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Abstract

Neural Radiance Field (NeRF) model aims to synthesize
images of scenes for unseen views. Recently, multiple works
on generalizable NeRF models were proposed to relax the
heavy requirement for training the NeRF model, and allow
for few-show Novel view synthesis. Although there has been
much of thoughtful prior research carried out to fulfill this
objective, output of these models tends to become highly
blurry when the input images are low-resolution. It is easy
to verify that training a model with low-quality images leads
to more severe blurring. In this paper, we introduce Ad-
versarial SR-NeRF,a Neural Radiance Field model that can
synthesize high quality images of objects for unseen views
with only low resolution image as a reference during in-
ference. The model consists of three main parts: convolu-
tional neural networks to encode images, a super-resolution
(SR) decoder to learn representative features that map low-
resolution image features to high-resolution image features,
and a discriminator to determine whether an image is high-
resolution.

1. Introduction
Novel view synthesis is a challenging task of synthesiz-

ing images from an unseen view given input images. While
recent advancements in Neural Radiance Fields (NeRF)
have shown promising results in generating novel view im-
ages, it requires hundreds of input images to train for a
single scene, and lacks the capability to share knowledge
across multiple scenes. Furthermore, when the model is in-
quired to render novel views with higher resolution com-
pared to the observed images, the results typically suffer
from blurriness and shortage of details.

The main contribution of our work is a novel approach
that enhances the resolution of outputs from the few-shot
NeRF model, specifically PixelNeRF [18] trained with low-
resolution input by incorporating adversarial training. The

motivation behind solving this problem is to obtain high-
resolution and sharp renderings for NeRF-generated images
trained with low-resolution input, which are blurry and lack
fine details. This enhancement can greatly improve the vi-
sual quality of the rendered images with few low-quality
data available at runtime, making them more suitable for
various applications, and even generate images with higher
resolution.

Our model builds upon PixelNeRF [18], which takes a
single input image and learns a scene prior from a set of
multi-view images. PixelNeRF enables the network to per-
form novel view synthesis in a feed-forward manner from
a sparse set of views. This model encodes 3D information
using local 2D image features, making the learned repre-
sentations highly generalizable to unseen scenes after being
trained on a lot of scenes. This is a significant advance in
the field as it renders from minimal input data. Specifically,
we condition NeRF on input images by first computing a
fully convolutional image feature grid from the input im-
age. For each query spatial point x and viewing direction
d of interest in the view coordinate frame, we sample the
corresponding image feature via projection and bilinear in-
terpolation.

To extend the capabilities of PixelNeRF, we incorporate
a new component to the architecture. On top of pixelNeRF,
we train a decoder structure which takes the feature map
to generate high resolution image corresponding to the
input view. By adding this process, we expect to learn
representative features that can generate high resolution
output images. Additionally, we adapt an adversarial
training framework to enforce the distribution of the
rendered high-resolution images to resemble the real
images. We expect the proposed approach to outper-
form baseline methods trained on low-resolution images
in ShapeNet [2] dataset with greater detail and reduced blur.

Our main contributions are summarized as follows:

• We present Adversarial SR-NeRF, a Neural Radiance



Field model that can synthesize high quality images
of objects for unseen views with only low resolution
images during inference.

• Utilizing the SR-Decoder, the model is capable
of learning representative features that map low-
resolution image features to high-resolution images.

• Addition of the discriminator enables the blurry im-
ages of standard NeRF outputs to be reconstructed into
more detailed high-resolution image.

2. Related Works
2.1. Novel View Synthesis

Novel view synthesis is the problem of generating new
views of a scene or object that were not seen directly from a
given set of existing images or data. Since the vast success
of deep learning in computer vision, plethora of researches
have investigated on novel view synthesis with deep neural
networks trained to encode 3D scene representation. Meth-
ods such as Deep-SDF [13], implicit occupancy fields [7],
and Scene representation networks [15] demonstrated the
capability of neural networks to learn useful prior informa-
tion from training data to reconstruct 3D shapes for given
input. Combined with differentiable rendering [6], these
methods can render shape and appearance of the scenes.

Within these approaches, Neural Radiance Fields(NeRF)
[11] established outstanding results compared to its com-
petitors. NeRF renders detailed and photorealistic images
of novel views, by modeling the scene as continuous func-
tion that maps volume density and radiance field dependent
on position and viewing direction. However, it comes with
limitations, such as the requirement of hundreds of images
per scene with corresponding camera pose for training and
a lack of generalization across multiple scenes, unlike other
frameworks.

Researchers have been actively exploring for extensions
of NeRF with the aim of enabling it to learn shared priors
from training on multiple scenes. These variants of NeRF
is referred to as generalizable NeRF [16]. By learning 3D
priors coherent across multiple scenes, generalizable NeRF
models are also able to render target viewpoint image with
much fewer input images for a specific scene compared to
the original. CodeNeRF [4] employs auto-decoder frame-
work to learn one dimensional shape and appearance code
for a chosen category, and demonstrates novel view synthe-
sis capability. PixelNeRF [18], an advancement over these
generalizable NeRF models, uses a fully convolutional net-
work to predict the neural radiance field from one or few
images. PixelNeRF learns pixel-aligned feature map which
is passed into the NeRF network alongside positional en-
coding and viewing direction. It not only exhibits high-
quality results when the target viewpoint is close to the in-

put view but also generalizes to unseen scenes and object
categories, making it a flexible solution for various applica-
tions. While PixelNeRF achieves high-quality results when
the target viewpoint is close to the input view, its inabil-
ity to handle occlusion and reliance on local features leads
to poor performance when the target viewpoint is far from
the input. Vision-NeRF [5] demonstrates notable improve-
ment in unseen views by combining 1D features learned by
Vision Transformer(ViT) which encodes the global shape of
the scene and 2D feature maps for detailed rendering around
the input views.

2.2. NeRF Super Resolution

Vanilla NeRF often faces difficulties in effectively ren-
dering images with higher resolutions beyond those of the
input images, resulting in production of blurry views. A
recent study, NeRF-SR [17] has explored the combination
of NeRF and super-resolution techniques to address this
limitation of the original NeRF. However, the model still
lacks the ability to share knowledge across multiple train-
ing scenes which can reduce the number of required im-
ages and largely enhance the quality of rendered output. In
this research we aim to develop a framework which renders
high resolution image of novel views with single low resolu-
tion input image, by combining the cross-scene generaliza-
tion capability of PixelNeRF [18] and adversarial training
framework. By training discriminator model to correctly
distinguish between the generated images and real images
alongside the NeRF model, we expect the model to synthe-
size images which closely resemble the true high-resolution
images.

2.3. Generative Adversarial Network(GAN)

Generative adversarial networks (GANs), a type of re-
cent generative image models, have demonstrated remark-
able capabilities in producing high-resolution and visually
appealing images [1,9]. Recently, diffusion models became
the new standard for large scale generative models and con-
sidered better method than GANs in generative models [3].
However, compared to diffusion models, GANs not only
has faster inference time and more applicable with 3D ren-
dering and unsupervised learning of 3D representation from
natural images.

2.4. 3D-Aware Image Synthesis

Recent works exploit generative 3D models for 3D-
Aware Image Synthesis. Unlike 2D GANs, 3D GANs uti-
lize a combination of two key elements: a generator net-
work architecture that incorporates a 3D-structure-aware in-
ductive bias and a neural rendering engine designed to pro-
duce consistent results from different viewpoints. Holo-
GAN [12] and GRAF [14] are the few early works that
attempts to integrate NeRFs and GAN. It employs a low-



dimensional 3D feature along with a trainable 3D-to-2D
projection. However, the learned projections in HoloGAN
can result in intertwined latents, such as object identity and
viewpoint, especially when dealing with high-resolution
images. Improvements then made by GRAF [14], it ex-
cels in generating controllable images with high resolutions,
this representation is limited to single-object scenes, and its
performance declines when applied to more complex, real-
world images.

3. Methodology

In this section, we describe the network architecture
for the proposed method. The overview of the model
is presented in figure 1. The model includes two mod-
ules which are common in generalizable NeRF models
[5, 18] which are; an image encoder which extracts pixel-
aligned feature map from the source image, and the Multi-
layer perceptron(MLP) which combines the projected fea-
ture map and positional encoding and outputs the radiance
field(c,σ). On top of that, we connect two networks in
training phase to allow the NeRF model to render detailed
high-resolution output from low-resolution source images;
a Super-Resolution(SR) decoder which impose the input
feature map to retain information to render the correspond-
ing high-resolution image, and a discriminator for the ren-
dered output distribution to closely resemble the distribu-
tion of ground truth high resolution images. Details of each
modules will be explained further in the following subsec-
tions.

3.1. Model

3.1.1 Image Encoder

Given a single 32 × 32 low resolution image, ILi as input,
we start with an encoder-decoder fashioned structure to ex-
tract image features. The model to encode the image can be
either the image encoder in PixelNeRF or VisionNeRF. [5].
When utilizing PixelNerF [18] image encoder, the input im-
age is encoded by using ResNet34 backbone pretrained on
ImageNet, providing features W. On the other hand, when
using VisionNeRF, the input image is divided into N = 8
× 8 patches P, then flattening the patches, we obtain image
tokens. Additionally attaching positional embedding e, we
pass them to a transformer encoder which outputs a latent
feature f , which represents the global information of the
input image. Utilizing the convolutional decoder from Vi-
sionNeRF, we decode f into multi-level feature maps WG.
In order to create a global and local aware representation
vector W, we extract 2D CNN features, WL, that contains
local information of the image, and then fuse it with WG.

3.1.2 Volume Renderer

The volume renderer takes the value of pixel-aligned
feature map as the input to the network on top of direction
and positional encoding. Given pixel-aligned feature
map W, the target view direction dc, and the positional
encoding, γ, we output the color c and density σ using the
NeRF Multi-Layer Perceptron (MLP) as follows:

(σ, c) = MLP (γ(xc); dc;W (π(x)))

For a ray r, rendering is performed by calculating the
following integral for radiance field over points on the ray
as written below:

Ĉ(r) =

∫ tf

tn

T(t)σ(t)c(t)dt

where π(x) refers to the reprojection of the position x to
the reference image plane as explained in [18]. In imple-
mentation, the integral is replaced with summation on finite
sampled points along the ray. We train the model to min-
imize rendering loss Lre(I

H
i , ÎHt )3 which is computed by

comparing the ground truth image, IHi and the volume ren-
dered output, namely Ît.

Rendering high-resolution images directly from the
model trained with low-resolution images typically fails
to capture details required for HR images and tends to be
blurry. Therefore, we would like to train the feature map to
capture information to render such detail. To this end, we
attach two additional networks; super-resolution decoder
(SR) decoder and discriminator, to enable the model to learn
from high resolution images. These networks are employed
only during the training phase, and omitted during the in-
ference phase.

3.1.3 Super-Resolution(SR) Decoder

As mentioned in section 3.1.1, we extract features from
low-resolution images (32x32) using the image encoder.
It is important to ensure the model understands how to
map features from a low-resolution image space to high-
resolution image space. Therefore, we introduce the (Su-
per Resolution) SR-decoder, which uses three deconvolu-
tion layers to reproduce the high-resolution image of an ob-
ject from an unseen view. Letting Wi be the pixel-aligned
feature map for the reference image, and the SR-decoder,
be FΘsr

, the predicted high-resolution image is formed as
ÎHsr = FΘsr

(Wi). Then, given the high-resolution refer-
ence image, IHi as input, the SR-decoder is optimized by
minimizing the loss which is constructed as follows.

Lsr(I
H
i , ÎHsr) = ||IHi − ÎHsr||1 (1)



Figure 1. An overview of our single image-based High-resolution novel view synthesis framework. Blue shaded region(SR decoder and
Discriminator) is the part which is only used during training to enhance the quality of high-resolution output.

The SR decoder module takes feature map of the Pixel-
NeRF/VisionNeRF as input, and reconstruct the HR image
at the input view. SR decoder is trained to minimize the
difference between super-resolution result and the ground
truth high resolution image. By adding Super-Resolution
loss(2), we expect the network to learn the mapping from
low resolution to high resolution domain.

3.1.4 Discriminator

We would like to ensure that the rendered target view image
closely resemble the real image taken at the viewpoint. To
fulfill this requirement, we adopt adversarial training frame-
work. A discriminator network Dϕ takes either rendered
HR output Ît or true HR image, and classifies whether it is
real or synthesized image.

However, rendering a full image for single step training
of the discriminator is to time consuming. Thus, to reduce
the time required for training, we adopt a similar ray sam-
pling technique as GRAF [14] to generate regular grid of
pixel patches for both input to the rendering, and filter out
pixels of GT High resolution images. Unlike GRAF, our
goal is to impose output image of the renderer to achieve
quality of detail which is exhibited in the GT HR images.
Thus, we sample regular grid of small patches(8×8) so that
the sampled pixels in ground truth images retain the desired
detail. The pixel sampling strategy is displayed in figure 2.

The whole framework is trained by optimizing the com-
bined loss function which is the sum of SR reconstruction
loss(2), the photometric loss(3), and the adversarial loss(4).
Throughout the training, We expect the generator network
to synthesize a high resolution image from another view-
point that can fool the discriminator.

Specific details about losses are outlined on section 3.2.
In the inference stage, given a single image as input,

it follows the exact same PixelNeRF and VisionNeRF in-
ference process. Simply passing the learned W, target
viewpoint, dc, and the positional encoding, γ to the NeRF-
MLP, and then processing volume rendering, we obtain the
rendered high resolution image corresponding to the target
view.

3.2. Training

We assume that the high resolution image correspond-
ing to the low resolution input is available at training time.
For each image pair {ILi , IHi }, The forward pass output of
image super-resolution is compared with the ground truth
HR image. The image reconstruction loss, Lr(I

H
i , ÎHsr) pe-

nalize the difference between output of the super-resolution
and the ground truth.

Lsr(I
H
i , ÎHsr) = ||IHi − ÎHsr||1 (2)

We also demand for the rendered target view to be con-
sistent with the ground truth image at the target viewpoint.
We employ L2 norm loss for rendering loss function.

Lre(I
H
t , ÎHt ) =

∑
r∈Rays

||Ĉt(r)−Ct(r)||22 (3)

Finally, we train the convolutional discriminator Dϕ to
improve its ability to distinguish between real and rendered
image at target views. To this end, we adopt non-saturating
GAN loss with R1- regularization [10] loss.

Ld(θ, ϕ) = E [f (Dϕ (Fθ((W, Tt) , ))]

+ E
[
f (−Dϕ (Fθ((W, Tt))) + λ ∥∇Dϕ (Fθ((W, Tt))∥2

]
(4)



Figure 2. Ray sampling method utilized in the proposed work. Un-
like in GRAF [14], we sample grid of patches with fixed size(=8)
to capture the detail exhibited in GT high-resolution images

The combined loss function is formulated as the
weighted sum of the aforementioned individual loss, and
the volume rendering network, image reconstruction net-
work and discriminator network is trained in an end-to-end
fashion.

4. Experiment

4.1. Dataset and Comparison

We train and evaluate the model with the Shapenet [2]
dataset. Each of the dataset consists of images of objects
taken from multiple views and camera pose annotations.
For generating low resolution images, we process the image
by passing through a Gaussian Kernel and downsampling
by a rate of 4.

We tried to compare the method’s performance with Pix-
elNeRF [18] and VisionNeRF [5] trained with low resolu-
tion images obtained by downsampling the images in the
dataset at various ratios, 1, 2, and 4.

We planned to perform ablation studies by examining the
effect of each loss functions in the proposed framework. We
would compare the proposed method trained by optimiz-
ing combined loss function λsrLsr + λreLre + λdLd, with
the models trained without adversarial loss(Ld) and super-
resolution loss(Lsr) respectively.

4.2. Experimental Settings

We implement all experiments on top of PixelNeRF [18]
using PyTorch 1.7.1. We train pairs of low-resolution
and high-resolution images of the ShapeNet [2] SRN cars
dataset. We set the batch size to be 4 and the number of
epochs to be 400000 with a learning rate of 0.0001, which

follows the same setting as PixelNeRF [18]. The experi-
mental GPU consists of an NVIDIA A10-12Q, with 12GB
VRAM and NVIDIA V100, with 32GB VRAM.

5. Future Works
In our plan, we are missing specifics about how to ac-

celerate training and inference time for the implied NeRF
model. Since projecting ray points at each pixel of the im-
age takes plenty of time, investigating a way to speed up the
training and inference of NeRF seems to be ideal. Another
enhancement we can make later on is to use the well known
Swin Transformer [8] for image encoding rather than the
Vision Transformer. Then we expect faster inference times
because Vision Transformer requires quadratic computa-
tional effort on the input image while Swin Transformer
operates linearly, allowing for model scalability with rel-
atively less computational resources.

6. Conclusion
To address the problem of regular NeRF models provid-

ing blurry images when trained with low resolution images,
we propose, Adversarial SR-NeRF, a model that can synthe-
size high quality images of objects for unseen views with
only low resolution images during inference. The model
consists of three main parts: convolutional neural networks
to encode images, a super-resolution (SR) decoder to learn
representative features that map low-resolution image fea-
tures to high-resolution image features, and a discrimina-
tor to determine whether an image is high-resolution. The
architecture of the model is carefully designed, but unfor-
tunately, due to lack of computational equipment and time,
the results of the code could not be verified. We look for-
ward to see the performance of the high-resolution view
synthesis model to improve further once the discussed lim-
itations are resolved.
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