
Mathematical Expression Correction for Output constraints

Sunghyun Kim, Mooho Song, Seoyoung Lim, Jeongsik Pyo
Seoul National University, Seoul

{ksho719, anmh9161, lsy0174, jungsik93}@snu.ac.kr

Abstract

Various approaches have been proposed to address Op-
tical Character Recognition (OCR) tasks using advanced
deep learning models. However, Handwritten Mathemat-
ical Expression Recognition (HMER), which falls under
the umbrella of OCR tasks, presents unique challenges due
to the need to comprehend mathematical syntax structures
and accurately recognize handwritten symbols. In this pa-
per, we propose a novel method called Mathematical Ex-
pression Correction for Output Constraints (MECO) for
HMER tasks. This proposed module injected structural con-
straints of mathematical expressions to Syntax-Aware Net-
work (SAN), Counting-Aware Network (CAN) and Cover-
age information in the transformer decoder (CoMER) base-
line models to improve the accuracy of the model. The
constraints are defined as relationships between grammat-
ical components of the mathematical expressions, particu-
larly focusing on the rules governing brackets. The MECO
module optimizes the Lagrangian of the constrained prob-
lem aiming that all constraints are satisfied while minimiz-
ing the loss function. We compare the performance of the
baseline models with MECO module with baseline models
SAN, CAN and CoMER on the CROHME 2014, 2016, 2019
dataset. The integration of the MECO module enhances
the performance of the baseline models, as evidenced by
a reduction in both the number of bracket constraint viola-
tions and the total counts of violations. Furthermore, the
MECO integrated models yields superior expression recog-
nition rates across the most of the datasets in comparison
to other baseline models.

1. Introduction
Handwritten Mathematical Expression Recognition

(HMER) is a task of digitizing handwritten mathematical
formulas. HMER is essential for applications in document
analysis including office automation, assistance for disabled
people, and educational purposes. With the introduction
of advanced deep learning models to solve text recogni-
tion problems, several methods that handle Optical Char-

acter Recognition (OCR) tasks were proposed. However,
HMER, one of the OCR tasks, is a demanding task that
requires both understanding of mathematical syntax struc-
tures and the recognition of handwritten symbols. Unlike
a list of words in a text, mathematical expression contains
complexities that may require human’s intuitions to com-
prehend them. As shown below Figure 1, HMER should be
able to distinguish between denominators and numerators in
division, as well as superscripts and subscripts in symbols.

Figure 1. An example image used in HMER

Previous studies on HMER concentrated on the encoder-
decoder image-to-sequence architectures [11, 14] with at-
tention mechanism. These methods elevated the perfor-
mance on the HMER tasks. Nevertheless, in the case of
long markup sequences and crabbed handwritten expres-
sions as shown below Figure 2, they could not successfully
predict the sequences. The recent works on HMER called
Counting-Aware Network (CAN) [6], Syntax-Aware Net-
work (SAN) [9] and Coverage information in the Trans-
former Decoder (CoMER) [16] have been proposed to al-
leviate these problems.

(a) A crabbed handwriting example

(b) A long markup sequence example

Figure 2. Examples of challenging cases on HMER

CAN introduces a weakly-supervised counting module
for symbol counting to promote the accuracy of attention



results. SAN converts the markup sequence into a pars-
ing tree and utilized a tree traverse process to predict the
sequence effectively. CoMER employs an Attention Re-
finement Module to solve lack of coverage. For models in
which data augumentaton is not utilized, they outperformed
existing State-Of-The-Art (SOTA) models.

This paper aims to improve the accuracy of current
SOTA models by introducing our method, Mathematical
Expression Correction for Output Constraints (MECO).
CROHME dataset [7] is used to train the baseline mod-
els. The monochrome input CROHME images, which have
black background and white handwritten expressions, are
fed to the encoder which extracts features from the im-
ages using convolution networks. The encoded vectors are
transformed into mathematical sequences by applying at-
tention modules. The models output the predicted sequence
of mathematical expressions. Given the hard output con-
straints, we present MECO, a module for constraint injec-
tions, which forms a constrained optimization problem with
Lagrangian variables [8]. We concentrated on injecting con-
straints regarding the balance of brackets which are com-
mon structural problems presented in the mathematical ex-
pressions. Initially, the baseline models with MECO mod-
ule only train the baseline model for several epochs, while
applying the gradient descent methods for baseline model’s
loss function. Then, the model starts to optimize baseline
model’s parameters and Lagrangian dual variables simulta-
neously, applying the gradient ascent methods for dual vari-
ables. Our method achieves successful injections of bracket
constraints and hence outperformed the baseline models.
This indicates that applying MECO module on models for
HMER can surpass the existing models. In summary, our
main contributions of this paper include the following :

1. We introduce a novel algorithm that incorporates
constraint injection during the training phase for
Handwritten Mathematical Expression Recognition
(HMER). To the best of our knowledge, this is the first
endeavor in this field.

2. We empirically show that the injection of a simple
constraint, specifically regarding the existence of both
opening and closing brackets, enhances the perfor-
mance of the HMER models.

2. Related work
2.1. Handwritten Mathematics Expression Recog-

nition

Conventionally, the Attention-based Encoder-Decoder
structure has been extensively utilized for the Handwrit-
ten Mathematical Expression Recognition (HMER) tasks
[10–12]. However, the performance of this method is lim-

ited by issues regarding the overlapping of current and past
attention information maps.

To address these issues, models such as the Attention
Aggregation Module (AAM) and the Bi-directional Mu-
tual Learning Module (BML) have been proposed. These
models employ attention-based encoder decoder architec-
ture and are designed to facilitate one-to-one knowledge
transfer during each training step, effectively synthesizing
the complementary information from two inverse directions
[2]. Another development was the introduction of a novel
sequential relation decoder (SRD) to recognize the online
mathematical expression (ME) in a tree structure, which
more efficiently represents structural complexity. The tree
is composed of a sub-tree sequence, where each sub-tree
consists of a relation node and two symbol nodes [13].
The tree-based structures have been extended to incorporate
directionality and stacking multiple layers to create deep
Bidirectional Long-Short Term Memory (BLSTM). Despite
achieving competitive results at the symbol level, even the
advanced tree-based models demonstrated incomplete en-
capsulation of overall grammar structure both within the
feature learning process of the neural networks, as well as
in the decoder stage [15].

Specifically, the primary challenge of HMER task stems
from the complexity of syntactic relationships rather than
symbol recognition. To overcome these drawbacks, a tree-
structured Syntax-Aware Network (SAN) model was pro-
posed , which takes into account the relationships between
grammatical elements during the grammar analysis process.
Thus, compared to other tree-based models, SAN integrates
syntax constraints into the feature learning stage of the deep
neural networks. Further, SAN locates and recognizes the
syntactically relevant components of MEs in the decoder
stage, allowing it to capture complicated structural relation-
ships. Indeed, this developed SAN model outperformed
other tree-structured models [9].

On the other hand, the Counting-Aware Network (CAN)
model applies a counting mechanism that aimed to improve
the accuracy of the model by considering the occurrence
and distribution of mathematical symbols within the ex-
pression. The decoder stage, similar to the SAN decoder,
extracts the relevant syntax information from the MEs. In
addition, the CAN model extracts features from the input
images and learns the spatial distribution of symbols to im-
prove the model’s ability to capture context [6].

Finally, CoMER [16] introduces the coverage mecha-
nism into the transformer decoder with Attention Refine-
ment Module (ARM) to refine the attention weight in the
transformer decoder, which effectively alleviates the lack of
coverage problems without hurting its parallelism. Also,
with the coverage mechanism, the authors refine atten-
tion weights and fully utilize the past alignment infor-
mation generated from different layers in the stack trans-



former decoder. By applying these methodologies, CoMER
outperforms other state-of-the-art RNN-based models or
transformer-based models.

2.2. Constraint Injection for Neural Networks

A prevalent method for training a model is defining a
loss function L(w) with respect to a model parameter w,
and solving the following optimization problem:

minimize
w

L(w) (1)

Sometimes, there might be demands to satisfy some con-
straints for output y of a model. Let {C1, C2, ..., CK}
be constraints that we want our model to satisfy, Yw be a
range of model with parameter w, and denote a state that
constraint Ck is satisfied as {fk(y) ≤ 0; ∀y ∈ Yw} for
k = 1, 2, · · · , K. Since the model output y is determined
by its parameter w, we denote {fk(y) ≤ 0; ∀y ∈ Yw} as
{fk(w) ≤ 0} from now. Equipped with these constraints,
the optimization problem becomes:

minimize
w

L(w)

subject to fk(w) ≤ 0; ∀k = 1, 2, · · · , K.
(2)

There have been several types of research that is re-
lated to solving constrained optimization problems 2 with
neural models by injecting hard constraints on output la-
bels. Lee et al. [5] investigated Gradient-based Inference
for output constraints. Their method injected constraints
to the model at inference time with gradient-based param-
eter update, which reduces the effort for training a model
again or resorting to expensive post-processing about dis-
crete constraint space. Instead of using constrained opti-
mzation form, they defined the minization problem using
the regularizer term with origianl model’s parameters. They
successfully injected output constraints to neural models,
even with performance enhancing for Semantic Role La-
beling, Syntactic Parsing, and Synthetic Sequence Trans-
duction. Nandwani et al. [8] injected constraints to neural
models at training time. Their method converts the con-
strained optimization problem into a max-min problem us-
ing Lagrangian variables. While solving the penalized op-
timization problem, they also successfully injected output
constraints into neural models even with performances en-
hancing in Semantic Role labeling, Named Entity Recogni-
tion, and Fine Grained Entity Typing.

3. Proposed Method
In this section, we introduce our constraints-injected

model for Handwritten Mathematical Expression Recog-
nition(HMER) task, MECO(Mathematical Expression
Correction for Output constraints). We revise output hard-
constraints that mathematical expression should satisfy.

Given the baseline HMER model, we additionally build
constraints injection training procedures. Our experiment
uses the baseline as existing HMER models, and proposes
a constraint injection training algorithm similar to that of
Nandwani et al. [8]. The iteration Algorithm of MECO
is described in 3.1, and the detailed mathematical form of
constraints are described in 3.2.

3.1. Iteration Algorithm of MECO

Note that the corresponding Lagrangian of constrained
problem 2 is:

L(w, A) = L(w) +

K∑
k=1

λkfk(w) (3)

, and solving 2 is equivalent to solving the following mini-
max problem:

min
w

max
A
L(w, A) (4)

, where A = {λk}Kk=1 is set of non-negative Lagrangian
multipliers. In Lagrangian 3, we set L(w) as a loss func-
tion of baseline model, which can be directly obtained by
baseline model. We describe constraints {fk}Kk=1 detail in
section 3.2.

We convert the mini-max problem 4 into a max-min
problem using the Lagrangian relaxation technique [1]) as
follows:

max
A

min
w
L(w, A) (5)

, and the iteration process for solving max-min problem 5
uses following gradient update formulas:

W ←W − αp∇WL (6)
λk ← λk + αd∇λk

L. (7)

The way to computationally solve the max-min problem 5
we used is shown in Algorithm 1. First, we initialize all of
dual variables {λk}Kk=1 as 0. Then, train only the baseline
model until the warm-up epoch. After the warm-up epoch,
we train dual variables A together while reducing the fre-
quency of updating dual variables with gradient norm clip-
ping of maximum gradient 100.

Note that, if we set fi to be differentiable, then the La-
grangian 3 is also obviously differentiable, and hence the
Lagrangian 3 is L-smooth function with L = 100 (100
is came from gradient clipping). Using the result of [4]
and [3], we obtain that the convergence of Algorithm 1
guaranteed. The Algorithm 1 can be interpreted as us us-
ing two optimizers: one for the baseline model parameters
w, and the other for the dual variable A. For convenience,
we denote the optimizer for baseline model as the ’primal
optimizer’, and the optimizer for the dual variable as the
’dual optimizer’ from this point forward.



Algorithm 1 MECO’s Algorithm

1: Inputs: baseline model loss L, baseline model parame-
ter W , constraints f1, f2, · · · , fK , corresponding dual
variables A = {λk}Kk=1, warm-up epoch w, primal op-
timizer learning rate αp, dual optimizer learning rate
αd, number of epoch E, constraint injection step d.

2: initialize: t, l, λ1, λ2 · · · , λK ← 0
3: initialize: optimize-both← false
4: for each epoch e = 1, 2, · · · , E do
5: if l == t then
6: l← l + d
7: t← 0
8: optimize-both← true
9: end if

10: if e ≤ w then
11: optimize-both← false
12: end if
13: if optimizer-both== true then
14: for k = 1, 2, · · · , K do
15: λk ← λk + αd∇λk

L ▷ Gradient Ascent
16: αd ← α0

d
1

1+dβ
17: end for
18: end if
19: W ←W − αp∇WL ▷ Gradient Descent
20: if e > w then
21: t← t+ 1
22: end if
23: optimizer-both← false
24: end for

3.2. Constraints

Balanced Brackets One of the fundamental constraints
that a mathematical expression must satisfy is ensuring the
proper balance of opening and closing brackets. Here, we
denote bracket as three forms of brackets, ’(’, ’)’, ’{’, ’}’,
’[’, ’]’. Note that, if there is an opening bracket(e.g.’(’),
there must be a closing bracket after it(i.e.’)’). Let bo, bc be
opening and closing brackets respectively. Assume that a
mathematical expression sequence has a length of N , and
an opening bracket bo appears at the n-th sequence(n ∈
{1, 2, · · · , N}). We define a function g as follows:

g(w) =

 max
n+1≤i≤N

Pw(yi = bc) for 1 ≤ n < N

0 for n = N
(8)

, where yi is a i-th model output sequence. The constraint
function f(w) is defined by f(w) = 1 − g(w). Note that
f(w) ∈ [0, 1] must hold by its definition. If there is no con-
straint violation, then f(w) = 0 holds. Otherwise, f(w)
is strictly greater than 0. Considering that the definition of
f , f(w) = 0 is equivalent to f(w) ≤ 0, which is a con-
straint part of the constrained optimization problems 2. For

three types of brackets(parenthesis, brace, bracket), three
constraint functions f1, f2, f3 are defined in this way. If
one bo appears multiple times in a sequence, we consider n
as the first location that bo appears.

4. Experiments
In this section, we 1) provide concrete experiment set-

tings, 2) introduce the datasets, and 3) compare results with
previous models.

4.1. Experiment Settings

The baseline models and the models with MECO mod-
ules are implemented in Python, Pytorch Deep Learning
Framework. Specifically, in the experimentation phase,
both our CAN and CAN-MECO models, as well as SAN
and SAN-MECO models, were trained on an NVIDIA RTX
3090 GPU with 24GB memory. All models were devel-
oped using PyTorch and deployed a batch size of 6. The
learning rate was scheduled to warm up from 0 to 1 by the
end of the first epoch and subsequently decayed in a co-
sine annealing manner. Adadelta, with a learning rate of 1,
acted as the primary optimizer, while mini-batch Stochas-
tic Gradient Ascent (SGA) was employed as the secondary
optimizer with a learning rate of 0.1. Specifically, CAN
and CAN-MECO models were trained using Python 3.8
over 240 epochs, whereas SAN and SAN-MECO models
were implemented in Python 3.7.16 and trained for 200
epochs on the CROHME dataset. On the other hand, for the
CoMER and CoMER-MECO models, we adopt a bidirec-
tional training strategy akin to the one employed by a previ-
ous model(BTTR) in the HMER task. The PyTorch frame-
work is utilized for implementation and deployed a batch
size of 8. The optimization is carried out using Stochas-
tic Gradient Descent (SGD) with a momentum of 0.9 and
weight decay parameter set at 1e-4. The initial learning rate
is configured at 0.08. For data augmentation, scale aug-
mentation techniques are applied to the input images by
uniformly sampling scaling factors within the range [0.7,
1.4].The experiments are executed on a computing cluster
furnished with two NVIDIA RTX 3080 GPUs, each having
24GB of memory 1.

4.2. Datasets

The CROHME Dataset [7] is the most widely-used
public dataset for HMER studies, which is the abbrevia-
tion of Competition on Recognition of Online Handwrit-
ten Mathematical Expression. CROHME contains online
handwritten mathematical expressions in three editions:
CROHME 2014, CROHME 2016, and CROHME 2019.
The number of symbol classes is 111, including “sos” and
“eos”. The expressions were written by different people,
including students and professionals, in various contexts,
such as in classrooms or during lectures. The dataset also



Violation No. Parenthesis Brace Bracket Total
CoMER 35 33 6 74

CoMER-MECO(ours) 28 26 5 59
SAN 50 0 10 60

SAN-MECO(ours) 48 0 9 57
CAN 56 9 9 74

CAN-MECO(ours) 39 11 9 59

Violation Rate Parenthesis Brace Bracket
CoMER 9.26 8.73 1.59

CoMER-MECO(ours) 7.84 7.28 1.40
SAN 9.6 0.0 1.9

SAN-MECO(ours) 9.8 0.0 1.8
CAN 12.6 2.0 2.0

CAN-MECO(ours) 8.9 2.5 2.0

Table 1. Constraints violation comparison for three types of brackets(parenthesis, brace, bracket) between baseline models and models
including MECO module on the CROHME 2014 test set. Left represents the number of violated test set examples regarding number of
opening and closing brackets. Right represents the violation rate(%) about numbers of opening, closing brackets. The denominator is a
total number of mispredicted examples. A lower value is better for both measurements.

Method CROHME 2014 CROHME 2016 CROHME 2019
ExpRate ≤ 1 ≤ 2 ExpRate ≤ 1 ≤ 2 ExpRate ≤ 1 ≤ 2

CoMER [16] 61.73 70.14 83.67 60.24 69.14 78.52 61.13 69.33 80.76
CoMER-MECO(ours) 63.87 69.76 83.43 62.76 70.83 78.41 63.77 69.12 81.03

SAN [9] 47.66 65.01 73.33 45.07 61.81 71.58 45.29 63.14 72.48
SAN-MECO(ours) 50.71 66.53 71.81 48.04 63.34 70.01 44.37 60.05 69.22

CAN [6] 54.97 72.61 80.32 54.05 71.90 80.02 54.56 71.61 79.00
CAN-MECO(ours) 56.19 71.70 80.12 55.07 72.81 79.61 52.88 70.38 78.90

Table 2. This comparison presents the Expression Recognition Rate (ExpRate) and the tolerances of 1 and 2 score between baseline models
and models with the MECO module on the CROHME 2014, 2016, and 2019 test datasets. Higher values indicate better performance.

includes ground-truth annotations at the symbol and expres-
sion level, which allows for the evaluation of recognition ac-
curacy using standard metrics, such as character error rate
and token accuracy.

We use 8,835 expressions with 111 symbols from
CROHME dataset for training, and evaluate our model
on CROHME 2014 test set, CROHME 2016 test set and
CROHME 2019 test set, which consists of 986, 1147 and
1199 expressions, respectively. Finally, unlike many previ-
ous studies, we conducted experiments without performing
data augmentation for a fair comparison.

Figure 3. Some example images from the CROHME dataset

4.3. Result Comparison

Constraints Violation We define that the constraint vi-
olations have occurred when the numbers of bo and bc are
different in a prediction sequence. Table 1 shows our con-
straints’ violation rate and the number of constraints’ vio-
lations occurred. The constraint violation rate is calculated

by:

Violation Rate =
number of constraint violated examples

number of mispredicted examples
.

The results in Table 1 indicates that the MECO module suc-
cessfully decreases both the number and rate of constraint
violations. The CAN-MECO model reduced the total num-
ber of bracket constraint violations by 15 compared to the
original CAN model. While the violation about parenthesis
significantly reduced, the violation about brace increased.
The SAN model has an intrinsic rule, so it does not violate
constraints about braces. We observed that SAN-MECO
does not effectively reduce the constraint violation. The
SAN-MECO model reduced the total number of bracket
constraint violation by 3 compared to the original SAN
model. In the case of the CoMER-MECO model, it reduces
the total number of mispredicted examples by 21 compared
to the original CoMER model(Table 2). Among these 21
cases, 15 cases, which is about 70% of mispredicted exam-
ples, were bracket constraint violations. This implies that
the balanced brackets constraints we injected genuinely im-
proves the predictions of the baseline models, especially for
parentheses, which is the most frequent case of bracket con-
straint violations. The number of parenthesis violations was
reduced by 7, 2 and 15 for CoMER, SAN, and CAN respec-
tively.

Expression Recognition Rate The Expression Recog-
nition Rate(ExpRate) is a percentage of correctly predicted



mathematical expressions in the model’s predictions and
is mostly used for the HMER task. At the symbol-level,
we evaluate not only for exact match but also allow tol-
erances of 1 and 2 score, denoted by ≤ 1 and ≤ 2
in Table 2, respectively. Table 2 shows the ExpRate of
CROHME 2014, 2016, 2019 dataset. As shown in Table
2, we enhanced the ExpRate performance of three mod-
els(without data augmentation), SAN, CAN and CoMER in
most cases. SAN-MECO improved the ExpRate about 2%
for the CROHME 14, 16 dataset compared to the original
SAN model. CAN-MECO improved the ExpRate by more
than 1% for CROHME 14, 16 dataset compared to original
CAN model. However, the ExpRate of SAN-MECO and
CAN-MECO decreased for the CROHME 19 dataset. Es-
pecially, the CoMER-MECO model outperformed the base-
line model for every CROHME 14, 16, 19 dataset. Wth the
CoMER-MECO model, ExpRate improved by more than
2% for every dataset. This implies that our constraints in-
jection training procedure not only reduces constraint vi-
olations, but also maintains or even improves the baseline
models’ performance without affecting them in most cases.

5. Conclusion
In this paper, we proposed a new method called the

Mathematical Expression Correction for Output constraints
(MECO) module for handwritten mathematical expression
recognition. The MECO module injects constraints that
are intuitive to humans with regard to mathematical expres-
sions. We chose to implement bracket constraints, which
helps the models in balancing the number of opening and
closing brackets. By applying the MECO module with the
baseline models, namely SAN, CAN and CoMER on the
CROHME dataset, our experiments validate two main con-
clusion: 1) The MECO module can successfully injects
the opening and closing bracket constraints, especially with
parenthesis, into the baseline models. 2) The MECO mod-
ule consistently improves the accuracy of baseline mod-
els as reflected in the expression recognition rate. In fu-
ture work, we are interested in seeking additional con-
straints to inject into the models to enhance their accu-
racy.

References
[1] DP Bertsekas. Nonlinear programming, athena scientific,

belmont, massachusetts. MR3444832, 1999. 3
[2] Xiaohang Bian, Bo Qin, Xiaozhe Xin, Jianwu Li, Xue-

feng Su, and Yanfeng Wang. Handwritten mathematical
expression recognition via attention aggregation based bi-
directional mutual learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages 113–121,
2022. 2

[3] Vivek S Borkar. Stochastic approximation: a dynamical sys-
tems viewpoint, volume 48. Springer, 2009. 3

[4] Chi Jin, Praneeth Netrapalli, and Michael Jordan. What
is local optimality in nonconvex-nonconcave minimax opti-

mization? In International conference on machine learning,
pages 4880–4889. PMLR, 2020. 3

[5] Jay Yoon Lee, Sanket Vaibhav Mehta, Michael Wick, Jean-
Baptiste Tristan, and Jaime Carbonell. Gradient-based infer-
ence for networks with output constraints. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
pages 4147–4154, 2019. 3

[6] Bohan Li, Ye Yuan, Dingkang Liang, Xiao Liu, Zhilong Ji,
Jinfeng Bai, Wenyu Liu, and Xiang Bai. When counting
meets hmer: Counting-aware network for handwritten math-
ematical expression recognition. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, Octo-
ber 23–27, 2022, Proceedings, Part XXVIII, pages 197–214.
Springer, 2022. 1, 2, 5

[7] Harold Mouchere, Christian Viard-Gaudin, Richard Zanibbi,
and Utpal Garain. Icfhr 2014 competition on recognition
of on-line handwritten mathematical expressions (crohme
2014). In 2014 14th International Conference on Frontiers
in Handwriting Recognition, pages 791–796. IEEE, 2014. 2,
4

[8] Yatin Nandwani, Abhishek Pathak, and Parag Singla. A pri-
mal dual formulation for deep learning with constraints. Ad-
vances in Neural Information Processing Systems, 32, 2019.
2, 3

[9] Ye Yuan, Xiao Liu, Wondimu Dikubab, Hui Liu, Zhilong Ji,
Zhongqin Wu, and Xiang Bai. Syntax-aware network for
handwritten mathematical expression recognition, 2022. 1,
2, 5

[10] Jianshu Zhang, Jun Du, and Lirong Dai. A gru-based
encoder-decoder approach with attention for online hand-
written mathematical expression recognition. In 2017 14th
IAPR international conference on document analysis and
recognition (ICDAR), volume 1, pages 902–907. IEEE,
2017. 2

[11] Jianshu Zhang, Jun Du, and Lirong Dai. Multi-scale at-
tention with dense encoder for handwritten mathematical
expression recognition. In 2018 24th international con-
ference on pattern recognition (ICPR), pages 2245–2250.
IEEE, 2018. 1, 2

[12] Jianshu Zhang, Jun Du, and Lirong Dai. Track, attend, and
parse (tap): An end-to-end framework for online handwritten
mathematical expression recognition. IEEE Transactions on
Multimedia, 21(1):221–233, 2018. 2

[13] Jianshu Zhang, Jun Du, Yongxin Yang, Yi-Zhe Song, and
Lirong Dai. Srd: a tree structure based decoder for on-
line handwritten mathematical expression recognition. IEEE
Transactions on Multimedia, 23:2471–2480, 2020. 2

[14] Jianshu Zhang, Jun Du, Shiliang Zhang, Dan Liu, Yulong
Hu, Jinshui Hu, Si Wei, and Lirong Dai. Watch, attend
and parse: An end-to-end neural network based approach to
handwritten mathematical expression recognition. Pattern
Recognition, 71:196–206, 2017. 1

[15] Ting Zhang, Harold Mouchere, and Christian Viard-Gaudin.
Tree-based blstm for mathematical expression recognition.
In 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), volume 1, pages 914–
919. IEEE, 2017. 2



[16] Wenqi Zhao and Liangcai Gao. Comer: Modeling coverage
for transformer-based handwritten mathematical expression
recognition, 2022. 1, 2, 5


	. Introduction
	. Related work
	. Handwritten Mathematics Expression Recognition
	. Constraint Injection for Neural Networks

	. Proposed Method
	. Iteration Algorithm of MECO
	. Constraints

	. Experiments
	. Experiment Settings
	. Datasets
	. Result Comparison

	. Conclusion

