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Abstract

One of the significant challenges for autonomous vehi-
cles in urban environments is comprehending and predict-
ing other road users’ actions, especially pedestrians at the
point of crossing. The prevalent approach to solve this prob-
lem is to use the motion history of the pedestrian to predict
their forthcoming trajectories or use the skeleton feature to
inference intention. However, pedestrians exhibit extremely
variable actions, most of which cannot be estimated without
visual observation of the pedestrians and their surrounding
road structure. Therefore, this paper introduces a vision-
based model using contextual information for the pedes-
trian’s intent classification problem at the point of crossing.
The contextual information has been fully employed using
the pixel-based raw image as input data. In this approach,
the crossing intention of pedestrians has been binary clas-
sified through the pre-processing network and Resnet3D-
based transfer learning.

1. Introduction

Over the last few decades, there has been a rapid growth
in autonomous driving systems capable of performing var-
ious perception, planning, and control tasks. However, en-
suring safety is one of the most challenging tasks for driv-
ing in highly dynamic urban environments. The safety
of pedestrians has been significantly highlighted after the
deadly crash in Arizona involving an autonomous vehicle
operated by Uber [1]. Pedestrians are the most vulnerable
road users and require an active protection system [2]. In
terms of object detection, a considerable amount of research
has already been done and applied practically to localize
and classify pedestrians. R-CNN, Faster R-CNN, YOLO,
and SSD are widely-used networks ensuring high accuracy
and real-time application [3–6].

Nevertheless, for safe autonomous driving, not just the
class of objects but the classification of pedestrian’s inten-
tion can be required. Comprehending pedestrians’ under-

lying intent and predicting their future actions in advance
helps the driving systems to select the correct course of ac-
tion to avoid any potential collisions and disruption of traf-
fic flow [7]. This is particularly crucial when dealing with
pedestrians at the point of crossing since they exhibit highly
variable behavior patterns. However, it is pretty tricky task
for autonomous system to interpret pedestrians’ crossing in-
tentions. As pedestrians are complex individuals, their in-
tention to cross the street is affected by many factors, in-
cluding contextual interaction between the surrounding traf-
fic environment [8].

Suppose the autonomous vehicle in an urban environ-
ment plans its motion, knowing pedestrians’ orientation and
relative position from a vehicle. Three scenarios are illus-
trated in Figure 1. The distance between ego vehicle and
pedestrian is similar in the A scenario and B scenario. How-
ever, the ego vehicle should decelerate or stop in case of A
while it can keep driving in case B. The reason is that the
pedestrian in scenario A is predicted to have crossing in-
tent, whereas just walking along the sidewalk in scenario
B. On the other hand, in scenario C, there is a crosswalk
in front of the pedestrian. Thus, the ego vehicle can de-
celerate in scenario C even though the relative position be-
tween pedestrian and ego vehicle is the same in both cases.
As demonstrated, contextual information such as pedestrian
movements or positional relatives from road structures can
be helpful to predict the crossing intent of pedestrians. This
intent can be predicted from the pedestrian’s movements or
positional relatives from road structures based on contextual
information from vision data.

This paper suggests a binary classifier that detects pedes-
trians intending to cross into an autonomous vehicle’s
lane based on spatial-temporal information from image se-
quences. The PIE Dataset [9] is used for training and
testing, and Resnet3D with 18 layers, pre-trained on the
Kinetics- 400 dataset, is chosen as the network backbone.
The process can be distributed mainly into three steps.
Firstly, based on the bounding box of the pedestrian, im-
age pre-processing will be conducted to crop ROI from
the entire image. Secondly, The cropped image is fused
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Figure 1. The diverse behavior scenarios of pedestrians

on the pixel level with a drivable area segmentation image
through the YOLOP network. Thirdly, transfer learning is
conducted using Resnet3D, and the intention of the target
pedestrian will be classified. The performance of the pro-
posed algorithm is verified based on PIE large-scale dataset.
Overall, the suggested model achieves 73% accuracy and
a 0.74 F1 score, showing stable accuracy on both ”not-
crossing” and ”crossing” cases. The results prove that the
presented methodology is effective for identifying pedes-
trian intentions on autonomous driving.

2. Related works
As the pedestrian is a complex individual, their inten-

tion can be influenced by many factors such as weather, the
surrounding traffic environment, and even their own emo-
tions [8]. This is why forecasting pedestrians’ intentions
sufficiently in advance is one of the most challenging tasks.
However, the autonomous driving system must guarantee
pedestrians’ safety by proactive motion planning. In or-
der to beat this problem, various approaches have been at-
tempted to predict pedestrians’ future behavior. The two
major approaches are trajectory-based path prediction and
intention inference using skeleton features, and context-
based intention inferences are also getting attention these
days.

2.1. Trajectory-based path prediction

The path prediction domain focus on the past observed
trajectory of the pedestrians to predict future locations of
pedestrians [9]. Most of the work in this approach is dedi-
cated to predicting surveillance sequences where the move-
ments of pedestrians are observed from a fixed bird’s eye
view perspective [10–18]. In a trajectory-based framework,
early strategies for pedestrian detection and tracking used
Kalman Filters [19], including interacting multiple model
filters [20, 21], to account for different motion dynamics.
Even so, the sole consideration of trajectory is deficient for

accurately predicting the pedestrian path as the motion dy-
namics keep changing. Empirical studies have confirmed
that a higher error rate is produced in drivers’ judgment re-
garding the pedestrian intentions when only the pedestrian’s
trajectory is available [22]. Since they react to action al-
ready in progress instead of anticipating it, they are short-
term predictions that are only effective when the pedestrians
are already crossing or about to do so [9]. For instance, for
trajectory-based approaches, a pedestrian walking along-
side the road prior to the crossing or standing at the inter-
section can be challenging. Furthermore, the past trajectory
of a pedestrian might not necessarily reflect their ultimate
objective. A pedestrian waiting at a bus stop might step on
the road to check for the bus, which can be interpreted as
a crossing event by a trajectory-based approach. Addition-
ally, lots of trajectory-based approaches are hard to apply
with the camera directly mounted on a vehicle since they
primarily rely on the bird-eye view camera.

2.2. Intention inference using skeleton feature

The other strategy is the skeleton-based intent predic-
tion of pedestrians. These approaches are usually based
on hand gestures, head orientation, and the body posture
of the pedestrian [23]. E. Insafutdinov et al. [24] devel-
oped a tracking algorithm that simplified the body-part re-
lationship graph and applied a feed-forward convolutional
architecture to associate parts even in clutter. In another
study, an algorithm called PoseTrack [25] was proposed. A
graph with both spatial and temporal edges for detection is
built. Then it simultaneously associates body parts within
every single frame and each person over different frames by
integer linear programming. However, these methods are
designed for more general-purpose pose tracking and are
still inefficient for pedestrian and cyclist tracking and pose
recognition. Additionally, those approaches are mostly only
available for short distances since high-resolution images
are necessary to detect skeletons.
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Figure 2. The architecture of the network

2.3. Context-based intention inference

As mentioned above, previous methods to predict pedes-
trians’ intent have limitations. Some researchers have re-
cently focused on contextual information as a remedy for
the common drawbacks of trajectory-based and skeleton-
based algorithms. Schneemann et al. [26] generated a
feature vector by combining occupancy map of cross-
walk/waiting area and bird’s-eye-view history image of
pedestrian from the road edge solved by scene segmen-
tation. Then, classify the intention of the pedestrian by
SVM classifier using this feature vector as input. How-
ever, additional processes are needed to apply this approach
practically, such as the scene segmentation process, includ-
ing human body orientation estimation, lane detection, and
crosswalk/waiting area detection. Besides, contextual infor-
mation initially contained in the raw image can be missed
because they only take specific features from the raw im-
age. Yang et al. [27] created a feature vector regarding
the 2D pixel coordinates of pedestrians, the velocity of
the on-coming vehicle, the existence of crosswalks, and
traffic signals. Though, the research only considers the
standing pedestrian and does not take into account spatial-
temporal correlation information between pedestrian ma-
neuver and road information. Rasouli et al. [9] provide a
large-scale dataset for pedestrian intention estimation and
suggest a convolutional LSTM based method using the
dataset. Compared to previous researches, the study has
practical strength on less pre-processing load as only the
bounding boxes of detected pedestrians are used. Thus, us-
ing Rasouli et al.’s method [9] as baseline, this paper will
propose improved model minimizing the loss of spatial-
temporal correlation between road structure and pedestrian
maneuver.

2.4. Datasets

A number of datasets for trajectory prediction contain
videos collected from a perspective of top-down view [28–
31] or surveillance camera perspective [32–34]. There are
comparatively fewer datasets that are specifically provided
for pedestrian behavior prediction from a moving vehicle

perspective. Even though the publicly available pedestrian
detection datasets [35–37] can potentially be used for such
a purpose, they lack necessary characteristics such as ego-
vehicle information [35], temporal correspondence [37], or
enough pedestrians samples with long tracks [36]. These
datasets also do not contain any form of pedestrian behavior
annotations that can be employed for action prediction.

JAAD [38] is a newly introduced dataset that contains
a large number of pedestrian samples with temporal cor-
respondence, a subset of which are annotated with behav-
ior information. However, for the aim of intention esti-
mation and trajectory prediction, this dataset has several
drawbacks. The dataset does not have ego-vehicle data, the
videos are distributed into short discontinuous chunks, and
most pedestrian samples with behavioral annotations have
crossing intent.

As a primary dataset for this paper, the Pedestrian Inten-
tion Estimation (PIE) dataset [9] was chosen, consisting of 6
hours of driving footage in urban environments. The dataset
provides bounding box annotations for pedestrians and traf-
fic objects as well as sensor readings of the ego-vehicle and
ego-motion data recorded from the camera.

3. Method

To understand the pedestrian’s crossing intention, we ad-
dress the problem based on local surroundings and motion
of target pedestrians in consecutive frames. In this section, a
detailed network structure and methodology are introduced
to deal with this.

3.1. Network Architecture

The proposed algorithm is a binary classifier of whether
pedestrians have the intention to enter the subject vehicle’s
driving lane. The probability of pedestrian crossing is de-
rived as a final output through the proposed algorithm. The
cumulative frame of the pixel-based image cropped the re-
gion of interest(ROI) from the entire image is used as an
input. The ROI is set to an enlarged bounding box, includ-
ing surrounding information of the target pedestrian. Con-
textual information around the target pedestrian can be used
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without a loss since the raw image frames are used as input
instead of the processed map from the raw image. The pro-
cess for estimating pedestrian crossing intention is largely
composed of two steps: drivable area fused image extrac-
tion and Resnet3D-based transfer learning. The overall ar-
chitecture is illustrated in Figure 2.

3.2. PIE Dataset

Figure 3. Example of annotations given in PIE dataset [9]

This study trains and tests the proposed model on the
PIE dataset [9] which is a new dataset for studying pedes-
trian behavior in traffic. PIE contains 6 hours of HD video
are recorded with an on-board camera at 30 FPS and split
into approximately 10 minute chunks grouped into six sets.
Bounding boxes are provided for 1842 pedestrians and ve-
hicles that interact with the driver, as well as for elements
of infrastructure such as traffic lights, signs, zebra cross-
ings, road boundaries. Additionally, accurate ego-vehicle
information from the OBD sensor is available synchronized
with video footage. It includes speed, GPS coordinates,
and heading direction. All videos were recorded in HD for-
mat (1920 × 1080 px) at 30 fps, split into approximately 10
minute long chunks, and grouped into six sets. The dataset
represents a wide diversity of pedestrian behaviors at the
crossing point, including the busy one-way street and wide
boulevards with fewer pedestrians. PIE provides long con-
tinuous sequences and annotations for a wide range of ap-
plications. Rich spatial and behavioral tags are available for
each pedestrian per frame as shown in Figure 3, including
actions such as walking, standing, crossing, looking. Over
300K labeled video frames with 1842 pedestrian samples
make PIE the largest publicly available dataset for studying
pedestrian behavior in traffic.

3.3. Drivable area fused image extration

In order to reflect the behavior of pedestrians on the sur-
rounding contextual information such as roads or walks,
drivable area segmentation information is fused to the
cropped raw image. The drivable area is obtained through
YOLOP network [39] as presented in Figure 4. The fusion
is processed through sum operation in pixel unit so that driv-
able area can be applied while maintaining RGB of the raw

Figure 4. Drivable area segmentation obatained from YOLOP [39]

image without information loss. That is, the drivable area
is processed as an image with increased brightness with-
out modifying the RGB ratio. The fused image then be an
input to the main network, Resnet3D. This process helps
model train the correlation between pedestrian movement
and spatial information in the Resnet3D network by fusing
road information which is hard to obtain from just cropped
images.

Figure 5. Concept of transfer learning [40]
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Method Drivable area Unfrozen block Accuracy F1 Score Negative Accuracy Positive Accuracy
R3D FC 0.58 0.55 0.35 0.8

experiment (a) R(2+1)D FC 0.61 0.59 0.38 0.84
MC3 FC 0.59 0.56 0.31 0.88
R3D FC 0.58 0.55 0.35 0.8
R3D 4 + FC 0.65 0.64 0.44 0.87

experiment (b) R3D 3, 4 + FC 0.67 0.66 0.48 0.87
R3D 2, 3, 4 + FC 0.68 0.67 0.54 0.82
R3D 1, 2, 3, 4 + FC 0.69 0.69 0.63 0.76
R3D All 0.69 0.68 0.56 0.81
R3D 1, 2, 3, 4 + FC 0.69 0.69 0.63 0.76

experiment (c) R(2+1)D 1, 2, 3, 4 + FC 0.68 0.67 0.5 0.85
MC3 1, 2, 3, 4 + FC 0.66 0.64 0.42 0.9
R3D 3 FC 0.52 0.52 0.52 0.52
R3D 3 4 + FC 0.73 0.74 0.68 0.78

experiment (d) R3D 3 3, 4 + FC 0.66 0.66 0.62 0.70
R3D 3 2, 3, 4 + FC 0.67 0.67 0.74 0.60
R3D 3 1, 2, 3, 4 + FC 0.55 0.54 0.58 0.51

Table 1. Main results

3.4. Resnet3D-based transfer learning

The following step is for learning spatial-temporal in-
formation from successive feature maps. We employed a
ResNet3D [41] with 18 layers, pre-trained on the Kinetics-
400 dataset [42]. As this source model was originally
trained on the larger dataset for action recognition of video,
we expected that the transfer learning might significantly
boost our crossing intention inference model’s performance
as depicted in Figure 5. The transfer learning is performed
by transforming and re-learning the top layer in order to in-
fer pedestrian crossing intention. So, the representation is
re-produced with the pre-trained model. Through this pro-
cess, the correlation between the processed feature maps is
reflected, and high-level features that represent the position
on the surrounding context and the pose change of pedestri-
ans are learned.

4. Experiments
In this section, our method is evaluated and validated.

We first describe the implementation details, followed by
experiment results and comparison to the previous state-of-
the-art approach.

4.1. Implementation details

We conducted all experiments using RTX2070 super in
the PyTorch framework. The cropped images fused with
the driving area were resized to 112×112 pixels. Among
the annotations provided by the PIE database, pedestrian
ID, bounding box information, and crossing intention prob-
ability were used, and the probability was reconstructed into
binary intention based on 0.5. One input sequence consisted

of 15 frames, which is about 0.5 seconds, and the sequence
overlap rate was used to increase the amount of learning
data. Since PIE data has more positive situations than neg-
ative, the total number of data sets was balanced. The total
number of data is 10696, and the ratio of trains, verifica-
tion, and test is 0.55, 0.15, and 0.3, respectively, with 6068,
1613, and 3015. Adam, in which Adgrad and RMSPropop-
timizer are fused, was used as an optimizer. Adam opti-
mizer used an initial learning rate of 0.0001 and reduced it
to 0.4 for every 3 epochs. In addition, if the valuation loss
did not decrease during 5 epochs, early-stop was performed.
Also, binary cross-entropy was used as the loss function. In
this environment, we conducted various experiments with
Resnet models, unfrozen block, and driving area and per-
formances such as total accuracy, F1 score, negative and
positive accuracy were derived.

4.2. Results

3D Pre-trained models. Experiment (a) in Table 1
shows the pre-trained model’s performance with different
networks. In this experiment, for video representation,
Resnet3D(R3D), R(2+1)D, and mixed convolution 3 (MC3)
networks have been tested. The main differences between
the three models are the various filters used in each layer.
The R3D uses convolutional filters of equal size in three di-
mensions in width, height, and time. The R(2+1)D model
factorizes 3D convolutional filters into separate spatial and
temporal components with different spatial and temporal
sizes. And its total number of parameters is similar to the
R3D model. The mixed convolution 3 (MC3) model com-
bines 3D convolutional filters in the first nine layers with
subsequent layers using 2D filters. In consideration of
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Figure 6. Visualized results of our pedestrian intention estimation overlaid on top of image frames from the PIE dataset (cropped for better
visibility). Bounding boxes are colored depending on the presence (red) or absence (green) of crossing intention as detected by our model.
Thin lines of bounding boxes represent incorrectly estimated intention.

accuracy and F1 score, the performance of R(2+1)D was
highest, followed by MC3 and R3D when the unfrozen
block is the same as the final layer(FC). However, when
we only modified the final classification layer while leaving
pre-trained weight, binary classification’s accuracy for the
negative case was poor compared to the positive case. Neg-
ative accuracy indicates when the model identifies pedes-
trians’ intention not to cross, while positive accuracy only
counts pedestrians with crossing intention. Through the ex-
periment (a) given in Table 1, we observed that the negative
accuracy was relatively low than the positive accuracy. For
all three cases, the negative accuracy was low in the range
of 0.3 0.4, which means the model easily misjudges not-
crossing intention to crossing intention when most layers
are frozen. Therefore, we tried to modify the number of
unfrozen blocks to improve negative accuracy.

Unfreeze. In order to train the model to learn video
representation, additional experiments (b) were conducted
by unfreezing previous layers, and the result is given in 1.
As the number of unfrozen blocks increases, the model’s
performance tends to improve. On the other hand, ac-

curacy drops when we unfreeze the stem layer extract-
ing features through CNN. Hence we let the stem layer
frozen since the performance was better when the pixel-
level(low-level)representation was extracted from the stem
layer with pre-trained model’s weight. The highest accu-
racy was achieved when we trained the model with high-
level representation and left the stem layer frozen. Negative
accuracy increases to 0.63 as the number of learning layers
increases, leading to higher overall accuracy. As shown in
experiment (c) of Table 1, the performance was best in the
R3D model with 0.69 of accuracy when every layer was un-
frozen except the stem layer. R(2+1)D and MC3 networks
followed next with the accuracy of 0.68 and 0.66.

Drivable area. Even though the prior experiments con-
firmed that R3D networks with unfreezing can improve ac-
curacy, the negative accuracy was still insufficient as 0.63.
To solve the problem, the drivable area segmentation was
added at the data processing stage. The R3D model’s per-
formance with the drivable area is given in experiment (d)
of Table 1. Compared to the experiment (b), the input data
fused with drivable area segmentation helped the model get
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improved negative accuracy.
Combination of Unfreeze and Drivable area. We also

examined how the combination of unfreezing and drivable
area impact the performance of the model(see experiment
(d) in Table 1). The R3D model with drivable area showed
the highest accuracy when the 4th block and last layer(FC)
were unfrozen. With this configuration, the negative accu-
racy reached 0.68, and total accuracy was 0.73, which is
state-of-the-art. Therefore, we accepted this configuration
as our final model and the visualized output of our model is
given in Figure 6.

Previous intention reflection. In the corresponding
structure, the input sequences are divided by the set num-
ber of input frames even for the same person and, the cor-
relation between the divided sequences for the same person
is not considered. Therefore, We attempted to reflect the
previously estimated intention for the same pedestrian ID
sequence to the current intention estimation. The attempt
was implemented in two ways. The first is to fuse the cur-
rent output and the previous output using the concept of mo-
mentum. In the second method, a new loss term was added
to follow the average value of the previous stacked output.
However, both methods resulted in poor performance. In
the 3D CNN structure, back propagation is not possible
from the previous output value, so it is estimated that the
term added as momentum acts as a variable bias, which ac-
tually degrades the performance. In addition, in the case of
adding loss term, if the judgment from the first sequence
input is incorrect, the performance of the subsequent out-
put may be adversely affected. Therefore, the reflection of
previous intention is not applied to our final model.

4.3. Comparison to the previous state-of-the-art

Method Balancing Additional Info Acc. F1 Score
Our model No No 0.78 0.79
Baseline(PIE) No No 0.69 0.79
Baseline(PIE) No Yes 0.79 0.87
Our model Yes No 0.69 0.69
Our model Yes Yes 0.73 0.74

Table 2. comparison between our model and PIE [9]’s model

The model and performance proposed by PIE [9] talk
about the results for unbalanced data. In this case, the data
with labels of positive (trying to cross) and negative (not to
cross) are unbalanced to about 4.5:1.

In the case of unbalanced data, Our baseline model out-
performs PIE’s model without using additional informa-
tion(see Table 2. When PIE’s model uses additional in-
formation such as context, bounding boxes, and bounding
boxes coordinates, its accuracy is 0.79, and the F1 score is
0.87. With this unbalanced data, our baseline without addi-
tional information shows the performance of 0.77 accuracy

and 0.78 F1 score.
In an environment that uses unbalanced and biased data

as input, the PIE model that easily inference intentions to
crossing case shows a performance of 0.82. Therefore, it
does not seem appropriate to be used for performance judg-
ment.

Even though there are no results for the PIE model pre-
dicted based on the balancing data, we wanted to compare
further our baseline and our SOTA based on the balancing
data. In comparison, the performance for the negative was
significantly improved, and our SOTA outperformed our
baseline model showing great advancement.

5. Conclusion
In this paper, we proposed a model to classify pedes-

trians’ crossing intention. By evaluating various networks
and combinations, we showed that Resnet-3d based transfer
learning from the action recognition model is a good predic-
tor for crossing intention. Our baseline model outperforms
the previous state-of-the-art method without any additional
input data but raw images. Also, We prove that drivable area
segmentation can further improve the performance of the
model. Our best model with segmentation shows improve-
ment on negative accuracy when tested on balanced input
data, while the previous method only tested on the biased
dataset. Overall, the presented model is conceptually and
computationally simpler than the previous methods, ensur-
ing reliable accuracy for identifying both not-crossing and
crossing intention.

For future work, the proposed model can be tested on
other datasets such as JAAD, and real-time applications also
can be validated by implementation on autonomous vehi-
cles. Additionally, the crossing intention estimation might
be further enhanced by appropriately considering pedestri-
ans’ previous intentions and social interactions, all of which
affect future pedestrian actions.
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