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Abstract

Learning a smooth latent manifold is important for rep-
resentation learning including generative tasks. Smooth-
ness of the latent space implies natural transitions in the
image space, and path length regularizer was used in Style-
based Generative Adversarial Networks (StyleGANs) [6, 8]
to guide the model to learn an isometrical mapping from
latents to images. In this work, we reformulate the path
length regularizer in StyleGANv2 to a coordinate-invariant
form with relaxed distortion measure [4, 19] that releases
the preference of scale factor that was explicitly prescribed
in previous method with implicit formulation, leading to
more natural and stable learning of isometrical mapping.
Also, we extend this work to Diffusion models, and propose
a new metric, distortion measure, for measuring how much
the mapping of a generative model distorts the latent space
with the connection to Perceptual Path Length (PPL). This
is the first work to apply isometry representation learning
regularizer for generative models within our knowledge.

1. Introduction

StyleGANs [6–8, 14] and Diffusion models [3, 5, 15]
are exhibiting excellent performances in various generative
tasks in the field of vision, audio, natural language, fore-
casting, and graph. One of the main ideas of StyleGAN was
injecting disentangled information via style vectors and this
disentanglement was done by injecting intermediate latent
code from W space. By using the method of style transfer,
they were able to separate high-level attributes in the latent
space, making the basis corresponding to different percpet-
ual features independent. This leads to better interpolation,
image manipulation, enabling coherent-looking animations
such as random walking in the latent space.

The authors of StyleGAN proposed a metric to measure
how well the model disentangled the latent space; Percep-
tual Path Length (PPL) which measures the perceptual dis-
tance between two images which are the mappings from two

neighboring latent vectors. Authors interpreted as smaller
the PPL, better the disentangled was done and interpreted
PPL represents the smoothness of the mapping from the la-
tent space to image space.

As deliberated in [1, 13], learning the structure and
semantic relationship between instances or representation
points is helpful for model to interpret given images regard-
less to the domain or style. In light of this, for the gen-
erative tasks, smooth or regularized latent space can have
similar interpretation with image space in terms of its style
or content. It means model might recognize itself seman-
tic information and visual patterns in not only intra domain
but also inter domain just as people perceive. With this in
mind, for the generative tasks, the model with smooth la-
tent space might be able to synthesize a image including
unseen style or even content, which makes the model be
more general for various image generation tasks. Further-
more, if we can give more various images to the model, the
capability would be more refined as the model learns com-
pact and well-interwined smooth latent space.

As prior works for smoothing out the latent space, [9]
used large l2 norm, so that the distribution of styles to be
a shrunk Gaussian centered on the origin and compacts the
space. [17] proposed the shortest path regularizer by finding
a shared latent space. For metrics measuring the smooth-
ness of the mapping, [9] proposed the Perceptual Smooth-
ness(PS) metric, because PPL can be minimized by a col-
lapsed generator. PS consists of the degree of linear align-
ment and the uniformity using the Gini inequality coeffi-
cient. [18] offered quantitative measurement to style trans-
fer by using Base E and C statistics. E statistic evaluate
the transformed image has the desired style or not and C
statistics evaluate the degree of objectivity in the content
images [16].

Additionally, motivated by the arising of Diffusion mod-
els, following works discuss about the latent space of dif-
fusion models. Due to excelling generating capability of
Diffusion process, there are lots of trials to smooth the la-
tent space. [20] proposed pre-trained DPM AutoEncoder
(PDAE) loses the information of latent space. Therefore by
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Figure 1. Comparison between images generated by StyleGANv3, path length regularized StyleGANv3, and distortion measure regularized
StyleGANv3. Distortion measure based regularizer releases the restricted condition on the scale factor of desired isometry, and leads to
stabler and natural convergence of the mapping. Notice body part of animals are absent in the images from previous methods while our
distortion measure regularized model fills the missing body parts, while maintaining high generation quality.

using the classifier-guided sampling method, compute an
extra mean shift to fill the information gap. [12] proposed
conditional DDIM encoder and decoder to learn a rich and
smooth latent space. [10] proposed Hierarchical Diffusion
Autoencoders (HDAE) that disentangle attributes by adjust-
ing n which is obtained from the weights of the linear clas-
sifier for the target attribute.

Smoothing and disentangling the latent space can im-
prove the image generation quality by removing the un-
necessary and unnatural artifacts in generated images. [9]
The work reports that StyleGANv2’s intermediate space
can generate images with artifacts, and proposes triplet-
loss, style regularization(SR) loss and perceptual smooth-
ness(PS) metric. The triplet loss controls the inter-domain
distances and preserves disentanglement and the SR loss
makes the latent space smooth by compacting the space. As
PPL can be reduced by collapsed generator, it defines a new
metric that measures the smoothness of the style space. Ad-
ditionally, there have been numerous works regarding the
Diffusion models as a representation learner; [12] proposed
conditional DDIM encoder and decoder to learn a rich and
smooth latent space with excelling generating capability of
Diffusion process.

However, StyleGANv1 did not perform any explicit reg-
ularization to decrease the PPL. Afterward, the following
work StyleGANv2 added the Path Length Regularizer term
that forces the mapping from the latent or the generator of
GAN to be isometry up to scale. They had set the constant
as a dynamically optimized constant with the exponential

moving average of the lengths , which is a heuristic way to
find the suitable scale factor. Hence, this method does not
explicitly shows how the mapping is far from being a scaled
isometry and also has potential to not gurantee an optimal
solution. In the original work from StyleGANv2, they re-
port that this regularizer did not quite reached orthogonality,
and also their path length regularizer method decreased the
FID in FFHQ dataset, but increased the FID in LSUN Car
dataset.

We show that this result is due to the coordinate-variant
and restricted form of the path length regularizer term. In
other words, the formulation of original path length regu-
larizer changes under coordinate transformation of the la-
tent space, while also regularizer restricts the mapping to
become an isometry realated to a prescribed scale that is
determined in the early stage of training.

Meanwhile, [19] newly proposes a coordinate-invariant
functional that measurses how the given mapping is far
from being a scaled isometry in a relaxed distortion mea-
sure sense. In their work, they added the above distortion
measure term to the original autoencoder term, that lead the
autoencoder to learn the geomtery-preserving latent space
that induces short PPL mapped from the interpolation in the
latent space. They explains three types of geometry con-
straining regularizers: isometry loss, scaled-isometry loss,
and area perserving harmonic loss which does not include
any dynamically optimized variables.

In this work, we show the coordinate-invariant func-
tional forms of the path length regularizer indeed give sta-
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Figure 2. Mappings from three neighboring latents zi, zi+1, zi+2 from the latent manifold M trained with path length regularizer. These
are the latent interpolations of two endpoints. Since the mapping of the generative model, or the generator of the GAN in the figure, is not
ideally a scaled-isometry, the magnitude or angle between displacement vectors in the latent manifold is not preserved after the mapping
to the images. This implies the gradient of the mapping is inhomogeneous, and points having steep gradient exists, which leads to drastic
perceptual change during latent interpolation. For example, during zi → zi+1, the upper left cat drastically changes to a fox, while at
zi+1 → zi+2, the right column’s tigers drastically change to dog or its pattern.

bler training process that leads to decrease of PPL as well
as FID that was unsuccessful in original StyleGANs. This
will be the first work to apply coordinate invariant distortion
measure to generative model and guide it to learn an isomet-
ric representation learning. Also we extend this formulation
to iterative generative models such as Diffusion models to
guide the score model to learn an isometrical mapping. Fi-
nally, we propose a new metric to quantify the smoothness
of the latent mapping, and show its advantageous consis-
tency over PPL.

2. Perceptual Path Length Regularizer
Isometry is a mapping that preserves distance and an-

gle. Scaled-isometry is a relaxed version of isometry that
it may preserve distance and angle up to a global constant
scale. We may interpret scaled-isometry as a homogeneous
stretching of latent manifold. In generative tasks, we may
use the trained mapping from latent to image as a decoder,
and using the learned latent space, image interpolation, tem-
perature manipulation, image reconstruction becomes pos-
sible. We hypothesize that learning a smooth mapping is
important for generative models to learn a well-conditioned
latent space in a sense that such space is advantageous for
stable training and sampling.

Figure 2 shows the result of latent interpolation via map-
ping learned from the original perceptual length regular-
izer in StyleGANv2. Since the mapping of the generative

model, or the generator of the GAN in the figure, is not
ideally a scaled-isometry, the magnitude or angle between
displacement vectors in the latent manifold is not preserved
after the mapping to the images. This implies the gradient
of the mapping is inhomogeneous, and points having steep
gradient exists, which leads to drastic perceptual change
during latent interpolation. For example, during zi → zi+1,
the upper-right cat drastically changes to a fox, while at
zi+1 → zi+2, the right column’s tigers drastically change
to dog or its color. This shows that original path length reg-
ularizer may decrease PPL because it guides the mapping to
scaled-isometry but not in an ideal form. This leads to the
existence of points exhibiting high gradients causing drastic
perceptual change in small ϵ-step in the latent space.

2.1. Regularizers for scaled-isometry

The authors of StyleGANv2 proposed a following path
length regularizer (Lpl) that guides the mapping to become
a scaled-isometry associated with a dynamically computed
global scale c. Jw is the Jacobian of the mapping f at w.

Let an image of f be a manifold. Then Jw becomes a
vector that spans a tangent space at w. Suppose the tan-
gent space is perturbed small as y ∼ N(0, I). It means the
amount of perturbation of the tangent space is < ∂f

∂w , y >=
JT
w y in each direction. That is, the role of the Jacobian is to

provide a local approximation for each point w and ||JT
w y||

means how much the image y moves in the latent space. If
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there is any direction that changes abruptly, then the latent
space will be unstable. Also Lpl can be treated as variance
estimator. Since the most import role of pl regularizer is
stretching W space orthogonally and wanted to keep same
scale regardless of the direction. Therefore, we set ||JT

w y||
as a constant to estimate the variance as constant ′c′ in any
direction. Since we set ||JT

w y|| as a constant, perturbing the
image by a small amount at a local point in any direction,
there will be no unstable abrupt changes as long as ||y|| is
same.

In addition, constant c is determined by exponential
moving average of |JT

w y|2 with a period of 100 evalua-
tions. By dynamically determining the scaled-isometry’s
scale with moving average, the regularizer guides f to be-
come a c scaled-isometry.

Lpl = Ew,y∼N(0,I)(||JT
w y||2 − c)2 (1)

However, because the global scale is determined in a dy-
namic sense, the training process becomes an iterative trial
of finding a appropriate scale, and the sequence of mapping
has potential to converge to isometry with different scale for
every distinct training. Also, preference of specific global
scale c should not exist because the important relation that
mapping should satisfy is the conservation of distance and
angle up to scale, while not restricted to any desired scale.

Formally, for two mapping f and f ′ satisfying JT
w =

c′J ′T for some constant c′, the desired scaled-isometry reg-
ularizer would equally penalize both mappings, but the de-
fined path length regularizer will prefer mapping with the
smaller Jacobian. This implies the regularizer form does
not take account the equivalence relation between mapping
when its Jacobians are equivalent up to scale.

In [19], the equivalence relation is stated in more gener-
alized sense, also considering the Riemannian metric H of
the image space. We suppose Euclidean geometry and set
the Riemannian metric to become identity.

L(f) = L(f ′) if JTHJ = c′J ′THJ ′

, for some c′ > 0
(2)

This motivates the use of generalized formulation of the
path length regularizer that takes account of the desired
equivalence relation as well as the elimination of dynamic
training process rooting from explicit calculation of global
scale c.

2.2. Relaxed Distortion Measure

Meanwhile, [19] proposes a coordinate-invariant func-
tional that measure how much the function is far from being
a scaled-isometry. The authors named it relaxed distortion
measure, and one of its formulation is given as the follow-
ing.

Ldm =

∫
Rm

m∑
i=1

(
λi(z)∫

M
∑m

j=1
λi(z′)
m dv(z′)

− 1)2dv(z) (3)

By following the proposition in [19] and using the
Hutchinson’s trace estimator to estimate the trace value for
efficient computation, it leads to the following formulation.
(H(z) = JT (z)J(z))

Ldm =
Ez∼pθ

[Tr(H2(z)]

Ez∼pθ
[Tr(H(z)2]

=
Ez,v∼N(0,I)[v

TH2v]

Ez,v∼N(0,I)[vTHv]2
(4)

Using this distortion measure, we may measure how
much the mapping from latent to image is far from being
a scaled-isometry and this was the exact task Lpl tried to
achieve. Ldm does not explicitly guide the mapping to be
associated with a prescribed scale c, but implicitly guides
the mapping to beceome one of the cases. Also, the con-
vergence of Ldm will imply satisfaction of the equivalence
relation, that was not achieved with Lpl. These reasons sum
up to explain the advantages of distortion measure regular-
izer over the original path length regularizer.

3. Experiments
We investigate on the application of scaled-isometry reg-

ularizer in two powerful generative models, StyleGANs and
Diffusion models. We first studied on the effect of substi-
tuting the original path length regularizer to distortion mea-
sure based regularizer in StyleGAN. We also want to study
the effect of the scaled-isometry regularizer when applied to
iterative models such as Diffusion models, but since Diffu-
sion models sample the generating image in iterative man-
ner, different formulation is required for the guidance to-
ward mapping to become close to a scaled-isometry.

3.1. Distortion measure regularizer in StyleGAN

We experimented the effect of distortion measure reg-
ularization on StyleGAN by comparing three metrics in
different configurations. The metrics are FID, computed
with 50k samples, PPL, which stands for perceptual path
length metric, and DM, which stands for relaxed distor-
tion measure that computes the distance between the trained
mapping and scaled-isometry. The newly proposed DM
metric will represent how much the mapping is distorted
from scaled-isometry, or how much the mapping is close to
scaled-isometry.

3.2. Preparing for datasets

For our image dataset, we used public image datasets
FFHQ(Flickr-Faces-HQ) and AFHQ(Animal-Faces-HQ).
FFHQ dataset consits of 70,000 high-quality PNG images at
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Figure 3. Comparison between images generated by StyleGANv3, path length regularized StyleGANv3, and distortion measure regularized
StyleGANv3 on FFHQ dataset.

Configuration AFHQ, 512x512 FFHQ, 256x256
FID ↓ PPL ↓ FID ↓ PPL ↓

A = StyleGAN3 [6] 4.68 963.8 13.90 2136.4
B = A + Path length regularization [8] 5.64 319.4 16.46 378.2

C = A + Distortion measure regularization 4.59 652.1 9.37 1010.74

Table 1. We report the best metrics measured at checkpoints with the best FID score after training with 400,000 images. FID is measured by
sampling 50k images from the trained generator. PPL stands for perceptual path length metric, which is computed from average perceptual
distance between pair of images corresponding to randomly sampled pair of latents. DM stands for relaxed distortion measure, that we
have used to generalize the regularizer that guides the mapping to become a scaled-isometry.

1024×1024 resolution and contains considerable variation
in terms of age, ethnicity and image background. AFHQ
dataset consists of 15,000 high-quality images at 512×512
resolution. The dataset includes three domains of cat, dog,
and wildlife, each providing 5000 images. After download-
ing the original datasets, we downsampled FFHQ dataset to
256x256 pixel size.

3.3. Experiment settings

To conduct our experiments, we calcuated FID and PPL
scores using three configurations. config A is a base-
line StyleGAN3 checkpoint obtained from the work of
[6]. The authors released their code and models, includ-
ing the baseline checkpoint on github. We used the baseline
trained with config stylegan3-t, which is a translation equiv-
alent configuration. For config B, we conducted a trans-
fer learning experiment with the application of path length
regularizer from StyleGAN2, using config A as basline.
Lastly, for configuration C, we conducted another trans-
fer learning experiment with the baseline config A, using
scaled-isometry regularizer. Table 1 compares results of

three configurations experimented with FFHQ256x256 and
AFHQ512x512 datasets.

For calculation of FID score and PPL score, we used
the metric fid50k and ppl2 wend implemented in the of-
ficial Pytorch implementation of StyleGAN3. The metric
fid50k [11] refers to Fréchet inception distance against the
full dataset, and ppl2 wend [8] refers to perceptual path
length in W, endpoints, full image. It is known that lower
FID and lower PPL score both improves image quality.
These two metrics differ in the fact that lower FID is rel-
atively more related to realistic textures, where lower PPL
is more related to improving semantic consistency of the
images. For each config, we trained the model for 80,000
images and calculated the metrics.

3.4. Results

While path length regularizer decreased PPL and
smoothed out the mapping in both AFHQ and FFHQ
dataset, the FID score significantly increased from the score
of pretrained model. This implies the tradeoff between
PPL and FID, sacrificing FID score in order to increase
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the smoothness of the mapping. On the other hand, us-
ing the distortion measure regularizer, PPl decreased with
a smaller step compared to the setting of path length regu-
larized training, but the decrease of FID during training was
significantly reduced.

We interpret the result as the path length regularizer was
constraining the model to learn a isometrical mapping with
a prescribed scale constant, in a hard manner, and forces
the sacrifice of FID during training. In distortion measure
training, the hard constrain is released, in a constant-free,
coordinate invaraint manner, and we release the tradeoff re-
lation between PPL and FID. In the place of PPl, one could
substitute an arbitrary distortion measure of the mapping.

In particular, the generated result from model trained
with FFHQ dataset shows an interesting property. Since
face images from the dataset is randomly cropped, baseline
model generates faces that is randomly positioned inside the
given frames. On the other hand, using the isometry regu-
larizer, the regularizer forces the generated images to have
constant distances with respect to arbitrary latent directions,
and generates faces positioned at the vicinity of the center
of the frames.

3.5. Isometry regularizer in Diffusion models

Recently, Diffusion models are performing excellent
generation quality in various domains including vision, au-
dio, natural language, and scientific applications such as
molecule docking and climate event forecasting. Hence, it
is natural to expect that one may want to extend the for-
mulation of distortion measure regularizer in the language
of diffusion models, in order to give guidance to isomet-
ric representation learning, expecting a smooth and well-
conditioned latent space of Diffusion models.

(5) gives the Poisson Flow ODE’s reverse diffusion pro-
cess [15] where trained Diffusion model, or the score model
outputs the partially denoised image when given the noisy
image as input. When isometry regularizer is applied to
every step of reverse process in diffusion model, we may
anticipate that the overall reverse process will be isometric.
Since ODE reverse diffusion process is deterministic, we
can formulate it as a function f .

f : x → x+dx = x+[f(x, t)− g2(t)

2
∇xlogpt(x)]dt (5)

Then we may calculate its Jacobian as shown in (6), or
more explicitly as in (7).

J =
df

dx′ = I +∇x′ [f(x, t)− g2(t)

2
∇xlogpt(x)]dt (6)

Jij =
dfi
dx′

j

= δij + [
∂fi(x, t)

∂xj
− g2(t)

2

∂2logpt(x)

∂xj∂xi
]dt

,where
∂2logpt(x)

∂xj∂xi
=

∂sθ(x, t)

∂xj

(7)

∂sθ(x,t)
∂xj

is a Jacobian of score function, or in another
words, Hessian of the data distribution. That is to say, we
may explicitly use the 2nd order derivative of the data dis-
tribution to apply distortion measure regularizer to Diffu-
sion model in order to force the model to learn an isometric
mapping from ith denoised manifold to i + 1 th denoised
manifold.

Diffusion models using information of higher order gra-
dients of the data distribution was shown to have advantages
through accelerating the sampling process [2]. We only give
theoretical formulation of the distortion measure regular-
izer here, and leave the investigation to Isometric Diffusion
models to future work.

4. Conclusions and future work
In this work, we applied distortion measure regularizer

to StyleGANv3 to show its effect on forcing the generative
model to learn an isometric mapping from latents to im-
ages. This isometric mapping leads to training of smooth
mapping which fills out the absent parts of generated im-
ages compared to baseline StyleGANv3 and smoother tran-
sition during latent interpolations. Isometric mapping im-
plies constant magnitude of image change in arbitrary la-
tent directions which inhibits drastic image change during
random walking in the latent space.

StyleGANv2 previously proposed Path length regular-
izer to achieve the goal of smoothing out the latent space,
which involved a prescribed constant that explicitly re-
stricted the model to learn a scaled isometry related to the
specifically prescribed scale constant. We proposed dis-
tortion measure that relax this condition and calculates the
degree of distortion in a constant-free, coordinate-invariant
sense.

Qualitative comparison between images generated from
StyleGANv3s trained with different regularizers show that
applying isometry regularizers yields a smoother mapping
from latent space, generating a smoother transition during
latent random walking. Path length regularizer decreases
PPL but due to its explicit regularizing, FID increases, as
a result of tradeoff with PPL. Our distortion measure is
constant-free, coordinate invariant and is a relaxed measure
of the smoothness of the mapping. With our relaxed regu-
larizer, PPL decreases without tradeoff with FID score.

For future work, we leave the extension of distortion
measure to Diffusion models. Because diffusion models it-

6



eratively samples the images, different formulation of dis-
tortion measure needs to be made. We give a theoreti-
cal proposal of distortion measure in Diffusion models and
leave its application to future work. Because diffusion
model showed drastics changes in latent random walking
in preceding works, we look forward to see the effect of
distortion measure regularizer to Diffusion Models.
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A. Appendix
We give more comparison of generation results from

baseline StyleGANv3, path length regularized Style-
GANv3, and distortion measure regularized StyleGANv3.
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Figure 4. Comparison between images generated by StyleGANv3, path length regularized StyleGANv3, and distortion measure regularized
StyleGANv3.
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