training
	. Inference

	. Experiments
	. Implementation Details
	. Experiment Result on MS-COCO
	. Experiment Result on VisDrone-DET
	. Speed test
	. Iterative Refinement
	. Limitations

	. Conclusion and Future Works

