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Abstract

Deep learning has achieved remarkable success in su-
pervised learning-based models, but the reliance on large
amounts of labeled data poses challenges in real-world
scenarios where new data keeps arriving. Continual and
incremental learning methods aim to address these chal-
lenges. However, the issue of catastrophic forgetting, where
a model forgets previously learned information, remains a
significant hurdle. In this paper, we explore the use of pre-
trained models as feature extractors to address the chal-
lenge of catastrophic forgetting in Class Incremental Learn-
ing (CIL). We evaluate the performance of pre-trained mod-
els on CIL tasks and compare them with state-of-the-art
methods, demonstrating their ability to reduce forgetting.
Additionally, we propose a novel method based on orthogo-
nal projection to represent a good feature space for classifi-
cation tasks while maintaining performance. We highlight
the potential of pre-trained models for class incremental
learning tasks and the negative impacts of full fine-tuning.

1. Introduction
Deep learning has revolutionized various domains,

achieving remarkable success in supervised learning-based
models. However, reliable generalization performance re-
quires access to large amounts of labeled data, posing sig-
nificant challenges in real-world scenarios where new data
keeps arriving, and reusing previously labeled data is often
not feasible due to various reasons such as cost, time, or pri-
vacy concerns. For instance, in image classification tasks for
products in a warehouse, the model must classify both new
and existing products accurately, which requires the ability
to learn continuously without forgetting previously learned
knowledge.

To overcome these challenges, continual and incremen-
tal learning has garnered significant attention, but exist-
ing methods still struggle to preserve previously acquired
knowledge over many cycles of short incremental learning
steps. This phenomenon where a model forgets its previ-
ously learned information upon learning new tasks is known

as catastrophic forgetting [20]. In this paper, we focus on
Class Incremental Learning(CIL) [23, 2, 11, 12, 27, 21],
where the classifier must learn classes by steps, in training
cycles called tasks[8].

Previous studies on CIL generally assume that deep
learning networks are trained from random initialization,
which may not always be the case. Therefore, we investi-
gate the effectiveness of employing large pre-trained mod-
els such as ResNet [10] and CLIP [22], which demonstrate
exceptional performance as feature extractors across multi-
ple domains, in the context of CIL. Specifically, we examine
whether leveraging a proficient pre-trained feature extractor
can overcome catastrophic forgetting.

While pre-trained weights provide a solid foundation as
a good starting point, they do not guarantee optimal perfor-
mance in the final model. Fine-tuning, although a valuable
technique supported by studies [15, 5, 31], requires care-
ful application, as finding the optimal balance can be chal-
lenging. In fact, some studies [17, 4] indicate that exces-
sive fine-tuning in downstream tasks can lead to overfitting
and hinder generalization. It is also important to note that
fine-tuning incurs higher computational costs compared to
pre-trained initialization.

Consequently, we challenge the effectiveness of fine-
tuning and propose that zero fine-tuning may yield supe-
rior outcomes when utilizing a suitable pre-trained feature
extractor. In essence, we determine whether a pre-trained
feature extractor can outperform previous CIL benchmarks
without undergoing any learning on the new dataset.

Furthermore, we present a novel method specifically tai-
lored for CIL, which utilizes pre-trained models as feature
extractors without engaging in the traditional fine-tuning
method. Inspired by the concepts of PROJECT and PROBE
(Pro2) [4], our method proposes to learn a linear projection
that not only maps pre-trained embeddings onto orthogo-
nal directions but also maintains the predictability of labels.
This projection effectively filters out unnecessary informa-
tion while emphasizing the relevant features essential for
accurate label prediction. By adopting this approach, we
aim to enhance model performance through the refinement
of pre-trained embeddings.
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In our experiments, we evaluate the performance of pre-
trained models compared to random initialization on the
CIFAR100 dataset. Additionally, we conduct a compara-
tive analysis of pre-trained models with and without fine-
tuning to assess the efficacy of fine-tuning in the context of
CIL. Lastly, we investigate the promising performance of
our proposed method, which involves projecting pre-trained
embeddings onto a lower-dimensional space while enforc-
ing orthogonality.

Our results demonstrate that pre-trained models can be
more effective than training from random initialization in
CIL tasks, which has practical implications. We observe that
good feature extractors can achieve superior accuracy and
alleviate the catastrophic forgetting phenomenon, outper-
forming complex and resource-intensive methods. More-
over, our investigation reveals that fine-tuning pre-trained
models may diminish the capabilities of the feature extrac-
tor. Conversely, our alternative approach, which fully uti-
lizes the zero fine-tuned feature extractor, exhibits promis-
ing performance in mitigating the catastrophic forgetting
phenomenon.

We summarize our motivation and main contributions as
follows:

Motivation

• Why not use pre-trained feature extractor for CIL
tasks? (Section 4)

• How can we utilize the pre-trained features better for
CIL tasks? (Section 5)

Contributions

• We demonstrate the impacts of the feature extractor in
CIL tasks by applying pre-trained weights.

• We investigate the potential negative effects of full
fine-tuning on pre-trained feature extractors in CIL
tasks.

• We propose a novel method using pre-trained weights
for CIL tasks which effectively represents the feature
space through orthogonal projection.

2. Related Works

The learning process of Class Incremental Learning
(CIL) can be divided into two stages: an initial stage where
the network is trained with the first given classes and an in-
cremental stage where additional classes are learned. Dur-
ing the incremental stage, it is assumed that access to the
entire dataset used in the previous stage is not possible [23].
The main objective of CIL is to address the issue of catas-
trophic forgetting that arises in such situations. To prevent
forgetting, current CIL research employs three main ap-
proaches.

2.1. Data-Centric Approaches

Storing some of the previously learned data, referred to
as exemplars [23, 27, 2], is considered to prevent catas-
trophic forgetting. Research has been conducted on how
to utilize these exemplars to mitigate forgetting. Another
approach involves training a separate network to learn the
distribution of the data used in the previous training and
generating exemplar images from it [25, 9]. In addition to
using stored data for replay, the GEM [19] method sets con-
straint optimization based on stored data to facilitate net-
work learning.

2.2. Model-Centric Approaches

The Model-Centric CIL method is an approach that fo-
cuses on the model used in the learning process. This in-
volves adding to the structure of the model as the learning
progresses. When there is not enough space to learn new
classes, one approach is to add neurons [29], while another
approach involves retraining the backbone network itself
[28]. The Model-Centric approach is characterized by an
increase in storage space for model-related information as
the learning progresses. However, the information related to
the model that increases with learning is not only used for
model expansion. An alternative approach is to store previ-
ously learned model parameters and use them as regulariz-
ers when conducting incremental learning steps [14, 30, 3].

2.3. Algorithm-Centric Approaches

The Algorithm-Centric CIL method focuses on design-
ing algorithms for class incremental learning. The Knowl-
edge Distillation method aims to prevent forgetting by reg-
ularizing the output of the current training network with
that of a previously trained network [18, 23, 8]. Another
approach involves assuming an Oracle model that has all
the information for every class and enforcing its character-
istics on the class incremental learning step. This method
aims to allow even a subset of data to follow the character-
istics of the Oracle model by not deviating too much from
its features, such as features, logit, and weight [12, 32, 1].

We focus on feature extractors, in contrast to the afore-
mentioned CIL approaches (Section 2.1 - 2.3). We expect
better performance when starting the learning process from
a good initialization point, and therefore, we intend to in-
vestigate the significance of using pre-trained weights such
as ResNet [10] and CLIP [22]. Furthermore, we highlight
the limitations of traditional fine-tuning processes which
deteriorate the effectiveness of the proficient feature extrac-
tor. Consequently, we propose a novel method inspired by
Pro2[4] that learns to effectively refine the pre-trained em-
beddings for CIL task in Section 5.1.
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2.4. Fine-tuning and Linear Probing

When applying a pre-trained model to a downstream
task, two commonly used methods are full fine-tuning,
which involves updating all the model parameters, and lin-
ear probing, which only updates the last linear layer known
as the head. While it is widely acknowledged that fine-
tuning generally improves accuracy within the distribution
(ID), Kumar et al. [17] theoretically demonstrate that fine-
tuning can distort the pre-trained features. The results in
this paper reveal that fine-tuning can actually lead to lower
accuracy compared to linear probing when the pre-trained
features are of high quality and when there is a significant
distribution shift out-of-distribution (OOD). These find-
ings support our approach of leveraging frozen pre-trained
weights, as fine-tuning can exacerbate detrimental forget-
ting in the CIL tasks when dealing with the label shifts
(class increments).

PROJECT and PROBE (Pro2) [4] is one of the transfer
learning frameworks that adapts a pre-trained model to dis-
tribution shifts. Its primary objective is to effectively learn
from limited data and adapt a pre-trained model to a tar-
get distribution by leveraging feature interpolation with lin-
ear probing. In other words, Pro2 enables the model to ef-
fectively handle distribution shifts. Specifically, when faced
with few-shot labeled target data, it enhances robustness and
generalization performance by mitigating the influence of
spurious correlations. In this context, the distribution shift
means covariate shifts. From the perspective of Class Incre-
mental Learning (CIL), we can consider the exemplar set,
which contains few images of complete class label infor-
mation, as our target distribution. Therefore, we adopt the
Pro2 approach to tackle this challenge.

2.5. Contrastive Language-Image Pre-training

CLIP (Contrastive Language-Image Pre-training) [26],
a widely recognized pre-trained network in the field of vi-
sion and language research, operates within the domain of
learning visual representations using natural language guid-
ance [6, 24, 13]. CLIP adopts a shallow-interaction de-
sign, where an independent visual encoder and a text en-
coder encode input images and text, respectively. The sim-
ilarity score between the image and text is determined by
taking the dot product of the outputs from both encoders.
Pre-training CLIP utilizes contrastive loss, where the model
learns to differentiate between aligned pairs and randomly
sampled pairs. Notably, CLIP benefits from an extensive
source of supervision comprising 400 million image-text
pairs sourced from the internet, eliminating the need for hu-
man annotation. As a result, CLIP attains state-of-the-art
performance in various image classification and image-text
retrieval tasks, even in a zero-shot setting.

Currently, there are limited instances of utilizing CLIP
in CIL tasks. Prior study [26] has demonstrated perfor-

mance enhancements in zero-shot settings by leveraging
both text encoders and image encoders. However, our ap-
proach solely focuses on utilizing image encoders and does
not incorporate contrastive learning techniques. Moreover,
the performance of previous work does not surpass that of
the naive method that we experiment with, thus limiting the
extent of our discussion on this aspect.

3. Preliminaries
Problem Formulation We now elaborate on Class In-
cremental Learning (CIL) setting, which aims to learn
from a dynamic stream with incoming new classes.
Our framework assumes a sequence of B training tasks{
D1,D2, · · · ,DB

}
with no overlapping classes. Each task,

Db =
{(

xb
i , y

b
i

)}nb

i=1
, represents the b-th incremental step

with nb training instances. xb
i ∈ X denotes an instance be-

longing to class ybi ∈ Y b, where Y b represents the label
space for task Db. Importantly, there are no shared classes
between different tasks.

The ultimate goal of CIL is to continuously learn a classi-
fication model that encompasses all classes Y =

⋃B
b=1 Y

b.
The model must effectively learn from the current task Db

while retaining the knowledge acquired from previous tasks{
D1,D2, · · · ,Di

}
, where i = b − 1. By accomplishing

this, the model adapts to the evolving nature of the stream
while maintaining proficiency in classifying all previously
encountered and newly introduced classes.

Datasets and Evaluation protocol We evaluate the
model performance on a popular image classification
dataset: CIFAR100 [16]. To validate our model and com-
pare it with baseline approaches, we adopt the experimen-
tal protocol proposed by Hou et al. [12]. Specifically, we
first train our model on 50% of the available classes in each
dataset. Then, we perform incremental learning by dividing
the remaining 50% of classes into equal portions and adding
one portion at a time to train the model. At each step, we
only train the model on the newly added classes.

We conduct a series of experiments to assess the model
performance under different incremental learning scenarios.
Specifically, we train our model using 5, 10, 25, and 50 in-
cremental learning steps, with different numbers of classes
added at each step. In the case of CIFAR100, we add 10,
5, 2, and 1 classes for each incremental step, respectively,
across all four settings (i.e. iCIFAR100). In Table 1 and 3,
we indicate the number of new classes (1, 2, 5, 10) added
per incremental step below each step (50, 25, 10, 5 steps).
This setting enables us to evaluate the model’s performance
under varying degrees of incremental learning complexities.

Metrics We adopt the global metric proposed by Rebuffi
et al. [23], the average incremental accuracy, to ensure a
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fair comparison with the baseline approaches. At the end
of each incremental training step, we compute the model’s
accuracy on the test dataset, considering all the classes that
have been trained previously. This metric considers the en-
tire history of the run, including the first task, by averaging
the accuracy computed at the end of each task Db:

Avg. Incremental Accuracy(DB) =
1

B

B∑
i=1

acc(D1:i)

4. Effects of feature extractors
We first show the superiority of utilizing a pre-trained

network over complex methods with random initialization.
Moreover, we illustrate in a straightforward manner that
even when using a pre-trained model, zero fine-tuning may
be more advantageous than conducting a full fine-tuning
process.

4.1. Feature Extractor Replacement

In feature extractor replacement, we do not change the
CIL method of the baselines but only substitute the feature
extractor layers with pre-trained weights, such as CLIP[26]
or ResNet [10]. Within the realm of CIL tasks, PODNet [8]
stands out as one of the state-of-the-art methods, surpass-
ing the performance of BiC and iCaRL [23]. By employ-
ing pre-trained weights from ImageNet instead of random
initialization, we can attain superior performance using the
same training method. This highlights the effectiveness of
the feature extractor replacement technique, demonstrating
the advantages of using pre-trained weights as a favorable
starting point for CIL.

4.2. Naive method with Zero fine-tuning

To demonstrate the effectiveness of pre-trained weights
in CIL task without the need for additional learning (zero
fine-tuning), we propose a simple approach known as the
naive method. In the naive method, our first step is to es-
tablish class prototypes, denoted as µ, by calculating the
average feature vectors of randomly selected exemplars for
each class (lines 3-5 in Algorithm 1). These feature vec-
tors are extracted from the training samples using a pre-
trained image encoder, such as ResNet or CLIP. In practical
implementation, we typically choose a value of k equal to
20, aligning with the common approach used by most CIL
methodologies that employ exemplars.

During the testing phase, we compute feature vectors
for the test samples and utilize the prototypes to calculate
Nearest Neighbor Scores for each class. Our predictions are
made based on the class with the highest score (line 9 in
Algorithm 1). Importantly, this process strictly prohibits ac-
cess to the test samples during the training phase, and no
fine-tuning is performed.

Algorithm 1 Naive method with Zero fine-tuning
// Training Phase

Require: train set {xi, yi}Ki=1, number of exemplars k, pre-
trained network f : X → Rd

1: Φ← ∅
2: for b← 1toB do
3: for yb in Y b do
4: X ← image set {x1, · · · , xk} of class yb

5: µyb ← 1
nb

∑
x∈X f(x)

6: end for
7: Φ← Φ ∪

{
µyb

}
yb∈Y b

8: end for
9: return set of prototypes Φ
// Test Phase

Require: test image x, set of prototypes Φ, pre-trained net-
work f : X → Rd

1: y∗ = argminy∈Y ∥f(x)− µy∥
2: return class label y∗

To evaluate the efficacy of naive method, we conduct two
experiments: full samples and 20 samples, as outlined in
Table 1. The full samples experiment utilizes all the avail-
able exemplars from the training dataset. In contrast, the 20
samples experiment uses only 20 exemplars, enabling a fair
comparison with iCaRL, as previously mentioned. iCaRL
assumes the use of a limited number of exemplars, typically
20, due to memory constraints in real-world scenarios.

By adopting this approach, we can examine whether a
well-performing feature extractor alone can surpass pre-
vious CIL methods in mitigating catastrophic forgetting,
thereby showcasing its superiority in the CIL task.

Table 1: Comparison of CIL methods with pre-trained feature ex-
tractors on CIFAR-100 Dataset (* indicates the use of
frozen pre-trained weights).

Method Pre-trained
CIFAR100

50 steps 25 steps 10 steps 5 steps
1 2 5 10

BiC − 47.09 48.96 53.21 56.86
iCaRL − 44.20 50.60 53.78 58.08

PODNet − 50.84 55.49 59.30 61.61
PODNet ResNet18 53.26 57.58 61.12 63.09

Naive-random CLIP-ViT-B/32* 64.58 64.58 64.58 64.75
Naive-full CLIP-ViT-B/32* 69.01 69.00 69.01 69.13
Naive CLIP-ViT-B/32* 69.44 69.45 69.47 69.58

We now discuss the results presented in Table 1. First,
we compare the performance between random initialization
and utilizing pre-trained weights. In the third and fourth
rows of Table 1, we observe a noticeable improvement
in performance when replacing the feature extractors with
pre-trained weights in PODNet method. Additionally, in
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the last three rows of Table 1, we observe that the Naive
methods demonstrate satisfactory performance, indicating
the effectiveness of pre-trained weights. Specifically, the
Naive-random method denotes randomly selected 20 sam-
ples, Naive-full represents the utilization of the full sam-
ple set, and Naive signifies 20 samples selected using pro-
totypes. Consequently, the results highlight the significant
impact on performance achieved by utilizing a pre-trained
CLIP feature extractor, surpassing the effectiveness of com-
plex methods such as iCaRL and PODNet.

4.3. Efficiency of zero fine-tuning

Full Fine-tuning requires substantial computation costs.
The zero fine-tuning approach, however, efficiently achieves
satisfactory results in CIL task by using pre-trained weights
without additional training iterations. This eliminates the
time-consuming process of fine-tuning the entire network
on the target dataset. The absence of fine-tuning not only
saves computational resources and training time but also
mitigates overfitting and enhances the model’s generaliza-
tion and robustness.

Moreover, the zero fine-tuning effectively addresses
catastrophic forgetting since there is no update in backbone
network or linear layer. The model can retain previously
learned knowledge while accommodating new classes or
tasks by focusing on utilizing pre-trained weights and fea-
ture extraction. This adaptability makes it well-suited for
incremental learning scenarios, where the model’s capabil-
ities can be expanded without sacrificing performance in
previously learned classes.

Table 2: Comparison of fine-tune with iCarL + CLIP-ViT-B/32 on
iCIFAR-100 Dataset.

Fine-tune Learning rate 50 steps

Full 0.01 4.90
Full 0.0001 34.97
Full 0.000001 70.06

Hyperparameter tuning is a labor-intensive process, par-
ticularly for CLIP due to its sensitivity to hyperparameters.
Determining suitable hyperparameters, such as learning
rate, batch size, regularization strength, and others, can be a
non-trivial task. Finding the right combination of hyperpa-
rameters typically requires a comprehensive search through
various possibilities. This search can be time-consuming
and computationally expensive, as it often involves training
and evaluating multiple models with different hyperparam-
eter configurations.

Zero fine-tuning approach is robust to hyperparameters,
while full fine-tuning is sensitive to them. As observed in
the provided Table 2, in zero fine-tuning cases, there is lit-
tle variation in performance with different learning rates.

However, in full fine-tuning cases, the performance signif-
icantly differs based on the learning rate. Therefore, zero
fine-tuning approach is less sensitive to hyperparameter tun-
ing, whereas full fine-tuning is highly responsive to hyper-
parameter adjustments.

5. Project and Probe in CIL

In this section, we present our innovative method of uti-
lizing pre-trained weights without fine-tuning. We notice,
in Section 4, that employing the frozen pre-trained feature
extractor produces encouraging results. Expanding on this
discovery, we introduce a simple, computationally efficient,
and data-efficient method named PROJECT and PROBE
(Pro2) inspired by Chen et al.[4], which incorporates or-
thogonal projection and linear probing.

5.1. Orthogonal projection method

Our main goal is to develop an approach that optimizes
feature representation using samples of new classes on in-
coming datasets and limited examples for existing classes.

In order to explain the orthogonal projection method, we
first describe some specific notations. The loss function LD
is defined as the expected value of the cross-entropy loss
function l

(
wT f(x), y

)
, where (x, y) is sampled from the

dataset D, i.e.

LD
(
wT f(x), y

) def
= E(x,y)∼D

[
l
(
wT f(x), y

)]
To denote the projection matrix for the subspace
span ({πi}mi=1), we use the symbol Πm, which is de-
fined as the product of the matrices [π1, · · · , πm] and
[π1, · · · , πm]

T , i.e.

Πm = [π1, · · · , πm] [π1, · · · , πm]
T

Pro2 initially learns a projection of pre-trained embed-
ding vectors that are optimized to extract a wide range
of features, each of which is indicative of specific labels.
Specifically, we project the pre-trained feature embeddings
onto a set of predictive features using a source dataset. To
ensure that each projected dimension contains unique in-
formation not found in other dimensions, we enforce or-
thogonality during the projection process. We anticipate
that this acquired feature space will efficiently encompass
a diverse collection of predictive features while eliminating
non-predictive or irrelevant information.

Subsequently, Pro2 trains a linear head to smoothly in-
terpolate between the projected features. Both the linear
projection and the head require minimal computational re-
sources, making Pro2 a practical approach for adapting to
new class distributions.
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Figure 1: In our experiments on iCIFAR-100 dataset, we evaluated class-incremental training and measured multi-class accuracies for all
observed classes up to a specific time point. Our method consistently outperformed other approaches in this setting. In contrast,
linear probing without the orthogonal projection resulted in the worst performance, demonstrating catastrophic forgetting.

(a) Naive (b) Ours (c) Growing basis

Algorithm 2 Orthogonal projection method
input: input training task stream D1, · · · ,DB

require: pre-trained network f : X → Rd

1: Dummy classifier training
wdum ← argminwLD1

(
wT f(x), y

)
2: Orthonormal basis training

π1, · · · , πm ← argminπLD1

(
wT

dumΠm (f(x)) , y
)

subject to πi ⊥ πj for ∀i, j
3: Classifier training
4: for b← 1toB do
5: wcls ← argminwLD1:b

(
wTΠm (f(x)) , y

)
6: end for

Our algorithm, as described in Algorithm 2, consists of
three main stages: dummy classifier training, additional or-
thonormal basis training, and final classifier training.

Dummy classifier training In the first stage, we train a
linear classifier that achieves the highest classification accu-
racy for the first task dataset D1. In this process, we utilize
the full-dimensional features extracted by a pre-trained net-
work.

Orthonormal basis training Proceeding to the second
stage, we acquire orthonormal bases that optimize the clas-
sification accuracy when employing projected features in
conjunction with the pre-trained dummy classifier. We com-
pute the classification accuracy using the first task dataset
D1, while ensuring orthogonality among m orthonormal
bases. To preserve the orthogonality constraint, we employ
projected gradient descent, a technique introduced in the
Pro2 method [4].

Classifier training Lastly, we utilize an exemplar set
D1:b to train the ultimate classifier. All π1, ..., πm are used
as orthonormal bases for feature extraction. We train the fi-
nal classifier based on the projected features to enhance the
classification accuracy.

5.2. Implementation Details

The CLIP [26] model with ViT [7] backbone was em-
ployed as a pre-trained network. For the number of or-
thonormal bases, we select 250, which corresponds to five
times the number of classes in the initial training task. We
train the classifier linear weight over 20 epochs using a
learning rate of 0.05. We conduct a separate training pro-
cess for orthonormal bases over 20 epochs with a learning
rate of 0.01 and weight decay set at 0.01.

5.3. Results

In this section, we address the following questions
through empirical analysis: Can Pro2 effectively determine
a feature-space basis for CIL task? How does it compare to
naive methods for feature extraction?

Our method, orthogonal projection, outperforms the
naive approach of solely utilizing linear probing without
fine-tuning the feature extractor, as demonstrated in Table
3.

Table 3: Comparison

Method Pre-trained
CIFAR100

50 steps 25 steps 10 steps 5 steps
1 2 5 10

Naive-random CLIP-ViT-B/32* 64.58 64.58 64.58 64.75
Naive-full CLIP-ViT-B/32* 69.01 69.00 69.01 69.13
Naive CLIP-ViT-B/32* 69.44 69.45 69.47 69.58
Ours CLIP-ViT-B/32* 72.97 72.95 72.73 72.72

Figure 1 reveals a stark contrast in performance be-
tween our method and the naive approach, demonstrating
the effectiveness of our approach. In Subfigure 1a, it is evi-
dent that the naive method consistently experiences signifi-
cant performance degradation whenever a new task is intro-
duced. On the other hand, in Subfigure 1b, we observe that
Pro2 continuously improves its performance as knowledge
accumulates, without forgetting previously learned tasks.
Importantly, we achieve promising results even without em-
ploying the optimal learning methods such as additional
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loss functions or regulatory terms. This highlights the po-
tential and viability of our method in real-world scenarios.

6. Discussion and Future work
6.1. Growing numbers of otrhonormnal basis

Algorithm 3 Growing orthonormal basis method
input: input training task Db

require: pre-trained network f : X → Rd, orthonormal
basis π1, · · · , πn from previous incremental step, exemplar
dataset D1:b

1: Dummy classifier training
wdum ← argminwLDb

(
wT f(x), y

)
2: Orthonormal basis training

πn+1, · · · , πm ← argminπLDb

(
wT

dumΠm (f(x)) , y
)

subject to πi ⊥ πj for ∀i, j
3: Classifier training

wcls ← argminwLD1:b

(
wTΠm (f(x)) , y

)
Currently, we train our orthogonal projections using only

samples from task1 as a first step to improve performance.
This initial finding suggests that the existing orthogonal
space, which separates the 50 classes, might be sufficient
for establishing decision boundaries in the subsequent tasks.
However, it is important to continue our research beyond
this point. We should explore the potential of learning en-
hanced orthogonal projections by incorporating features
from the incremental class, as initially intended. For in-
stance, we can investigate the inclusion of additional regu-
larization terms to prevent the dispersion of the existing or-
thogonal space (Figure 2, left) or explore alternative meth-
ods for selecting examples that can improve the representa-
tion space. To this end, we proposed Algorithm 3. The key
difference between Algorithm 3 and Algorithm 2 is that we
conducted both dummy classifier training and orthonormal
basis training for every learning task. The increase in fea-
ture dimension from class incremental, which can be con-
sidered as an increase in information, appeared to facilitate
the discrimination of the growing classes.

Table 4: Comparison between two orthogonal projection algo-
rithms.

Method
CIFAR100

50 steps 25 steps 10 steps 5 steps
1 2 5 10

Algorithm 2 72.97 72.95 72.73 72.72
Algorithm 3 10.48 25.88 48.60 60.37

We evaluated the modified algorithm using the same ex-
perimental setup and presented the results in Table 4. In-
terestingly, the growing orthonormal basis method showed

Figure 2: Feature Space per Classes

a decline in performance. As shown in the left image of
Figure 2, our initial expectation was that the feature space
would expand by adding a new axis to capture the unique
characteristics of the new class, while the orthographic pro-
jection would remove any overlapping information from the
previously learned classes’ features.

However, we observed that as the basis is expanded, the
well-distinguished features in the existing space were also
disrupted, leading to poor performance (the right image of
Figure 2).

6.2. Visualization of projected features

Figure 3 illustrates the learned projection in two sce-
narios. In the upper figure, the projection is learned solely
based on task 1 and remains fixed. On the other hand, the
lower figure represents the projection learned by gradually
adding basis as the number of classes increases. It can be
observed that as the number of basis increases, the process
of learning the projection becomes more challenging, pro-
jecting the features into a complex space.

Our projection method involved projecting the high-
dimensional features obtained from the CLIP model onto a
low-dimensional space. While it is expected that there will
be some loss of information, the t-SNE results indicate that
the sample clusters are not severely disrupted. As a result,
we suggest that it may be easier to discriminate them us-
ing a simple linear layer classifier. In contrast, the grow-
ing method resulted in a deterioration of the sample clusters
during the process of moving them to the low-dimensional
space, as observed in the t-SNE visualization.

7. Conclusion

In this paper, we focus on the use of pre-trained models
as feature extractors in Class Incremental Learning (CIL)
tasks. Our experiments on the CIFAR100 dataset showed
that pre-trained models outperformed randomly initialized
models, providing practical implications for real-world sce-
narios. We also discovered that fine-tuning can have nega-
tive effects on pre-trained feature extractors, leading to sub-
optimal performance.
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Figure 3: t-SNE: embeddings of randomly selected 20 classes

(a) Feature space with Fixed basis (last task, before
projection)

(b) Feature space with Fixed basis (last task, after pro-
jection)

(c) Feature space with Growing basis (last task, before
projection)

(d) Feature space with Growing basis (last task, after
projection)

We proposed a novel method inspired by orthogonal pro-
jection to tackle these challenges. This method effectively
filters out irrelevant information, leading to improved model
performance in Class Incremental Learning (CIL) tasks.
Our contributions include challenging the assumption of
random initialization, introducing a simpler and more com-
putationally efficient approach, and highlighting the limita-
tions of traditional fine-tuning.

In summary, our findings emphasize the importance of
effectively utilizing pre-trained models in CIL tasks and
provide insights into mitigating catastrophic forgetting. By
leveraging pre-trained models as feature extractors and
adopting our proposed method, we can achieve superior ac-
curacy and overcome the limitations of fine-tuning, facili-
tating more efficient and effective continual and incremental
learning.
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