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Abstract

Camouflaged object detection (COD) is a challenging
sub-task in object detection field with various application
and has had significant performance improvements in re-
cent years. Many COD models utilize ideas from traditional
object detection and apply techniques that can better adapt
the model to the camouflaged objects. However, as of now,
there has not been an analysis of COD models on tradi-
tional object detection, which can pin-point to which fea-
tures of the COD models actually are specific and useful
to detecting camouflage. We show that scale factor is an
important part of extracting features from image with cam-
ouflaged object and identify characteristics of COD mod-
els that can robustly expand to general object detection
tasks. We finally propose a MASNet that couples COD-
specific feature extraction method of using multi-scaled in-
put with iterative specification module, while utilizing pyra-
midal transformer backbone. We show that our model out-
performs most of the state-of-the-art models in COD bench-
marks at many evaluation metrics, proving the effectiveness
of multi-scaled input and transformer backbone to the suc-
cess of COD models.

1. Introduction

Object detection is a widely researched area in computer
vision, with several sub-tasks. Of these sub-tasks, camou-
flaged object detection (COD) [9] targets images that con-
tain naturally or artificially camouflaged objects and aims
to correctly segment them from the background. Success
in COD tasks offer various ports of applications, such as
Polyp [10] segmentation in medicine and surface defect de-
tection [1].

As camouflage by definition makes the object hard to
distinguish from the background, developing a model that
can identify and segment camouflaged object is a challeng-
ing task. Common features of these models is to utilize
U-Net [25] like model architecture, with the encoder ex-

tracting features necessary for detecting camouflage and the
decoder utilizing these features to produce a segmentation
map. Most of the differences in these models lie in the fea-
ture extraction method. Current researches in using deep
learning for COD utilize several techniques: incorporat-
ing auxiliary tasks, such as edge detection [3] and camou-
flage ranking [19], taking inspiration from biology, mimick-
ing predators methods of hunting down camouflaged prey
[7, 9], and applying recent advances in computer vision,
such as vision transformer [14] and frequency regimes [31],
to COD.

Although camouflaged object detection task can be con-
sidered as a specific case of general object detection (GOD)
and segmentation task, there has not been a systematic anal-
ysis of COD models on GOD datasets. Such analysis can
provide two important insights to COD task in general.
First, by looking at the commonalities of COD models that
have high performance increase in COD tasks compared to
GOD tasks, we can properly assess what features of COD
models are actually important for detecting and segmenting
camouflage. In addition, by looking at COD models that
are robust when applied to GOD, i.e. performance drop is
low compared to other models, we can infer which parts of
COD models can be expanded to the more general tasks.
Using knowledge gained from such analysis, we suggest a
COD model that can maximize the use of COD-specific fea-
tures, while also being robust when applied to generalized
object detection tasks. As we show later in Sec. 2, multi-
scale features are needed to amplify COD-specific features,
while coarse-to-fine decoding strategy is useful for general-
ized object detection.

In addition, recently, Transformer [27] has become the
dominant architecture of choice in the computer vision re-
searches for feature extraction. Although most of the COD
models use ResNet [11], few COD models utilize Trans-
former backbone as their feature encoder. HitNet [13] and
FSPNet [14] both utilize transformer backbone to extract
features from camouflaged images and show very good per-
formance on COD benchmarks. These recent advances sug-
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Figure 1. (a) Examples of COD model failing at multi-class, multi-instance segmentation. (b) Examples of images passed and rejected
during screening.

Figure 2. Performance differences between COD and GOD in
SOTA COD models for 4 common COD evaluation metrics. The
performance difference is normalized by model’s performance to
account for the true increase in performance.

gest that Transformer backbone can highly benefit the per-
formance of COD models.

With the above mentioned findings, we suggest a new
COD model architecture called Multi-scale Aiming and
Specification Network (MASNet) that utilizes different
scales of images to extract rich features from transformer
backbone, with iterative specification of the target object.
Our model surpasses previous state-of-the-art COD models
under several evaluation criteria.

The main contributions of our project are summarized as
follows:

• We analyze state-of-the-art COD models on GOD
datasets and deduce commonalities of models that im-
proves the most on COD tasks compared to GOD tasks
and of models that show robust performance in GOD
tasks.

• We propose a new COD model based on amplifying
COD-specific features using multi-scale features, with
its generality improved by iterative specification of the
target object, which outperforms state-of-the-art mod-
els in this area in most of the evaluation criteria.

• We show that Transformer backbone structure helps to
improve the performance of COD model.

2. Related Works

2.1. Camouflaged Object Detection.

Camouflaged object detection was first suggested as a
sub-task to object detection by [9], providing a large-scale
dataset (COD10K) to be used as baseline for all COD mod-
els. In response to this effort, numerous reseraches have
tried to apply deep learning to detect and segment camou-
flaged objects.

Since camouflaged objects are hard to segment, some
models utilize auxiliary tasks to help detect the objects.
Rank-Net [19] utilizes a subsidiary task of camouflage ob-
ject ranking, which aims to infer the level of camouflage in
the objects. Additionally, since edge detection is key part
of differentiating camouflaged object from the background,
there are also efforts [3] to use edge detection as a auxiliary
task to COD task.

SINet [9] and SINet-V2 [7] both take inspirations from
biology, where the predator first searches for the prey in
general sense and identifies the precise location. PFNet [21]
also adopts a bio-inspired approach, where the positioning
module (P) is used to identify the position of the camou-
flaged object and focus module (F) refines the fine details
of it. In a similar manner, BSA-Net [32] mimics how hu-
mans discover camouflaged object using two-stream atten-
tion network.

Some COD models focus on the size of the objects in
the image and introduce methods so that the models can
extract features with different scales of an image. ZoomNet
[22] achieves this through mixing features extracted from
different scales. Instead, SegMaR [15] provides a model-
agnostic framework, where images are iteratively magnified
to better capture fine details of segmentation.

Recent efforts in COD aims to apply recent trends in
computer vision to COD field. FSP-Net [14] utilizes vision
transformers instead of ResNet backbone commonly used



in COD models. Frequency-based model [31] was also in-
troduced, utilizing high-frequency range of images to better
detect the boundaries of the camouflaged objects. Another
model [12] applies weak supervision to COD, as it is very
costly to produce detailed annotation of camouflaged ob-
jects.

However, despite such efforts to expand the performance
of COD models, there has not been a comprehensive study
of what features of COD models are indeed helpful for de-
tecting camouflage. Without such evaluation, performance
increase in the COD models can just be attributed to the
models utilizing better techniques for general object detec-
tion, rather than COD-specific methods. Thus, we believe
that evaluation of COD models on general object detection
is a necessary measure to identify accurately the charac-
teristics of COD models that make them succeed in COD
tasks.

2.2. Analysis of COD Models on Both COD and
GOD Datasets.

In order to design an improved model architecture for
camouflaged object detection task, we first analyze exist-
ing state-of-the-arts methods for COD task. We select 11
COD models pretrained with COD10K dataset and eval-
uate them on both COD datasets (COD10K [9], CAMO
[16], CHAMELEON [26]) and traditional object detection
datasets (Pascal-VOC [5], MS-COCO [17]). Incidentally,
there is a critical limitation on the COD datasets in that
they only contain single class per image. Therefore, mod-
els trained on the COD datasets show low performance on
multi-class images, even if the models could fully capture
the object feature information, as evidenced in Fig. 1a. For
more accurate evaluation, we select images that only con-
tain one identifiable instance or multiple identifiable in-
stances of a single class. Few examples of such screening
process are shown in Fig. 1b. As a result, we select 1075,
550 images from MS-COCO and Pascal-VOC, respectively
and evaluate the 11 COD models on the screened datasets.

Multi-Scale Feature Input. We start with the hypoth-
esis that the feature extraction method that a model should
focus on are different in COD and GOD tasks. Fig. 2 shows
the performance differences of the models on COD10K
dataset and the COCO dataset for 4 common COD evalu-
ation metrics. ZoomNet [22], MGL [30], and SegMaR [15]
show big increases in performance because they perform
much better on COD datasets than on GOD, implying that
compared to other models, their feature extraction method
is specific for COD task. The commonality of these meth-
ods is that they use methods to process different scales of
the provided image, suggesting that image scale factor is
an important feature to COD. Therefore, we design a model
that can utilize such finding by providing multi-scale feature
input to the model.

Coarse-to-Fine Iterative Decoder. Evidenced in Fig. 2,
models robust to GOD are SINet [9], SINet-v2 [7], PFNet
[21], and BSA-Net [32] that show the least performance
drop on GOD dataset compared to COD dataset. We exam-
ine that the key model architecture all these models share is
a module that explores low-level features again at the last
phase and combines those features with the prediction map,
basing their architecture on bio-inspired process. In detail,
SINet and SINet-V2 both consist of search and identifica-
tion module, and PFnet consists of positioning module and
focus module. Both search and positioning module create
coarse map with features extracted from backbone. Then,
both identification and focus module combine the coarse
map which contains high-level features with low-level fea-
tures from backbone in order to create final fine-grained
output map. BSA-net also is a coarse-to-fine model that ini-
tially creates coarse maps from attention blocks then refine
maps with output of boundary guider module which extracts
boundary information from low-level features. Most COD
models’ high-level features mainly contain COD-specific
features while low-level features still contain general infor-
mation feature. Therefore, combining low-level feature at
the end would recover general image information, improv-
ing generality of model on different type of dataset. With
this finding, we employ a coarse-to-fine iterative decoder to
our model.

2.3. Transformer Backbone.

Recently, Transformer [27] is widely used in computer
vison researches, due to its ability to extract useful features
from images and videos. ViT [4] divides the images into
patches, which are fed into the Transformer as tokens. In
recent years, Pyramid Vision Transformer [28] was intro-
duced, which improves usage of Transformers in images by
provding a pyramid-style encoding structure that has versa-
tility to be applied to many different computer vision tasks,
such as object detction and segmentation.

Few studies in COD utilize Transformer backbone as
their feature extractor. FSPNet [14] utilize vanilla ViT [4]
as the backbone encoder for their model and show improved
performance over previous COD models. HitNet [13] Pyra-
mid Vision Transformer [28] to extract features for COD,
also showing improved perforamance over previous mod-
els. These researches show that although the trend in COD
was to use ResNet [11] models for feature extraction, utliz-
ing Transformers can outperform models based on ResNet.

3. Methods
3.1. COD Problem Formulation

We simply formulate COD problem as follows: given
an input of image containing a camouflaged object, Ic ∈
RH×W×3, we want to produce an output segmentation map,



Figure 3. Overall Architecture of MASNet.

(a) (b)

Figure 4. Detailed archiecture of (a) SIU and (b) HMU [22].

Oc ∈ {0, 1}H×W that assigns value 1 for all pixels that
belong to the camouflaged object and 0 for all other pixels.

3.2. Overall Architecture

Fig. 3 illustrates the overall architecture of MASNet,
consisting of 3 main components: Multi-Scale Feature En-
coder, Target Aiming Layer, and Iterative Specification
Module. Initially, an input image is transformed into var-
ious scales and fed into the Feature Encoder in order to
extract feature information at different scales. Encoder
converts the input image pyramid using the PVTv2 trans-
former [28] into four feature maps and then matches the
channel size of them into a 64-channel via a channel match-
ing layer. Feature maps from the multi-scale inputs corre-
sponding to the same feature level are combined using Scale
Integration Unit (SIU) [22] of the Multi-scale Fusion Layer.
The fused features are initially decoded using Hierarchical

Mixed-scale Unit (HMU) [22], that constructs a coarse map
at the end of the Target Aiming layer. Finally, the final pre-
diction map is derived from the Iterative Specification Mod-
ule which sequentially decode feature maps and a coarse
map from the lower level to the higher level. The Iterative
Specification Module produces and uses the guidance map
on its own in every iterative step, while the coarse map from
the Target Aiming layer is adopted for the guidance map in
the first step. As a result, we obtain fine-grained segmen-
tation maps by overcoming the situation where objects are
vaguely hidden in their backgrounds.

3.3. Multi-scale Feature Extraction

As we mention in Sec. 2, extracting features from var-
ious scales of input images leads to performance increase
specific to COD. Based on this finding, we use a strategy
to process input images in multi-scales in the feature ex-



traction process. We generate an image pyramid consist-
ing of re-scaled images (0.5×, 1.0×, 1.5×) from the orig-
inal input image using bilinear interpolation. Multi-scale
input allows our model to find inconspicuous boundaries of
camouflaged objects by utilizing information from detailed
local context to global regional features. The feature ex-
traction method of MASNet takes references from the ideas
presented in [22].

Multi-scale Feature Encoder. We extract deep features
for multi-scale input by using PVTv2 [28] as backbone
which is pretrained on ImageNet-1K. We can extract four
intermediate features from PVTv2 backbone, which form a
feature pyramid similar to that extracted from CNN, making
it easy to apply them in U-Net [25] like architectures. We
use PVTv2-B2 which has 25.4M parameters comparable to
ResNet50 [11] with 25.6M parameters. Channel matching
modules adjust the channel size of each intermediate fea-
ture to the same size. Each channel matching layer is com-
posed by five Conv-BN-ReLU layers which is inspired from
ASPP [2] and modified for our architecture. Kernel sizes of
channel matching modules are [1,3,3,3,1], dilation rates are
[1,2,5,7,1], and each channel size is set to 64.

Multi-scale Fusion Layer. Since we use multi-scale im-
ages (0.5×, 1.0×, 1.5×) as input, the Multi-scale Feature En-
coder also generates three differently scaled feature maps
(f 0.5i , f 1.0i , f 1.5i ). The Multi-scale Fusion Layer uses the
Scale Integration Unit(SIU) proposed in [22] to integrate
the three feature maps into one unified feature map at each
level, as shown in Fig. 4a. First, f 0.5i and f 1.5i are resized
into the resolution of f 1.0i at each level. f 0.5i is scaled up via
bilinear interpolation. And f 1.5i is down-sampled via hybrid
pooling structure which consists of max pooling and aver-
age pooling layers. Conv-BN-ReLU layers are applied be-
fore and after resizing. The equally sized feature maps are
then integrated with weights derived from Attention Gen-
erator. The Attention Generator receives the equally sized
three feature maps consisting of respective 64-channels and
derives attention maps corresponding to each size via series
convolutional operation and softmax. These attention maps
are used as weights in the integration task, so that feature
maps are integrated into one while preserving crucial infor-
mation from scales. We define SIU’s operation as follows:

Ai = softmax(Ψ([U(f0.5
i ), f1.0

i , D(f1.5
i )], ϕ)) (1)

pi = A0.5
i · U(f0.5

i ) +A1.0
i · f1.0

i +A1.5
i · U(f1.5

i ) (2)

The Attention Maps are constructed via Eq. (1), where
Ψ(∗, ϕ) is the Attention Generator with Conv-BN-ReLU
layer. Using these attention maps as weights, the integrated
feature maps are obtained through Eq. (2) at each scale.
Through this approach, it is possible to obtain COD spe-
cific feature maps, encapsulating distinctive information for
each scale, which can be utilized in the decoding process.

3.4. Target Aiming Layer

The Target Aiming Layer is used to create the first coarse
map of the Iterative Specification Module discussed in
Sec. 3.5. The framework takes inspiration from the method-
ology of the decoder module of [22]. The Target Aiming
Layer takes hierarchical feature maps as input and itera-
tively generates hidden decoded feature, ultimately achiev-
ing the same resolution with f1.0

2 . At each hierarchical it-
erative step, we utilize the Hierarchical Mixed-scale Unit
(HMU) [22] to generate the coarse maps. HMUi at i-th fea-
ture level takes the input p̂i composed as formulated as be-
low Eq. (3). However, in for HMU4, only the output p4

from SIU4 is utilized as the input.

p̂i = pi + Upsample(p̃i+1) (i = 2, 3)

p̂4 = p4
(3)

where p̃i+1 is the result of HMUi+1, and Upsample() is a
function that performs a two-fold bilinear interpolation up-
sampling.

Hierarchical Mixed-scale Unit. In the HMU, the infor-
mation held by each channel is explored individually, and
through channel-wise modulation, a coarse map is gener-
ated. An architecture of unit is illustrated in Fig. 4b. First,
Input feature p̂i undergoes 1×1 Conv-BN-ReLU layer and
then is divided into G groups {pj}Gj=1 along the channels.
Then, each group of features are further divided into three
separate feature maps {p′kj }3k=1. However, before each
group is divided, pj is combined with the first feature map
p’1j−1 split from the preceding group. To address the prob-
lem of some groups lacking a previous group, we resolve
it by performing the division without concatenation as an
exception. The second feature maps of all groups {p′2j}Gj=1

are concatenated and passed through a convolutional layer,
as depicted in the Fig. 4b, to create the feature modulation
vector(α). This group-specific feature modulation vector
is utilized as weights to linearly integrate the third feature
maps {p′3j}Gj=1. Following the application of normalization
and an activation function, the p̂i is added to result in the
final step. It can be summarized as follows:

p̃i = A(p̂i + CN (α · [{p′3j}Gj=1])) (4)

where A(), CN () denote the activation layer, Conv + Nor-
malization layer, respectively.

In the final step, a sigmoid function is applied to the
obtained p̂2 from the HMU2 results to derive the Coarse
map with 1/8 resolution of the original input image. Con-
sequently, this coarse map effectively encompasses both the
scale-wise and channel-wise information, and it is utilized
in the first iteration of the Iterative Specification Module.



Figure 5. Details on (a) GRA Block and (b) Reverse Guidance [7]

3.5. Iterative Specification Module

As our coarse map (C5) only captures rough spatial in-
formation of target object, Iterative Specification Module
further explores the details of image features and specify
the target object in an iterative manner. As depicted in
Fig. 3, Iterative Specification Module consists of 4 itera-
tive stages and each stage includes 4 GRA blocks which is
proposed in [7] for multi-stage refinement process. More
details about the GRA blocks and iterative stages will be
addressed below.

Group-Reversal Attention (GRA). GRA block is a
residual learning process utilizing reverse guidance and
group guidance operation. Reverse guidance, shown in
Fig. 5 (b) is a strategy to figure out discriminative concealed
regions by erasing objects via sigmoid and reverse opera-
tion. [10]. The obtained output reverse attention guidance
prior (rk1) can be formulated as:

rk1 =

{
⊖[σ(δ4↓(Ck+1)),E], k = 4,

⊖[σ(δ2↑(Ck+1)),E], k ∈ {1, 2, 3}, (5)

where δ4↓ and δ2↑ denote a x4 down-sampling and x2 up-
sampling operation and σ is the sigmoid function. ⊖ is a
reverse operation subtracting the input from matrix E, in
which all the elements are 1.

Group Guidance Operation (GGO) is a group-wise oper-
ation to utilize the reverse guidance prior (rk1) more effec-
tively. [7] It consists of 2 steps: splitting candidate features
(pki ) into multiple (mi = C/gi) groups along the channel-
wise dimension, and periodically interpolating the guidance

prior (rk1) among the split features (pki,j). (Eq. (6))

Step I:
{
pki,1, ..., p

k
i,j , ..., p

k
i,mi

}
← FS(pki )

Step II: qki+1 ← FC(
{
pki,1, r

k
1

}
, ...,

{
pki,j , r

k
1

}
, ...,

{
pki,mi

, rk1
}
),

(6)
where i ∈ {1, 2, 3, 4}, j ∈ {1, ...,mi}, k ∈ {1, 2, 3, 4}, and
gi ∈ {64, 8, 4, 2},FS ,FC denotes the group size, channel-
wise split function, and concatenation function. Thus,
the GGO operation can be expressed as FGGO : pki ∈
RH/2k×W/2k → qki+1 ∈ RH/2k×W/2k×(C+mi).

In each GRA block (Gk
i , i ∈ {1, 2, 3, 4}, k∈ {1, 2, 3, 4}),

candidate features (pki and rk1) are combined by GGO oper-
ation and residual connections are added to produce refined
features (pki+1 and rki+1) for the next GRA block. The for-
mulas are as follow.

pki+1 = pki + g[FGGO[pki , r
k
1 ;mi];Wv

GRA],

rki+1 = rk1 + g[pki+1;Ww
GRA],

(7)

where W v
GRA denotes the convolutional layer with a 3 × 3

kernel for reducing the channel number from C +mi to C
and Ww

GRA is also a 3 × 3 convolutional layer reducing the
channel number to 1.

Iterative Specification Stages.
As shown in Fig. 3, in the first stage (k=1), coarse map

(C5) and feature extracted from SIU4 are fed into the first
GRA block. For stages k ∈ {2, 3, 4}, upsampled output of
previous stage (Ck−1) and feature extracted from SIU5−k

are fed into the first GRA block Gk
1 , sequentially improving

guidance for the next stage. The output of each stage is
obtained with residual prediction, formulated as:

Ck = rki+1 + δ(Ck+1), (8)

where δ(·) is δ4↓ when k=4 and δ2↑ when k= {1, 2, 3}. The
output of the last stage (C1) is utilized as the final prediction
map after applying x4 up-sampling.

3.6. Loss Function

As we iteratively refine our segmentation map through
the iterative specificaiton module, we apply supervision to
each of the output maps and on the coarse map generated
from target aiming layer, totaling to 5 different positions
of supervision. In each case, the output map is first up-
scaled to ground truth size, then we utilize two loss func-
tions commonly used in object detection tasks to train our
model. Binary cross entropy (BCE), defined in [24] is ap-
plied to each pixel, accounting for pixel-level supervision to
the output map. Intersection-over-union (IOU) loss, defined
in [29], accounts for the overall overlap of the output map
to the ground truth map. In both cases, each pixel is given
a weight value, with higher weight given to pixels that are
harder to detect. The loss at each supervision is given by



Method COD10K CAMO CHAMELEON
Sα ↑ Fw

β ↑ Eϕ ↑ M ↓ Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ Sα ↑ Fw

β ↑ Eϕ ↑ M ↓

HitNet [13] 0.869 0.804 0.937 0.023 0.843 0.805 0.907 0.056 0.921 0.905 0.974 0.018
FSPNet [14] 0.851 0.736 0.903 0.026 0.860 0.808 0.916 0.051 0.907 0.850 0.943 0.022

ZoomNet [22] 0.838 0.729 0.893 0.029 0.820 0.752 0.883 0.066 0.902 0.845 0.952 0.023
BGNet [3] 0.831 0.722 0.903 0.033 0.812 0.749 0.877 0.073 0.901 0.850 0.939 0.028

OCENet [18] 0.827 0.707 0.884 0.032 0.801 0.723 0.865 0.080 0.897 0.833 0.936 0.026
BSA-Net [32] 0.818 0.699 0.894 0.034 0.794 0.717 0.866 0.079 0.895 0.841 0.946 0.027
SINet-V2 [7] 0.815 0.680 0.864 0.037 0.820 0.743 0.885 0.070 0.888 0.816 0.929 0.030

MGL [30] 0.811 0.654 0.850 0.037 0.772 0.664 0.849 0.089 0.892 0.802 0.921 0.032
PFNet [21] 0.800 0.660 0.868 0.040 0.782 0.696 0.855 0.085 0.882 0.810 0.942 0.033
SINet [9] 0.776 0.631 0.867 0.043 0.745 0.644 0.825 0.092 0.872 0.806 0.938 0.034

SegMaR [15] 0.753 0.568 0.828 0.060 0.726 0.590 0.831 0.116 0.791 0.658 0.887 0.076
Ours(MASNet) 0.880 0.794 0.922 0.022 0.872 0.824 0.919 0.048 0.922 0.873 0.944 0.023

Table 1. Comparisons of different methods on Camouflaged Object Detection datasets. The best three results are highlighted in red, green,
and blue, respectively.

Eq. (9) and by combining the loss values, we define the to-
tal loss function as in Eq. (10).

L = LwBCE + LwIOU (9)

Ltotal =

5∑
i=1

L(Ci, G) (10)

4. Experiments
4.1. Experiment Setup

Datasets. We selected three widely-used COD datasets:
COD10K [9], CAMO [16], CAMELEON [26] and two tra-
ditional object detection datasets: MS-COCO [17], Pascal-
VOC [5]. CAMO consists of 1,250 camouflaged and
1,250 non-camouflaged images. CHAMELEON contains
76 hand-annotated images. COD10K includes 5,066 cam-
ouflaged, 3,000 background and 1,934 non-camouflaged
images. We train the model using only camouflaged im-
ages from COD10K and CAMO datasets and evaluate the
model on CHAMELEON and test splits of COD10K and
CAMO.

Evaluation Criteria. For two types of datasets, we both
applied 4 common COD evaluation metrics: S-measure
(Sα) [6], weighted F-measure (Fw

β ) [20], E-measure (Eϕ)
[8], and mean absolute error (M ) [23]. S-measure quantifies
the structural similarity between the model output and the
ground truth, which is important in COD tasks, which usu-
ally contain complex shapes of objects. Weighted f-measure
is a modified version of F-measure that provide more reli-
able evaluation. E-measure quantifies the pixel-level match-
ing and image-level statistics between the predicted output
and the ground truth. Mean absolute error directly quanti-
fies the error in each pixel value averaged over the whole
image.

Implementation Details. The framework of MASNet is
implemented using PyTorch. A pre-trained PVTv2 [28] on
ImageNet-1K is utilized in feature extraction. During the
model training, a learning rate is set to 0.05 and a scheduler
linearly increases the learning rate for the first half of train-
ing to the set value and decreases it for the other half. WE
use SGD optimizer with 0.9 momentum and 0.0005 weight
decay. A batch size of 16 is chosen, and the training is
performed on 100 epochs. Our model was trained in a de-
velopment environment using 4 NVIDIA TITAN V, and the
training took approximately 6 hours in total.

4.2. Comparison to COD Benchmarks

Quantitative Comparison. The quantitative compari-
son results are shown in Tab. 1. Our method surpassed
all the other existing methods on CAMO dataset on all 4
evaluation metrics. On the other 2 datasets: COD10K and
CHAMELEON, our method was in the top-3 performance
in all metrics except E-measure (Eϕ) on CHAMELEON.
These results demonstrate that proposed model has effec-
tively extracted and captured the camouflaged features. Es-
pecially, our method showed large advantages on S-measure
(Sα) taking the first place in every dataset, which indicates
that proposed method is effective in capturing structural in-
formation.

Qualitative Comparison. The qualitative comparison
results are shown in Fig. 6, comparing our MASNet and
other recent models including SINet [9], SINetV2 [7],
ZoomNet [22], and HitNet [13] on COD10K dataset. Our
model tends to capture well both overall structure, while
also preserving the fine details, such as slim leg parts, com-
pared to other models.



Figure 6. Visual comparisons of some recent COD methods and ours on different types of samples. Please zoom in for more details.

Table 2. Ablation study on different components of MASNet.
Each row denotes changes from the full model. Performances on
COD10k test dataset is shown.

Methods Sα ↑ Fw
β ↑ Eϕ ↑ M ↓

MASNet 0.880 0.794 0.930 0.022
→ 3 specification iterations 0.879 0.793 0.928 0.022
→ 3 stage GRA 0.877 0.788 0.926 0.023
→L = LwBCE (no LwIOU ) 0.871 0.747 0.900 0.026
→ Original Input Scale 0.853 0.744 0.897 0.028
→ ResNet Backbone 0.833 0.713 0.884 0.033

4.3. Ablation Studies

Effectiveness of Transformer backbone. As shown in
Tab. 2 replacing the Tranformer PVT v2 [28] with ResNet
[11] significantly reduces the performance of the model on
all four evaluation metrics. Since PVTv2-B2 has compa-
rable parameter size with ResNet50, we can conclude that
Transformer architecture itself is useful in extracting useful
features for COD.

Effectiveness of Multi-scale Input. To test our hypoth-
esis that multi-scaled input is essential for success camou-
flaged object detection, we feed the model with three paral-
lelized original scale (1.0) inputs. The model performance
drops on all metrics, showing that multi-scale input is nec-
essary to the model success.

Effectiveness of IoU Loss. As described in Sec. 3.6 IOU
loss is responsible for overall overlap between the output

map and the ground truth. By removing this loss compo-
nent, we see that the overall performance decreases, but es-
pecially weighted F-measure

Effectiveness of GRA Module. In our model, we apply
4 stages of GRAs with 4 iterations to provide guidance from
the generated coarse maps. Reducing the stages to just 3 or
iterations to 3 both results in slight performance drop.

5. Conclusion

Analyzing performance of COD models on general ob-
ject detection tasks reveals important characteristics of
COD models. Scale-factor is an important part of model
feature that improves the model’s ability to specify on cam-
ouflaged objects, while recombination of low-level features
using coarse-to-fine model helps to generalize the model
to general object detection. Our model, MASNet, incor-
porates these findings into a single model, with powerful
Transformer backbone as our feature encoder, showing out-
standing performance in all COD benchmarks.

With these improvements, we believe that further ampli-
fying multi-scale features using Transformer architecture,
such as through cross-attention between different scales,
may be an interesting following work. In addition, minor
issues with our model, such as loss of information in the
upscaling of the coarse maps and the feature level at which
the coarse map is generated from, should be analyzed for
further improvement.
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