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Abstract

High-resolution rainfall information is very important
weather information because it can minimize meteorolog-
ical disasters such as localized heavy rains. In this paper,
we will propose a model that can recognize rainfall depth
through CCTV videos. As rainfall in a single RGB image is
hard to observed, it is essential to use optical flow to gain
temporal raindrop movement. We use S3D, spatial and tem-
poral separable 3D convolutions for our task because S3D
is best-performing model among models that use optical
flow and also computationally efficient. AWS station which
measures precipitation and CCTV were installed on the roof
of the same building (Building 49, SNU) and we selected the
data from 2020-06–2020-09 and 2021-06–2021-09, where
the precipitation is heavy. When we sample 8 frames from
5-minute video and train with batch size of 32, the accuracy
is 64.32%. It is good result considering that precise rain-
fall classification in units of 0.1mm is given as a task in our
research and we are short of computing power so that we
only use 8, 16, 24 frames among 64 frames that we sample
and we could not increase the batch size. We think that this
could be improved through more diverse studies in the fu-
ture; change of labels for classification, division of CCTV
videos into day and night, training with more GPU, and so
on.

1. Introduction

Rainfall is a very important factor in the water circulation
process within the Earth and is closely related to global cli-
mate change and natural disasters. High-resolution rainfall
information is very important weather information because
it can minimize meteorological disasters such as localized
heavy rains [1]. In addition, high-resolution rainfall infor-
mation may be used to increase the accuracy of the model
as an initial value of the numerical forecast model.

Currently, the Korea Meteorological Administration
(KMA) installs the Automatic Weather System (AWS) na-
tionwide to collect weather information. However, AWS
stations are located 30 in Seoul and 980 nationwide, mak-
ing it difficult to collect high-resolution rainfall information.

Therefore, in this paper, we intend to estimate the rainfall
depth through CCTV video data. If the rainfall depth can
be estimated through CCTV images, high-resolution rain-
fall information can be obtained using CCTV data nation-
wide.

In this paper, we will estimate the rainfall from CCTV
images using Separable 3D CNN (S3D) [2], which show
excellent performance in recognizing the behavior of im-
ages. The composition of this paper is as follows. Chapter
2 shows related works, and Chapter 3 explains S3D’s ad-
vantages and architecture. Chapter 4 discusses experimen-
tal setup, Chapter 5 shows the result of experiments, and
Chapter 6 presents conclusions.

2. Related Works
Rainfall recognition research can be thought of as an im-

age classification/regression task in the field of computer vi-
sion. Therefore, it is possible to estimate the rainfall depth
by understanding the rainfall space pattern that changes in
real time in the image through the model used in action
recognition.

Ko et al. proposed a rainfall recognition method based
on CNN-LSTM in images [5]. In this study, features were
extracted through a pre-learned CNN model (Inception V3
[9]) for each frame of the image, and this was entered into
the LSTM in the form of sequential data. The model was
learned by dividing the rainfall in 10 minutes into 0.2, 0.5,
and 1 mm, and the accuracy was about 80%.

Li et al. predicted rainfall through Temporal Segment
Networks (TSN) [6]. In this study, after preprocessing of
the observed rainfall, the rainfall was cumulated in units of
5 minutes and labeled with 0.1, 0.2, and 0.3mm to learn,
and the accuracy was 70.8%.

Both models of the papers showed good results in es-
timating rainfall, but they have several limitations. First, in
both papers, the distances between AWS stations and CCTV
are far. The distance between the CCTV and the AWS sta-
tion may lead to a mismatch between the image and the ac-
tual rainfall. In this paper, AWS and CCTV were installed
on the roof of the same building (Building 49, SNU) to re-
move this mismatch. In addition, in this paper, the amount
of data used for learning is much larger than that of the pre-



vious two papers. In the case of CNN-LSTM model, nine
10-minute-long videos were divided into 3-second videos
and then used for training, and in the case of TSN model,
177 5-minute-long videos were used. In contrast, this pa-
per intends to create a more accurate rainfall recognition
model by training videos for 70 days of precipitation over
two years which are a much larger amount of data compared
to previous study.

3. Models
3.1. Why we chose S3D?

In this paper, Separable 3D CNN (S3D) [12], combined
model of two-stream and one-stream approaches for video
recognition, is used for our research. Conventionally, there
are two approach for video action recognition, two-stream
fusion and 3D convolution. Two-stream approach for video
action recognition is composed of the spatial stream and
temporal stream, and the results of each streams are fused
to show video-level recognition score. For spatial stream, a
sampled single RGB image is fed to learn appearance, and
stacked optical flow fields are fed to learn motion. [7] One-
stream approach learned the spatial and temporal informa-
tion at once using 3D CNNs. One-stream approach is com-
putationally expensive and the performance of using optical
flow for temporal information is outperforming. Therefore,
there are models that combined one-stream approach and
two-stream approach like I3D, S3D. These models inflated
the 3D CNNs into 2D CNNs and the optical flow fields are
fed into temporal stream. Among those models, S3D is se-
lected for recognizing rainfall depth.

The reason for selecting S3D is that it uses optical flow
fields. Optical flow is the distribution of apparent veloci-
ties of movement of brightness patterns in an image [4]. As
rainfall in a single RGB image is hard to observed unless
heavy downpour occur [6], temporal information of rain-
drop movement is important for rainfall depth recognition.
By using S3D, temporal information can be fed by optical
flow fileds. Also the light issue, usually a big issue for the
outdoor image processing, can be treated by using optical
flow. Our dataset is outdoor CCTV videos and it can be very
sensitive to light environment such as cloudy and clean sky,
or day and night.

I3D also uses optical flow fields, but S3D model is lighter
than I3D. Considering the dataset we have and the comput-
ing power, we decide to use S3D for our research.

3.2. S3D

S3D is an upgrade version of I3D [2] for video recog-
nition. By retaining 3D temporal convolutions at the top
layer, and using 2D temporal convolutions for the lower
layer (closer to the pixels), S3D model became faster and
more accurate than I3D. Moreover, replacing 3D convolu-

tions with spatial and temporal separable 3D convolution
(kt x k x k by 1 x k x k and kt x 1 x 1) lead to less param-
eters and more computationally efficient than standard 3D
convolution [12].

The architecture of S3D is similar to I3D, and I3D is
similar to GoogLeNet [8]. The I3D model is 3D version of
GoogLeNet and the S3D changed 3D convolutions to spa-
tial and temporal separable 3D convolution like Inception-
v2,v3 [9]

Our model is simplified S3D model(Fig. 1). Only
two Sep-Inc block is used. One stream is for RGB
frames(spatio) and the other stream is for optical flow
frames(temporal). To concatenate two streams, we com-
pared score average late fusion and late feature fusion by
concatenating after flattening. Between them, score average
fusion is widely used, and we adopted it.

4. Experiment Setup

4.1. Datasets and Observation Devices

Precipitation data was acquired from Korean government
AWS record1, on 509 post which is located in Seoul na-
tional university. CCTV videos were acquired courtesy of
the Graduate School of Environmental Studies. The cam-
era is installed nearby the AWS device. CCTV footage is
30FPS, 1920 pixels width, 1080 pixels height. You can see
the CCTV specification from Table. 1 We selected the data
from 2020-06 – 2020-09 and 2021-06 – 2021-09, where the
precipitation is heavy. The dataset overview is provided in
Table. 2

Table 1. CCTV specification

Item Value
Frame size 1920*1080
Video length 5 minutes
Frames per second (fps) 30
Numbers of frames 9000

Table 2. Dataset Overview

PPPPPPPPYear
Label 5-minute rainfall depth(mm)

0.1 0.2 0.3 0.4 0.5 Total
2020 569 925 548 366 338 2746
2021 413 230 198 179 123 1143
Sum 982 1161 747 548 461 3889

1https://data.kma.go.kr/data/grnd/selectAwsRltmList.do



Figure 1. Structure of S3D model that we use

Figure 2. Capture of CCTV video

4.2. Preprocessing

4.2.1 Precipitation Labelling

Rainfall recognition is performed on frames and total pre-
cipitation in a fixed duration of time. Li et al. choosed 5
minutes rainfall value to train the model [6], and we use
same setting for this study.

AWS periodically measures the precipitation. For ex-
ample, Korean Meteorological Administration provides the
rainfall data measured every minute. However the precipi-
tation value is sporadic because of the mechanism of AWS
device. It collects the rain in a container, and when water
level reaches threshold value the device records it and emp-
ties the container. Threshold depth of KMA AWS is 0.5
mm, therefore if the precipitation is 0.1 mm/min the de-
vice will report 0 mm rainfall for 4 minutes and 0.5 mm
at the fifth minute. To prevent this zero-rainfall-but-raining

data from being confused with non-rainfall data, additional
sensor provides the information whether it is raining or not.

There are four types of data by the rainfall value and
whether it is raining.

1. Non-rainfall : zero rainfall, not raining

2. Zero-rainfall : zero rainfall, raining

3. Nonzero-rainfall : nonzero rainfall, raining

4. False-rainfall : nonzero rainfall, not raining

Figure 3. Estimate 5-minute rainfall depth.

What we want to pay attention to is zero-rainfalls fol-
lowed by nonzero-rainfall. Here, the data needs to be aver-
aged into continuous rainfall and then accumulated before



being converted to label. We apply the following rules for
averaging.

• When zero-rainfalls are followed by nonzero-rainfall,
continuous zero-rainfalls and one nonzero-rainfall
which terminates them are grouped and averaged. In
the Fig. 3, precipitation between 22:18 and 22:21 is
averaged into 0.125 (which is dividing 0.5 by 4)

• If zero-rainfalls are not followed by nonzero-rainfall,
ignore these zero-rainfalls. In the Fig. 3, precipitation
21:56 to 21:58 is ignored.

• Non-rainfalls and Nonzero-rainfalls not following by
zero-rainfalls are left intact.

• False-rainfalls are ignored.

The second rule requires further justification. The cause
of this is either one of these:

• Precipitation is so small that the rain ceases before
reaching the threshold value.

• Rain detection sensor malfunctioned.

We cannot tell the actual rainfall here, so we set it NaN
and ignore this data. The drawback of this approach is that
if the container is partially filled without being measured
and rain starts again shortly after, previous rainfall might be
added up. However the benefit, which is that we can avoid
the error from sensor malfunction, exceeds the drawback
therefore we adopt this strategy.

After averaging out, the data area accumulated by each
five neighbouring data to calculate 5-min rainfall.

4.2.2 Temporal Sampling

Full 5-min video, which is 9,000 frames with 30 FPS, is to
large to be directly fed to the module. Therefore we apply
temporal sampling and spatial sampling.

Temporal sampling is done be randomly selecting 72
frames from 9,000 total frames. To apply optical flow, the
frames must be continuous. However setting all 72 frames
to be continuous cannot capture the change of precipita-
tion during 5-minutes. Therefore we segment the frames
into eight equal-length intervals and sample 9 continuous
frames from each interval. This ensures the random frames
to be continuous and evenly picked from the entire 5 minute
frames.

To train S3D model, we need RGB frames and optical
flow frames. From 8 groups of 9 frames, 8 optical flows are
retrieved. This makes up to total 64 optical flow images.
To make the number of RGB frames same with the number
of optical flow images, we abandon the first frame of each
group and save only the rest. As a result, we have 8 groups

Figure 4. Temporal Sampling method

of 8 RGB frames saved, which make up to total 64 RGB
images.

However, later it turned out that 64 RGB images and 64
optical flow images were too much for our computer. Due
to the lack of machine performance, we had to use only a
small number of images from 64 set. We tried 8, 16, and 24
images from the start in 64 images for training because of
this reason.

4.2.3 Spatial Sampling

We use three ways of spatial sampling method. The S3D
model basically uses an image of 224×224 size as input.
Since our original image has a resolution of 1920×1080, we
need to convert it to 224×224 size image. [12] resized input
frames to 256×256 and then took random (for training) or
center (for evaluation) crop of size 224×224. If we follow
the way they used, the movement of the raindrops can be
erased by resizing it to 256×256 size because the size of the
raindrop is in pixel units which is so small. Therefore, we
apply several sampling ways to preserve the movement of
raindrops as follows. Fig. 5 delineates this.

1. Take 224×224 center crop from the original image.

2. Take 1080×1080 center crop from the original image,
and then resize it to 224×224.

3. Take 1080×1080 center crop from the original image,
resized it to 540×540, and then take 224×224 center
crop.

Keeping the similarity to original frame and enlarging
the raindrop are in trade-off relation. Method 1 only con-
sider the center of original image. Method 2 almost pre-
serves the original image and method 3 is the most balanced
approach. We will test each method and compare the accu-
racy.

4.2.4 Optical flow

As mentioned earlier, it is important to use optical flow to
recognize precipitation well through CCTV or video. To ef-
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Figure 5. (a) Method 1, (b) Method 2, (c) Method 3

fectively detect raindrop in videos with fixed filming loca-
tions such as CCTV, separation from the background can
have effective results [6]. Images mainly used in temporal
streams use images that emphasize the movement of sub-
jects separated from the background to effectively show
frame changes over time. Therefore, I would like to com-
pare the accuracy of the following four versions. Fig. 6
shows our preprocessed image sample.

1. Grey difference

In addition to optical flow, RGB difference and warped
optical flow were additionally used in the TSN as input
for temporal stream [10]. RGB difference calculates
difference between frames over R, G, and B bands re-
spectively. It only uses simple differences, which has
a limitation that it can be used only when the color or
contrast change of the background and object is small
in a fixed position camera. Precipitation images can be
applied because the location is always fixed, and there
is no significant difference in color or contrast in units
of frames. When we filter grey scale for the frames
and calculate grey difference, it catches temporal dif-
ference of raindrop well compared to RGB difference.
For this reason, we use grey difference as a preprocess
method.

2. Dense Optical flow : TVL1, Farnebacks

The optical flow is divided into a sparse optical flow
and a dense optical flow according to the calculation
method. Since sparse optical flow tracks using fea-
ture points such as corners, the computation amount is
small. However, compared to the sparse optical flow,
dense optical flow takes longer time but is more ac-
curate because it calculates all the changes for each
pixel. We conduct a test on two methods of dense opti-
cal flow. This is because the size of raindrops is small,
requiring pixel-by-pixel calculation and high accuracy.
Among them, the most widely used Farneback and
TVL1 were tested. The Farneback optical flow pro-
posed by Gunnar Farneback is an algorithm that sug-
gests a dense optical flow. The intensity and direc-
tion of optical flow are presented as the result of the
2d vector [3]. TVL1 (Total Variation L1) is a kind of
dense optical flow suggested by wedel, pock, and zach.
Through TVL1, discontinuities in optical flow field are
preserved ny using total variation(TV) regularization
and also singular value is calibrated by using robust
L1 norm [11].

3. Warped optical flow

Warped optical flow removes the movement of the
background and focuses more on the movement of the
subject. It is mainly used to remove the movement of
the camera. Since CCTV is in a fixed state, the move-
ment of the camera is not large, but it was used to cor-
rect the case of shaking due to strong winds.

Figure 6. Image preprocessed by several optical flow method

5. Experiments
5.1. Input modalities

Considering our limited time and computing power, it is
judged difficult to test all the cases presented above. There-
fore, we will examine the performance of pre-processed im-
ages in the model through the Grey differentiation and nor-
mal optical flow options (TVL1, Farneback, Warped optical
flow) described above, and use only the top two of them. For
the rapid progress of the experiment, CCTV videos only in
the August 2020 were used which is divided into 396 for
train, 90 for valid and 50 for test. Batch size is 4 and the



number of frames is 16. Accuracy is defined as the number
of data that predict correct label out of the total number of
tests when the number of epochs is 20. (We proceeded to
20 epochs because even if the epoch number increased over
20, the account did not improve significantly and also we
are short of time and computing power.)

Table 3. Experiment result on different input modalities

Input Accuracy (%)
Grey difference 45.83
TVL1 62.50
Farneback 47.92
Warped optical flow 58.33

The result of the experiment is shown in Table. 3. The
performance of TVL1 and Warped optical flow is more than
10% better than that of the other two methods. Therefore,
the pre-processing method is determined with these two.

5.2. Results of Experiments

As mentioned in section 4.2.2, putting all of the extracted
64 frames into input is difficult considering the current com-
puting power. When all 64 frames were used, batch size was
possible up to 2, when the accuracy was as low as 30Since
batch size is the number used to update the weight of the
convolution, when the batch size is too small, the weight is
not updated properly, so it seems that the accuracy is low.
Considering the current computing power, it is difficult to
increase the number of batch sizes and frames at the same
time. Therefore, we reduced the number of frames and in-
stead increased the batch size. When the number of frames
was 8, 16, and 24, the maximum batch size available was
32, 16, and 8. These are our Temporal Sampling options.
The three methods covered in section 4.2.3 were designated
as the Special Sampling options. In addition, the experiment
was conducted using TVL1 and Warped optical flow, which
have good Accuracy in section 5.1, as inputs with RGB
frame. Therefore, the experiment is conducted with a total
of 12 settings using 3 Temporal Sampling, 3 Special Sam-
pling, and 2 Optical flows, respectively. The experimental
results for each are shown in Table. 4

Table 4. Experimental results for various conditions.

XXXXXXXXXXSpatial
Temporal Method 1 (%) Method 2 (%) Method 3 (%)

RGB+TVL1 RGB+Warped RGB+TVL1 RGB+Warped RGB+TVL1 RGB+Warped
8 frame, 32 batch 55.73 56.77 64.32 60.42 57.81 49.74
16 frame, 16 batch 61.2 54.69 60.16 60.68 55.21 54.43
24 frame, 8 batch 54.95 56.25 58.59 53.65 58.8 57.81

According to the results, the the accuracy is the best at
64.32% when the number of frames is 8, the batch size is
32, TVL1 is used for optical flow, and Method 2 is used for
spatial Sampling. In case of temporal sampling, the accu-
racy of the case of frames with 8, batch size with 32 and the

accuracy of the case of frames with 16, batch size with 16
is quite similar and slightly better than the other cases. Ac-
tually, we test the case of 64 frames with 2 batch size which
accuracy is around 30%. Through this result, it can be seen
that batch size and frame number plays a significant role in
improving outcomes.

In case of optical flow, TVL1 outperform Warped opti-
cal flow. We think that it’s because TVL1 is a kind of dense
optical flow which is accurate because it calculates all the
changes for each pixel. Warped optical flow can remove
the movement of the background, but our CCTV instru-
ment is fixed in position so it has little effect on the optical
flow. In case of spatial sampling, the averaged accuracy with
method2 (59.65%) is better than other methods(method 1,
2 : 56.6%, 55.63% respectively). Method 2 can represent
much more pixels than method 1, and is more simple than
method 3. Because of this property, the accuracy is seem to
best in method 2.

6. Discussion
The results of our experiment are somewhat close to the

accuracy of 70% of existing papers using TSN. However,
since the paper was classified as 0.1, 0.2, and 0.3mm, there
is a possibility that the accuracy will be higher than that of
our models classified as 0.1, 0.2, 0.3, 0.4, and 0.5mm. The
papers that showed 80% accuracy using CNN-LSTM were
also classified into 0.2, 0.5, and 1 mm. Therefore, consider-
ing the task of our model, which requires precise precipita-
tion classification at 0.1 mm intervals, the accuracy of the
model is not bad.

In addition, our study have the advantage of collecting
data in the same place by the two instruments, unlike previ-
ous papers, which were far from AWS station and CCTV.
Also, we have a advantage in that we have much more
training data than previous studies. Unfortunately, despite
of these advantages, our research has not improved much
in accuracy. Due to the lack of computing power, we could
not use all of the 64 frames we extracted and could not in-
crease batch size. It can be found in our experiments that
the number of frames and batch size contributed greatly to
accuracy. Definitely, it will produce better results in a better
equipment environment.

In addition to computing power, we think that the ac-
curacy could be improved through more diverse studies in
the future. For example, if we classify rainfall into a wider
range as in the previous paper, it will show better accu-
racy. Alternatively, it may be solved as a regression problem
rather than a classification problem. If Loss function is set
to MSE, the model may be able to recognize rainfall more
accurately.

Another way to improve the accuracy of the model is to
divide the data into day and night. As it can be see in the
Fig. 7, raindrops reflect the light at night, making it look
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Figure 7. (a) CCTV capture during the day (b) CCTV capture
during the night. Both videos are labeled 0.5mm.

brighter even if they are labeled the same label, 0.5mm.
Since these differences may have hindered the learning of
the model, the accuracy can be improved if the data of day
and night are divided and trained respectively.

7. Conclusions
In this study, the authors trained the S3D model to recog-

nize rainfall depth from CCTV video. Dataset were labelled
and collected from raw data, and temporal sampling was ap-
plied. On temprally sampled frames,three different types of
spatial samplings were applied and compared. From sam-
pled videos, optical flow frames and RGB frames were ex-
tracted to train the model. Various optical flow algorithms
were applied and compared. Because of the limit of com-
putational resources, author couldn’t use the entire sampled
frames to train the model. Nevertheless, the performance
with 64.32 % was achieved. Compared to previous studies,
this work has advantages of better dataset and finer labels.
With more computational resources, it is expected to give
much better performance.
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