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Abstract

We propose transformer-based deep learning methods
for accurate and efficient aorta segmentation which is criti-
cal to the diagnosis of abdominal aortic aneurysms (AAAs).
The clinical treatment of AAAs requires accurate measure-
ment of aorta diameter. But the manual segmentation of the
aorta by human radiologists is very time-consuming and
shows high interobserver variability. Our deep learning
model based on UNETR architecture can accurately seg-
ment aorta with and low interobserver variability. We add
attention gates and inception structures to UNETR archi-
tecture which shows the state-of-the-art performance in or-
gan segmentation. We expected that adding attention gates
would help to capture important regions among a large set
of voxels in a 3D image. We also expected that constructing
an inception module composed of 3 convolutional pathways
which capture the contextual information in axial, sagittal,
and coronal planes, respectively, would enhance the model
performance. However, the dice score of the UNETR model
with attention gates was 81.29 and the UNETR model with
inception modules was 70.24. Those scores were lower than
the baseline UNETR model, 89.0. If the hyperparameters of
our model had been fine-tuned with enough time, our mod-

els probably would have achieved much better performance.

1. Introduction

Abdominal aortic aneurysm (AAA) refers to an enlarge-
ment of the abdominal aorta due to a weakened aortic wall.
A weakened aortic wall can involve catastrophic ruptures
which result in aortic dissection. As a result, AAA causes
approximately 8000 deaths per year in the UK and 15000
deaths per year in the USA [12, 29]. Ultrasonography is
often the first choice for the diagnosis of AAA. But ul-
trasonography can have about 3 mm errors [25], so CT is
widely used for precise measurement of aorta diameter and
determination of future clinical treatment. For a mild AAA
smaller than 5.5 cm in aorta diameter, just a rigorous follow-
up is enough for patient safety. But when the aorta diame-
ter is larger than 5.5 cm, immediate open or endovascular
surgery is required [24, 22]. Therefore accurate measure-
ment of aorta diameter through aorta segmentation is criti-
cal for the clinical decision of AAA.

In real-world clinical practice, the size of AAA is esti-
mated by manual measurement of the maximal aortic di-
ameter. However, it is indeed very time-consuming and of-
ten reveals high interobserver variability. This poses a seri-
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ous problem in the diagnosis of abdominal aorta aneurysms.
About 35% of abdominal arctic aneurysms are missed dur-
ing regular check-ups [8], only late-stage AAAs that aorta
ruptures impend are diagnosed [21].

In recent days, a computer-aided diagnosis system
(CAD) based on machine learning techniques, especially
deep learning based on neural networks, has been widely
used in medical imaging. Many studies have reported that
using CAD often resulted in a better accuracy compared to
human experts and faster diagnostic time regardless of task:
classification of positive and negative images [1], lesion de-
tections in various organs [27], and segmentation of organs
and lesions [16]. Most studies also report that CAD has
a very small interobserver variability, which is an inherent
feature of CAD. Consequently, aorta segmentation through
CAD can solve the problems of manual segmentation.

So in this study, we applied deep learning-based CAD
to aorta segmentation. Specifically, we propose a new
model which is based on UNETR architecture. UNETR ex-
ploited transformer as an encoder in U-Net-like structure
and achieved state-of-the-art performance in organ segmen-
tation [14]. We introduced the attention gate and inception
module to UNETR architecture for better aorta segmenta-
tion. Attention gate helps to focus on the important input
data, and the inception module makes less use of comput-
ing power with better model performance. We tested those
new additional features with aorta segmentation.

Our main contributions are outlined as follows:

- We present a way to increase the efficiency of CT scans
in the real clinical process. In a real-world situation, a radi-
ologist requires a long time to properly segment the region
of interest which is essential for proper diagnosis. Deep
learning technology has the potential to greatly enhance the
efficiency of CT scans by reducing the segmentation time.

- We propose the effectiveness of the attention gate to the
visual transformer model. Since a transformer can remem-
ber large contextual features of input data, the segmentation
model using a transformer can be better at understanding
the positional correlations between pixels. Additional at-
tention gate boosts the understanding by highlighting im-
portant pixels among large data of pixels.

- We enhance the ability of the model by adding incep-
tion modules to the visual transformer model. 3 pathways
specialized in capturing axial, sagittal, and coronal contex-
tual information, respectively, consist of our inception mod-
ule. We replace simple 3D convolutions of the original UN-
ETR model into our inception modules for a better under-
standing of complex 3D images.

2. Related Work
2.1. Aorta Segmentation

One main branch of medical AI is the segmentation of
various organs, lesions, and so on. Organ segmentation is
an important medical task since the volume and other fea-
tures that can be extracted from the segmentation can be an
important marker for diagnosing diseases.

Among organ segmentation, aorta segmentation is one
of the most important organ segmentation since its segmen-
tation result can be directly used to diagnose various dis-
eases. For example, the results of arterial wall segmenta-
tion on CT images were directly applied to diagnosis and
classification of aneurysmal ascending aorta[9] and abdom-
inal aorta [15, 18]. Aortic dissection, one of the most crit-
ical acute aortic diseases, is also diagnosed and segmented
regardless of its type [5, 7, 20]. Many worsening aortic
diseases accompany the calcification of the aorta. Neural
networks such as Mask R-CNN have shown comparable
results to human experts in measuring the calcification of
aorta [13, 17]. Deep learning methods also provide a quan-
tification of hemodynamic features such as aortic flow, peak
velocity, and dimensions on MRI images [3].

2.2. Visual Transformer

The transformer was originally developed for Natural
Language Processing (NLP) since NLP requires to remem-
ber large contexture features of input data [31]. Convolu-
tional Neural Networks (CNNs) were very good at captur-
ing spatial structure. But since CNN has a limited receptive
field for each layer, its ability to capture large spatial struc-
tures is limited. Many studies have suggested that using a
transformer as an encoder of the segmentation model can be
a solution to this problem.

For example, ViT exploits a pure transformer applied to
sequences of image patches for image classification task
[10]. DeiT also utilizes Convolution-free transformer ar-
chitecture with a distillation token that ensures the attention
[30]. Those image classification models are widely used in
segmentation models as a backbone model. Max-DeepLab
uses bipartite matching and dual-path transformer and CNN
for semantic segmentation [33]. VisTR conducts instance
sequence matching and segmentation in video clips based
on visual transformer [34].

Many models are developed for applications in the med-
ical domain. Since many segmentation models in the med-
ical domain use U-net or its variants, most transformer ap-
plications are also incorporated into U-net-like structures
and work as an encoder. TransUNet makes hybrid use of
CNN and Transformer as an encoder with cascaded upsam-
pler [6]. Swin-Unet formulated its transformer block with
multi-head self-attention and shifted window-based multi-
head self-attention [4]. UCTransNet cleverly used multi-
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head cross attention and channel-wise cross attention to
connect encoder and decoder layer [32]. All of the models
listed above have shown much better organ segmentation
results than the original ViT model.

3. Method
Our model is built upon the UNETR architecure [14].

We separately added attention gates and inception modules
to UNETR model and built 2 new models.

3.1. UNETR Architecture

The overview of UNETR architecture is shown in Figure
1. Like other segmentation models in the medical domain,
UNETR utilizes the encoder and decoder in the U-Net-like
structure. The encoder layer consists of stacked transform-
ers which are connected to decoder layers by skip connec-
tions.

Transformer often gets its input as 1D sequence, so 3D
input volume x ∈ RH×W×D×C with resolution (H,W,D)
and C input channels is flattened into 1D sequence in
this model. Then the sequence are divided into uniform
non-overlapping patches where xv ∈ RN×P 3×C where
(P, P, P ) is the resolution of each patches and N = H ×
W × D/P 3 is the length of the sequence. A linear layer
project those patches into a dimensional embedding space.
A 1D learnable positional embedding Epos ∈ RN×K is
added to preserve the spatial information as follows:

z0 = [x1
vE;x2

vE; . . . ;xNv E] +Epos (1)

The embedded input then pass through a stack of
transformer blocks consisting of multi-head self-attention
(MSA) and multilayer perceptron (MLP) sublayers as fol-
lows:

z′i = MSA(Norm(zi − 1)) + zi−1, i = 1 . . . L, (2)
zi = MSA(Norm(zi − 1)) + z′i−1, i = 1 . . . L, (3)

where Norm() denotes layer normalization [2], i is the
intermediate block identifier, and L is the number of trans-
former layers. In this model, two layers with GELU activa-
tion function consist of the MLP sublayers, while the MSA
sublayers have n parallel self-attention (SA) heads architec-
ture.

SA block learns how to map between a query q and the
corresponding key k which ultimately focuses on embedded
sequence v in z ∈ RN×K . The attention weights A repre-
sents the similarity between z and their key-value pairs as
follows:

A = Softmax
(
qkT /

√
Kh

)
(4)

whereKh = K/n is a scaling factor for prevent the vari-
ance of the number of parameters. Each SA heads exploit
the computed attention weight to compute its output as:

SA(z) =AV (5)

Then MSA sublayer compute the output as follows with
its SA blocks:

MSA(z) = [SA1(z); SA2(z); . . . ; SAn(z)](W)msa (6)

where Wmsa ∈ Rn·Kh×K denotes the multi-headed
learnable weights.

Just like U-Net architecture, spatial information from
multiple resolutions is stored via skip connection [26]. In
the decoding layer, encoded representations are expanded
through deconvolution which increases the resolution by a
factor of 2. Then the information from the skip connection
is concatenated. Upsized representations are then fed into
3 × 3 × 3 convolutional layers twice. This deconvolution
process is repeated by 4 times. The decoded data is fed into
1×1×1 convolutional layer with a softmax activation func-
tions. This merges channel-wise information and generates
a voxel-wise semantic segmentation picture.

The loss function of the UNETR is a hybridization of
soft dice loss and cross-entropy loss:

L(G, Y ) = 1− 2

J

J∑
j=1

( ∑I
i=1Gi,jYi,j∑I

i=1G
2
i.j +

∑I
i=1 Y

2
i,j

)

−1

I

I∑
i=1

J∑
j=1

Gi,j log Yi,j (7)

where I is the number of voxels; J is the number of
classes; Yi,j is the probability of output; Gi,j is one-hot
encoded ground truth for class j at voxel i, respectively.

3.2. Attention gate

U-Net-like architectures combine intermediate feature
maps from the encoder outputs via skip connection to the
decoding sequence by concatenating the feature maps to
decoded images and applying convolutional layers. The
underlying insight is that intermediate feature maps infor-
mation can indicate what is important for expanding the
contracted images. This insight is similar to what attention
gates aim to achieve. A limitation of convolutional layers
during expanding path is that it uses only small neighboring
pixels to learn how to mix the feature maps and contracted
images. An attention gate can overcome the limitation of
convolutional layers by learning how to use that informa-
tion in the context of the entire image [23].
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Figure 1. The overview of UNETR architecture, from [14]. The 3D input array is flattened into a 1D sequence and embedded by a linear
layer with positional embedding. Then the sequence is encoded by a stack of transformers while its low-level features are stored via skip
connection. The encoded sequence is then decoded through deconvolution layers with the concatenation of information stored in skip
connection.

The architecture of the UNETR+attention gate model is
shown in Figure 2. The attention gate aims to learn the at-
tention coefficient αi ∈ [0, 1]. The attention coefficient in-
dicates what pixels to focus from the input feature maps by
multiplying itself to the feature maps in element-wise man-
ner: x̂li,c = xli,c·li. The contextual information is originally
stored in the gating vector gi ∈ RFg . Then additive atten-
tion method is used to compute the final attention scores.
Additive attention is computationally more expensive than
multiplicative attention, but it is known that additive atten-
tion reveals better accuracy [19]. The formulation to com-
pute the attention coefficient αi ∈ [0, 1] is:

qlatt = ψT
(
σ1
(
WT
x x

l
i +WT

g g
l
i + bg

))
+ bψ (8)

αli = σ2
(
qatt

l
(
xli, gi; Θatt

))
(9)

where σ1(xi,c) = max(0, xi,c) is the ReLU activation
function and σ2(xi,c = 1

1+exp(−xi,c)
is the sigmoid activa-

tion function. Softmax activation function can also be con-
sidered, but sigmoid activation function is preferred since
softmax activation function yields sparser activations. The
parameters of the attention gates are: linear transformations
Wx ∈ RFl×Fint , Wg ∈ RFg×Fint , ψ ∈ RFint×1 and bias
terms bψinR, bg ∈ RFint . The linear transformations are

comptue channel-wisely through 1× 1× 1 convolution lay-
ers.

3.3. Inception Module

Better model performance and generalizability can be
obtained by ensembling multiple individual models [11].
The inception module cleverly exploited the insight of en-
sembling. Instead of using a single convolutional pathway,
the inception module has multiple convolutional pathways.
Each pathway has different convolutional layers in size, di-
mension, and so on, so each of them captures different fea-
tures from the input images. By combining information
from each pathway with a different specialty, the inception
model is better to capture complex contextual information
[28].

The original UNETR model applies 3D convolutional
layers to capture the 3D contextual information. But sim-
ply using 3D convolutions has several problems. First, 3D
convolutions are computationally expensive. A 3 × 3 × 3
convolution has 3 times more parameters than a 3×3 convo-
lution. Since dot product is applied to entire 3D images and
3D convolutions, the number of operations in 3D convolu-
tions soars compared to 2D convolution. Second, 3D con-
volutions may not be enough to capture the complexity of
3D images which have much more entanglements between
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Figure 2. The overview of UNETR+attention gate architecture. The original UNETR model uses deconvolution with concatenated feature
map outputs from encoder transformer layers. By using attention gates instead of just concatenating feature maps, the model can capture
more important pixels which are helpful to identify a clearer context.

voxels. But the computational limitation of 3D convolutions
puts a limit on model depth.

We tried to overcome those problems by using an incep-
tion module instead of a single 3D convolution. The overall
architecture of our model is shown in Figure 3. The struc-
ture of our inception module is outlined in Figure 4. To
reduce the computational overhead, input from the previous
layer is processed by 1 convolutions. Then 3 paths examine
axial, sagittal, coronal planes by applying 2D convolutions,
respectively. Each path learns 3D image features by apply-
ing an additional 1D convolutions. All of those paths are
concatenated at the last step. We replaced 3D convolutions
in UNETR model with inception modules, as shown in Fig-
ure 3. We also applied inception modules in skip connec-
tions for the better composition of feature maps.

4. Experiment
4.1. Dataset

We applied our model to a data set from ‘Beyond the
Cranial Vault’ (BTCV) segmentation challenge. The ab-
dominal CT images of the BTCV data set were acquired at
the Vanderbilt University Medical Center (VUMC) for on-
going colorectal cancers chemotherapy trial or a retrospec-
tive ventral hernia study. The BTCV data set include 50

abdomen CTs with 13 organs including the aorta are man-
ually labeled by trained radiologists or radiological oncol-
ogist. For our purpose, we only used aorta masks from the
data set. Images have different slice thicknesses from 2.5
mm to 5.0 mm. The distribution of in-plane resolution is
also various from 0.54 × 0.54 mm2 to 0.98 × 0.98 mm2

with variable volume sizes (512× 512× 85 – 512× 512×
198) and field of views (approx.280 × 280 × 280 mm3 –
500× 500× 650mm3).

4.2. Evaluation Metric

We compared the accuracy of segmentation to the refer-
ence standard segmentation using Dice score. For a given
semantic class, let Gi and Pi denote the ground truth and
prediction values for voxel i and G and P denote ground
truth and prediction segmentation maps respectively. The
Dice score metrics are defined as

Dice(G,P ) =
2
∑I
i=1GiPi∑I

i=1Gi +
∑I
i=1 Pi

(10)

4.3. Implementation Details

UNETR + Attention Gate model and UNETR + Incep-
tion module were trained in different environment. UN-
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Figure 3. The overview of UNETR+inception module architecture. The original UNETR model only uses 3D convolutions to extract
contextual information. As GoogLeNet proposed, models with parallel convolutional paths are better at capturing image features [28]
Our inception module parallel learns image features from axial, sagittal, and coronal planes, respectively, instead of just learning pure 3D
features by 3D convolutions as done in the original UNETR model.

ETR + Attention Gate : We implement this model in Py-
Torch and the open-source MONAI framework. The model
was trained using 2 NVIDIA GTX 2080Ti graphic cards.
For the attention gated model, we used UNETR pre-trained
weights for transformer, deconvolution and convolution lay-
ers. Apart from the convolutional layers, the attention gates
are initialized with the He normal initializaion method.
Without any freezing, all parameters are fine tuned and
transfer learning alleviates the computational cost.

UNETR + Inception module : we implement our model
in PyTorch and the open-source MONAI framework. The
model was trained using 1 NVIDIA Titan V graphic card.
For this model, transfer learning was not used.

All models were trained with a batch size of 1, using the
AdamW optimizer with an initial learning rate of 0.0001
and weight decay of 0.00001 for 5,000 iterations. In order
to focus on the segmentation of aorta, we discarded all la-
bels except the aorta label from the BTCV dataset. As the
training dataset only contains 30 images, data augmentation
was used to avoid early overfitting. For data augmentation,
we used strategies such as random flip in axial, sagittal, and
coronal views, random rotation of 90, 180, 270 degrees, and
intensity shifts. Our transformer-based encoder follows the
ViT-B16[10] architecture with L = 12 layers, an embedding

Methods Aorta Segmentation(CT)
TransUNet 0.889

CoTr 0.920
SETR NUP 0.867

ASPP 0.918
UNETR 0.890

UNETR+Inception 0.702
UNETR+AG 0.813

Table 1. Quantitative comparions of segmentation performance of
aorta segmentation in the BTCV test set. All results obtained from
BTCV leaderboard.

size of K = 768. We used a patch resolution of 16 x 16 x
16. For training, the training dataset was split into 24 im-
ages and 6 images for the training set and validation set ac-
cordingly. The test dataset contains 20 images without any
labels. For inference, we used a sliding window approach
with the same resolution as our input resolution and an over-
lap portion of 0.8 between the neighboring patches, so that
the input image will be padded when the ROI size is larger
than the inputs’ spatial size during inference.
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Figure 4. The detailed structure of the inception module in our
model. 3 paths are specialized to capture the contexture informa-
tion in axial, sagittal, and coronal planes, respectively. The module
is better at resolving the complex contexture information of a 3D
image than just a single 3D convolutional layer. The most left path
is a 1x1x1 convolution for channel reduction.

Figure 5. Qualitative visualization of outputs from our models.
Axial, sagittal, and coronal views are shown for each model and
ground truth.

4.4. Results and Evaluations

Our attention gate model achieves an overall average
Dice score of 81.29 and our inception model achieves an
average dice score of a 70.24 as shown in Table 1. Our mod-
els does not outperform the original UNETR model, but our

models outperform previous CNN encoder-decoder based
models such as UNet-3D and attention-UNet. This validates
the effectiveness of transformers as encoders. We could
not fine-tune the hyperparamteres of our model due to the
time-limit, while the baseline models had been highly op-
timized to the competition. We believe the performance of
our models will be improved after dedicated optimization of
the hyperparameters. Qualitative multi-organ segmentation
comparisons are presented in Figure 5. UNETR+Attention
gate model shows better results overall in terms of local-
ization of pixels around contour regions. Results from the
UNETR+Inception model show that the context informa-
tion learning is somewhat durable but the localization abil-
ity is not robust enough near the contour regions.

5. Conclusion

This paper introduces a transformer-based architectures
for semantic segmentation of volumetric medical images
by redefining this task a 1D sequence-to-sequence predic-
tion problem. Not only to capture global contextual rep-
resentation and learn long-range dependencies, but also to
increase the model’s capacity to focus on important parts
in intermediate feature maps, we proposed attention gates
and inception blocks. Although our proposed models did
not outperform UNETR for aorta segmentation, we could
observe the effectiveness of transformer based encoders on
general volumetric medical images although the hyperpa-
rameters of the our model was not fine-turned. More dis-
cussion is needed on the usage of inception blocks in med-
ical image segmentation as the localization around contour
regions turn out to be poorer than previous models.
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van Rij. Measuring abdominal aortic diameters in routine
abdominal computed tomography scans and implications for
abdominal aortic aneurysm screening. Journal of vascular
surgery, 65(6):1637–1642, 2017. 2

[9] Albert Comelli, Navdeep Dahiya, Alessandro Stefano,
Viviana Benfante, Giovanni Gentile, Valentina Agnese,
Giuseppe M Raffa, Michele Pilato, Anthony Yezzi, Giovanni
Petrucci, et al. Deep learning approach for the segmentation
of aneurysmal ascending aorta. Biomedical Engineering Let-
ters, 11(1):15–24, 2021. 2

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2, 6

[11] MA Ganaie, Minghui Hu, et al. Ensemble deep learning: A
review. arXiv preprint arXiv:2104.02395, 2021. 4

[12] Richard F Gillum. Epidemiology of aortic aneurysm in the
united states. Journal of clinical epidemiology, 48(11):1289–
1298, 1995. 1

[13] Peter M Graffy, Jiamin Liu, Stacy O’Connor, Ronald M
Summers, and Perry J Pickhardt. Automated segmentation
and quantification of aortic calcification at abdominal ct: ap-
plication of a deep learning-based algorithm to a longitudinal
screening cohort. Abdominal Radiology, 44(8):2921–2928,
2019. 2

[14] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong
Yang, Andriy Myronenko, Bennett Landman, Holger Roth,
and Daguang Xu. Unetr: Transformers for 3d medical image
segmentation. arXiv preprint arXiv:2103.10504, 2021. 2, 3,
4

[15] Ho Aik Hong and UU Sheikh. Automatic detection, segmen-
tation and classification of abdominal aortic aneurysm using
deep learning. In 2016 IEEE 12th International Colloquium
on Signal Processing & Its Applications (CSPA), pages 242–
246. IEEE, 2016. 2

[16] Carson Lam, Caroline Yu, Laura Huang, and Daniel Ru-
bin. Retinal lesion detection with deep learning using im-
age patches. Investigative ophthalmology & visual science,
59(1):590–596, 2018. 2

[17] Chun Yu Liu, Chun Xiang Tang, Xiao Lei Zhang, Sui Chen,
Yuan Xie, Xin Yuan Zhang, Hong Yan Qiao, Chang Sheng

Zhou, Peng Peng Xu, Meng Jie Lu, et al. Deep learning
powered coronary ct angiography for detecting obstructive
coronary artery disease: The effect of reader experience, cal-
cification and image quality. European Journal of Radiology,
142:109835, 2021. 2

[18] Jen-Tang Lu, Rupert Brooks, Stefan Hahn, Jin Chen, Varun
Buch, Gopal Kotecha, Katherine P Andriole, Brian Ghosh-
hajra, Joel Pinto, Paul Vozila, et al. Deepaaa: clinically
applicable and generalizable detection of abdominal aortic
aneurysm using deep learning. In International Conference
on Medical Image Computing and Computer-Assisted Inter-
vention, pages 723–731. Springer, 2019. 2

[19] Minh-Thang Luong, Hieu Pham, and Christopher D Man-
ning. Effective approaches to attention-based neural machine
translation. arXiv preprint arXiv:1508.04025, 2015. 4

[20] Tianling Lyu, Guanyu Yang, Xingran Zhao, Huazhong Shu,
Limin Luo, Duanduan Chen, Jiang Xiong, Jian Yang, Shuo
Li, Jean-Louis Coatrieux, et al. Dissected aorta segmenta-
tion using convolutional neural networks. Computer Meth-
ods and Programs in Biomedicine, 211:106417, 2021. 2

[21] Matthew W Mell, Mark A Hlatky, Jacqueline B Shreibati,
Ronald L Dalman, and Laurence C Baker. Late diagnosis
of abdominal aortic aneurysms substantiates underutilization
of abdominal aortic aneurysm screening for medicare benefi-
ciaries. Journal of vascular surgery, 57(6):1519–1523, 2013.
2

[22] Fatima S Merali and Sonia S Anand. Immediate re-
pair compared with surveillance of small abdominal aor-
tic aneurysms. Vascular medicine (London, England),
7(3):249–250, 2002. 1

[23] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee,
Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven
McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Atten-
tion u-net: Learning where to look for the pancreas. arXiv
preprint arXiv:1804.03999, 2018. 3

[24] The UK Small Aneurysm Trial Participants. Mortality re-
sults for randomised controlled trial of early elective surgery
or ultrasonographic surveillance for small abdominal aortic
aneurysms. The Lancet, 352(9141):1649–1655, 1998. 1

[25] Denis S Quill, Mary Paula Colgan, and David S Sumner.
Ultrasonic screening for the detection of abdominal aortic
aneurysms. Surgical Clinics of North America, 69(4):713–
720, 1989. 1

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 3

[27] Sanjay Saxena, Neeraj Sharma, Shiru Sharma, SK Singh,
and Ashish Verma. An automated system for atlas based
multiple organ segmentation of abdominal ct images. Jour-
nal of Advances in Mathematics and Computer Science,
pages 1–14, 2016. 2

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on

8



computer vision and pattern recognition, pages 1–9, 2015.
4, 6

[29] MM Thompson. Controlling the expansion of abdominal
aortic aneurysms. Journal of British Surgery, 90(8):897–
898, 2003. 1

[30] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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