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Abstract

This study examines the effect of combining different
modalities of brain imaging on predicting intelligence.
More specifically, we took sMRI, DTI, and fMRI scans, con-
verted them into graphs, and used them as the input for two
different models. Both were then evaluated against a base-
line which used TabNet and achieved an RMSE = 0.921.
The first proposed model used Graphormer, an extension of
the classic Transformer architecture that is able to specifi-
cally encode graph structural information. Due to the com-
plexity of this model and scarcity of the data, overfitting
was experienced independent of hyperparameter configu-
ration. In a second approach the graphs were encoded via
Graph2Vec into vector embeddings, that were consequently
fed into a Multilayer Perceptron. This model managed to
outperform the baseline by achieving an RMSE = 0.708
when using only sMRI data. However, multimodality and
transfer learning still remain further topic of research. The
code is made publicly available through our github.

1. Introduction
Intelligence is the ability of an organism to observe the

outside world, think abstractly, argue, plan, learn, and solve
problems. Intelligence explains much of human behavior
and cognition. Therefore, understanding the development
of intelligence and its neurological mechanism in children
and adolescents is a very important research topic in de-
velopmental neuroscience. In addition, low intelligence in
childhood and adolescence is associated with mental disor-
ders such as schizophrenia and major depressive disorders
in adulthood [14], and recent clinical neuroscience studies
of brain cognitive development will provide important clues
to psychiatric research.

Then what characteristics of the brain can explain intel-
ligence? We chose an approach of viewing the brain as
a network. This is because intelligence can be explained
by network characteristics of the brain, such as connection
strength and connection efficiency. [9] [15] [10] [27] In fact,
the brain is in the form of a ”small-world & scale-free net-
work” in which numerous neurons form a local modular
structure but also connect to distant neurons. [6]

Multimodality refers to various types of information that
describe the same object, and in this study, it refers to dif-
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ferent types of brain imaging data obtained from the human
brain. Brain images obtained from humans include three
major modalities: structural MRI (hereinafter referred to
as sMRI), diffusion MRI (hereinafter referred to as dMRI),
and functional MRI (hereinafter referred to as fMRI). sMRI
represents the volume and distribution of gray matter, white
matter, and cerebrospinal fluid (CSF), dMRI represents the
distribution of white fiber traces, and fMRI can indirectly
measure neural activity through changes in blood flow. Fus-
ing multimodal neuroimages is in the spotlight for many
neuroscientists because other brain images can provide ad-
ditional information that one brain image does not have.
[24]

On the other hand, we are going to add the reason for
the attempt to combine multimodal neuroimages beyond the
complementarity of information that has been dealt with a
lot before. Structural data, sMRI, and dMRI, show a strong
correlation because they measure the biological structure of
the brain in different ways. Functional data, fMRI, is the
data measured above the biological structure of the brain.
To explain in more detail, from a perspective of statisti-
cal physics, functions arise spontaneously from dynamic
changes in structure, and expanding this notion to neuro-
science, cognitive function emerges from the dynamic of
extended physical and subcortical networks [20].

In fact, structural and functional networks share hubs,
and experiments predicting functional connectivity with
structural connectivity showed high levels of consistency.
[6] That is, brain image data of different modalities are
closely related to each other, and this relationship between
data must be considered when building deep learning mod-
els using multimodal neural image data. However, in cur-
rent studies using multimodal neuroimage data, data of dif-
ferent modalities tend to be treated as data of the same
modality, such as using model stacking algorithms that as-
sume that the data input to the weak learner is the same. [21]

There are two main ways to fuse data of different modal-
ities. The first is joint presentation, which is a method of
creating a fancy presentation by combining several modal-
ities. In a joint presentation, data is combined in the input
stage, or features are extracted by applying a model suitable
for each format to single model data, and the features are
converted into the input in other models. The second is co-
ordinated presentations, which create presentations in mul-
tiple modalities, and then create interactions between them.
In contrast to the framework of multimodal deep learning,
which combines different data obtained from the same tar-
get, there are also attempts to combine information on dif-
ferent scales obtained from the same target. HiDENN [22]
complementarily combines two different scales of informa-
tion - experimental data and physical data through transfer
learning.

So, how can we model the way our brain’s structural-

functional network interacts? We can offer two possibilities
here. First, structural connectivity and functional connec-
tivity share intermediate information. If this hypothesis is
correct, it can be implemented as a multi-channel multi-
modal model. Second, functional connectivity is accumu-
lated on top of structural connectivity. If this hypothesis is
correct, it can be implemented as transfer learning. There-
fore, we would like to compare the performance of the four
models - simply merged TabNet model (Figure 1A), single
modality mode (Figure 1B,1C), multi-channel model (Fig-
ure 1D), and transfer-learned model (Figure 1E) to select
one hypothesis.

In our study, we use a model called a Graphormer. First,
in order to express the brain close to its natural state, a struc-
tural graph is using sMRI’s volume and local thickness in-
formation as node, DTI’s structural connectivity FA infor-
mation as edge, and similarly, a functional graph is using
sMRI as node and rsfMRI’s functional connectivity infor-
mation as edge. Since the network hub plays an important
role as an intermediate feature in combining the structural
network and the functional network, the network hub must
be found. A Graphormer finds the centrality, which can ex-
plain the hub.

2. Method and Materials
2.1. ABCD

ABCD (Adolescent Brain Cognitive Development)
study is a large, multi-site, longitudinal study that follows
approximately 2000 9- and 10-year-old children through
late adolescence to analyze factors that influence develop-
mental trajectories from 21 research sites across the US.
[13] ABCD study aims to examine how biological factors
and the environmental factors interact and relate to devel-
opmental outcomes such as mental health and intelligence.

2.2. NIH Toolbox

The NIH toolbox is a set of simple, psychometrically
sound measurement tools for evaluating the motor, emo-
tion, sensation, and cognitive function of people aged 3 to
85. 104 verified measures and standard data are provided in
English and Spanish. [11] We used the NIH Toolbox to rep-
resent an individual’s intelligence. Some researchers found
out that some networks in our brain were associated with
fluid and crystallized intelligence. [19]

In the NIH toolbox, reading was chosen because it is
a proxy for a wide range of cognitive, educational, and
socioeconomic factors. The ability to pronounce low-
frequency words in irregular spelling has been used as an es-
timate of overall intelligence. [7]. Vocabulary represents the
vocabulary component of a language and is very related to
the general measurement of ”crystallized intelligence” [4].
Fluid intelligence evaluates the ability known to further re-
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flect biological brain processes that change over life and are
sensitive to potential acquired brain damage/disease. [3] To-
tal Composite is a combination of the abbreviated crystal-

Figure 1. Proposed models: 1A: Merged TabNet model (base-
line model), 1B: Single modality model, 1C: single modal-
ity model with Graph2Vec, 1D: concatenated modality model
with Graph2Vec, 1E: Transfer-learned multimodal mode with
Graph2Vec

lized and fluid scores. [8] Total Cognition Composite was
used for our regression analysis because total intelligence
is more suitable for common brain dynamics than fluid in-
telligence and crystallized intelligence which is focusing on
specific tasks.

2.3. TabNet (baseline)

Machine learning methods such as XGboost or Light-
GBM have been most used for tabular data input because
of interpretability and less complexity. [12]. However, ma-
chine learning has a problem that it does not provide end
to end learning. The recent development of TabNet has en-
abled the application of end-to-end deep learning with built-
in interpretability. TabNet is based on the attention mecha-
nism that softly selects features to reason from at each deci-
sion step and aggregates the processed information to make
a final prediction. The model uses sequential attention to
choose which features to deduce from at each decision step,
enabling efficient learning. TabNet learns very efficiently
in each decision-making step by explicitly selecting sparse
features using sequential attention mechanisms to utilize
relevant variables that yield high-performance model re-
sults for variables that are fully related to model capacity.
The sparsity enables more interpretable decision-making
through visualization of variable selection masks. [2]

2.4. Graphormer

Attention has become more and more the norm for var-
ious machine learning tasks. Nonetheless, it has not trans-
lated to the area of Graph Neural Networks. The recently
proposed Graphormer [5] tries to bridge that gap by adding
the structural information of the graph to the classical trans-
former [25] architecture. It does so by extending the origi-
nal idea by adding three different encodings; The centrality
encoding adds learnable centrality embeddings to the node
features that are dependent on the number of edges attached
to that specific node. By doing this, the Graphormer aims
to give very connected nodes more importance. Secondly,
spatial encoding adds a bias in the self-attention module that
is determined by the shortest distance between two nodes.
Two node-pairs that have the same shortest distance there-
fore get the same bias added, helping to encode spatial in-
formation. Lastly, the edge encoding adds a second term
in the self-attention module, which lets the network adjust
the weights for the k-nearest edges by aggregating them
in the target node. These weights can be set to −∞, the
Graphormer therefore could only look at the 1-nearest edges
and can therefore be understood as an extension of original
Graph Neural Networks. [28]

2.5. Graph2Vec

Another model that was considered was a regular Multi-
layer Perceptron taking as input graph embeddings created
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by graph2vec. [18] In this paper, Narayanan et al. propose
a embedding method very similar to that of word2vec [17]
or doc2vec [16]. Compared to those approaches, graph2vec
assumes that subgraphs compose a graph in a similar way
than words compose a sentence or document. As such, the
model takes all subgraphs as vocabulary and then trains a
skipgram model that tries to maximize the probability that
a certain subgraph is in the graph. As the vocabulary of all
subgraphs can be huge, negative sampling is used: Only a
few subgraphs are selected as negative samples and conse-
quently only the embeddings of those are trained, not the
embeddings of the whole vocabulary. To ultimately get the
graph embedding, only the weights of the single hidden lay-
ers are kept, with which now the embedding can be com-
puted.

One problem with using the graph2vec encoder is the
fact that while it allows for node features, it does not take
edge features into account. To account for this, we removed
all edges that had less connectivity than a set hyperparam-
eter(in our experiments 0.2) to make the otherwise nearly
fully connected graphs more sparse.

2.6. Proposed Model

Our proposed model mainly leverages the Graphormer
architecture, with additional layers to aggregate the features
of the graphs from different modalities and predicting our
single target, intelligence. Figure 1B illustrates the first ap-
proach, where we try to implement a single modality model
that either takes the structural connectivity of DTI data or
the functional connectivity of fMRI data to form a graph.
These graphs have the connectivity value between nodes as
the only edge feature, and the spatial coordinates X, Y, and
Z as the three node features. The Graphormer then takes
one of these graphs as input, attending to the most important
features of the graph and ultimately regressing to the desired
target. In the second step, this single modality model then
gets compared to the performance of multi-channel models
that incorporate all the data available. Figure 1C-E shows
the approach with Graph2Vec.

Figure 1C shows usage of Graph2Vec that we made vec-
tors that can be represented in embedding space. We made
structural graph data by using structural connectivity (DTI)
as edge volume and cortical thickness from sMRI as node.
Also, We made functional graph data using functional con-
nectivity (rsfMRI) as edge volume and cortical thickness
from sMRI as node. After that, we put our embedding vec-
tor to MLP to predict individual’s intelligence

Two multi-channel models are proposed: The first model
is multi-channel, which can be seen in figure 1D and ag-
gregates the embedding vector of both single modality and
tries to regress the target. The second model uses transfer-
learning, trying to use the weights of the first MLP with
structural embedding vectors in shared layers to achieve a

better performance on the training of the MLP with func-
tional connectivity embedding vectors. This can be seen in
figure 1E.

2.7. BrainNet

The brain networks were visualized with the BrainNet
Viewer [26]. It needs node and edge information. BrainNet
Viewer is a graph-theoretical network visualization tool-
box which can help researchers to visualize structural and
functional connectivity patterns. We used location of the
DTI axis as node information, and correlation between each
node as edge information. Each node has the same size, and
depth of edges represent the correlation. The stronger rela-
tion it is, the thicker in the graph edge.

3. Results

Table 1. Total intelligence prediction with TabNet

Data Test RMSE # Features
Resting state fMRI 0.977 147

Diffusion MRI 0.928 1185
Structural MRI 0.921 1184
Whole Brain

(Concatenated, RsfMRI+DTI+SMRI) 0.910 2516

We implemented baseline models, which simply con-
catenated mean beta weight of structural MRI, DTI, and
resting state fMRI in tabular form. We used the root-mean-
squared-error score as the metric of model performance.
Individually, The RMSE in the test dataset of sMRI was
0.977, DTI was 0.928, and rsfMRI was 0.921. When we
merged sMRI, DTI, rsfMRI dataset in the data input stage,
the result of our simple multimodal model was 0.910.

We implemented the singular modal model for both the
structural and functional data using Graphormer. Despite
the fact that training loss decreased in all instances of our
comprehensive and structured attempts to finetune the hy-
perparameters; dropout rate, attention dropout rate, input
dropout rate, hidden dimension, and number of layers. The
model did not gain any extra underlying information by be-
ing trained. More specifically figure 4 illustrates how the
validation loss instantly increased when training began no
matter what configuration of hyperparameters that were ap-
plied.

In our Graph2Vec+MLP experiment, The RMSE score
in the test dataset of functional was 0.717, and struct was
0.708. When we merged the functional, struct dataset in the
embedding stage, the result of our multimodal model was
0.866. In transfer learning that train in struct first and train
again in functional later, the RMSE was 0.723. Although it
was in embedding space, simply merging and transfer learn-
ing did not help to improve performance.
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Figure 2. A The brain connectivity of the one who has the high-
est intelligence, Figure 2B:The brain connectivity of the one who
has the lowest intelligence, Visualization of the brains showed that
there are clear differences between individual connectivity. There
are more connections through the brain in the lower intelligence
brain than the one for the higher intelligence. For instance, the
one who has the lowest intelligence has a total sum of connectiv-
ity of 1129, while the highest one has 939.

Figure 3. Validation loss change through the iterations various hy-
perparameters *dr: dropout rate, attdr: attention dropout rate ,in-
putdr: input dropout rate, hd: hidden dimensions , n layer: number
of layers

4. Discussion

In this paper, we tested deep neural networks trained
on the largest youth brain multimodal MRI data to predict
youth intelligence.

Figure 4. Training and validation loss through the iterations for
structural fMRI for graphormer with dropout rate:0.1, attention
dropout rate: 0.1, input dropout rate:0.1, hidden dimension:80 and
number of layers:12.

Table 2. Total intelligence prediction with Graph2Vec

Data RMSE # Features
Functional(rsfMRI+SMRI) 0.717 128

Structural(DTI+SMRI) 0.708 128

Whole Brain
(concatenated, Functional+Structural) 0.860 256

Whole Brain
(Transferred, Structural to Functional) 0.723 128

Figure 5. single modality model - structural (RMSE: 0.7078)

To begin with, in our baseline model, RMSE from the
rsfMRI (0977) and DTI (0.928) was bigger than one from
sMRI(0.921). When we simply merged the three datasets
(0.910), RMSE got slightly smaller than one from the single
modal model. In our result, compared to the added informa-
tion, the decrease in RMSE was small. This is because the
data we used is in tabular form, not reflecting the brain’s
natural state. Therefore, we needed to build a multimodal
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model which preserves the natural state of the brain like
graph form. [6]

In visualization, we found that there are more connec-
tions through the brain in lower intelligence than in the brain
with higher intelligence.1 noted that the number of den-
drites is important for efficient function to predict one’s in-
telligence. Further, it is known that brain connectivity and
IQ have negative correlation for boys. [23] Therefore, our
findings through visualization are consistent with previous
studies.

As we can see from the figure 3 and 4 validation loss was
increasing throughout the iterations and the same phenom-
ena occured in every trial with a differing combination of
hyperparameters. [5] reported that Graphormer is more eas-
ily trapped in overfitting problems because of the large size
of the model and the small size of the dataset. In addition,
models with complex structures are known to tend to over-
fit training data to small datasets such as brain MRI. [1] To
sum up, we concluded that Graphormer is too complex and
heavy for our small MRI datasets.

In the Graph2Vec model, the RMSE got smaller (0.70 ∼
0.86) overall compared to the baseline model (0.91 ∼
0.977). This is because the model was trained while main-
taining the properties of the networks as much as possi-
ble. [6] Contrary to our expectations, the method of simpli-
fying the vector in the embedding space showed a decrease
in performance. We concluded that It is hard to learn in-
teraction between different modalities by simply merging.
Brain data is especially known for big noise compared to
the signal. [1] Therefore, if we can not get extra informa-
tion about interactions in multimodalities, it might decrease
performance because of noise effects. In a similar sense,
transfer learning did not improve the performance as well.

5. Conclusion
To conclude, this paper was able to show that the per-

formance of the simple TabNet baseline was able to be
overcome by using Graph2Vec embeddings and leverag-
ing the explicit structure of the graph. However, neither
the approach of using multimodality nor transfer learning
were able to outperform the single modality error of just
sMRI and DTI as a graph data. Additionally, it could also
be seen that some of the current state of the art models
for graph classification and regression like Graphormer are
very complex, requiring a lot of data to achieve good perfor-
mance. With complex structures such as brain MRI being
even more prone to overfitting, and the dataset only con-
taining around 2000 graphs(when a lot of other common
graph datasets have more than 40, 000 graphs), the size of
the dataset seems to be one of the biggest limitations.

1(Vernon, P. A , 2013)
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