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Abstract

This paper presents a new possibility of more efficient
low-resolution image classification via end-to-end training
without a super-resolution network. We consider a low-
resolution image as downsampled and quantized version
of corresponding high-resolution image. At meta-training,
the proposed model learns to learn how to classify low-
resolution images which has been converted from high-
resolution by a possible combination of downsampling and
quantization. After meta-training, the model quickly adapts
to classify low-resolution images degraded in an unseen
way, by fine-tuning with a few labeled low-resolution exam-
ples. Our scheme is more lightweight compared to existing
works that need to train and infer a neural network just for
super-resolution. The experiment results with Food-101 on
CNN show that our method can increase classification ac-
curacy without a demand of super-resolution network.

1. Introduction

The image classification accuracy of Convolutional Neu-
ral Network (CNN) is greatly affected by the resolution of
the input image. There are cases when it is necessary to
use low-resolution images, such as small original size med-
ical images or images taken from drones at high altitudes.
Therefore, low-resolution image classification should be
studied to implement the real-world image classification.

Lots of methods have been proposed to classify the low-
resolution images. Most of the research implemented the
Super-Resolution (SR) method which converts the low-
resolution images into the high-resolution images. Wang
et al. proposed an attribute embedded discriminative net-
work to super-resolve very low-resolution images [25]. In
order to re-identify a person, a high-resolution probe image
is classified from a gallery set which composed of the low-
resolution images. By adjusting the scale through the gen-
erator network, the limitation that the gallery set images do

not have uniform size has been solved. Jiao et al. integrated
the SR sub-network and re-identification sub-network to
improve the integration compatibility [9]. This method has
the advantage of reducing the computational load of SR and
improving the performance through end-to-end joint opti-
mization. However, it did not solve the fundamental issue
of the SR network. Zhou et al. introduced a weight map rep-
resenting the positions of pixels containing high-frequency
information in the real high-resolution image [29]. A pixel-
level loss function is used to reduce the errors between the
ground-truth high-resolution images and predicted images.

Since the above studies are accompanied by the network-
like SR module, it is difficult to apply them to devices in
low-computation such as smartphone. Li et al. designed
a semi-coupled projective dictionary learning to re-identify
the low-resolution image without SR [13]. Singh et al. ap-
plied a capsule network which considers the properties of
objects to the Very Low-Resolution (VLR) images [26].
Since performance deteriorates when VLR is implemented
only using a CapsNet, low-resolution images were classi-
fied through the unlabeled high-resolution images.

In this paper, we propose a new method for efficient low-
resolution image classification excluding a heavy SR net-
work and utilizing meta-learning. Meta-learning enables
quick adaptation into an unseen task by leveraging past ex-
perience on different tasks.

The main contributions of the proposed algorithm are as
follows:

» The proposed scheme uses meta-learning where a task
is defined as a way of image degradation into low-
resolution. During meta-training, the proposed scheme
converts input images via some possible combinations
of downsampling (e.g., max pooling, average pooling)
and quantization (e.g., quantization into 8-bit).

* The proposed scheme is favorable for mobile deploy-
ment since the SR sub-network is not involved to the
model. There is less additional overhead on storage



and computation than the complicated SR-based ap-
proach requires.

2. Related works

2.1 Meta-learning

Meta-learning can be expressed as ’learning to learn’.
It enables quick adaptation into an unseen task by lever-
aging past experience on diverse (somewhat) related
tasks. Previous meta-learning works can be split into
optimization-based [5], metric-based [20], and model-
based [23]. Among them, we use Model-Agnostic
Meta-Learning (MAML), a pioneering and representative
optimization-based meta-learning. Most meta-learning
works are for few-shot learning application which aims to
quickly adapt to images with unseen classes and to classify
them correctly. Therefore, a task is usually defined as
a set of interested classes. However, as said earlier, we
introduce a new definition of task since our scheme is for
low-resolution image classification without a SR network.

2.2 Quantization

Quantization means converting analog data into digital
data. General quantization reduces the number of bits to
be used when expressing digital data, thereby reducing
the model size. Many quantization methods are being
studied to apply quantization to deep learning model
weight compression. There are a method of quantizing
the weight of an already trained model [7] and a method
of matching the weight value to the value to be quantized
while training the model [I, 4]. Among the methods
of quantizing the weights of an already trained model,
research (mixed precision) [17, 22, 24] to find different
optimal bits for each layer is being actively conducted
in the image classification field. This method minimizes
performance degradation by quantizing the pre-learned
weights into different bits for each layer. There is a method
that solves the problem in a differentiable way [8], and
there are HAQ [24] and AutoQ [17] that use reinforcement
learning. HAQ [24] found the optimal bit for weights and
activations using DDPG [14], and AutoQ [17] found the
optimal bit for kernels and activations using HIRO [18],
which hierarchically uses reinforcement learning agents.

2.3 Super-resolution

SRCNN [2] is the first model that performed Super-
Resolution (SR) using CNN. Though it is a relatively sim-
ple model made by stacking only three layers, It surpasses
the existing traditional machine learning-based SR perfor-
mance. SRCNN has proposed a method of increasing the
size of a low-resolution image by linear interpolation and
passing the enlarged image through the CNN to obtain a re-
stored image. Because it passed the enlarged image through

the CNN, there was a disadvantage of consuming a lot of
computing power. It had limitations in terms of accuracy
as it was a simple structure using three CNN layers. In
methods such as FSRCNN [3] and ESPCN [19] proposed
later, unlike SRCNN, the LR image is put in the CNN input
and then the size is enlarged in the output layer to reduce
the computing power and increase the CNN layer. How-
ever, as the layers of the CNN deepen, a problem of van-
ishing gradient occurred, in which the information in the
front layer was gradually lost as it passed through the lay-
ers during training. VDSR [ 1] improved the performance
than SRCNN by using 20 layers while introducing a resid-
ual learning technique using skip connection. In addition,
deeper models [12, 16, 28] with better performance were
proposed by applying this, but they did not take into account
the model inference time, such as using 800 layers [28]. In
addition, as new CNN techniques, DRN [6], USRNet [27],
MZSR [21], etc. have been proposed. Unlike the conven-
tional model that generally uses one loss value, DRN adds
a dual regression loss to the existing loss and combines the
two loss values and uses it as a loss function. The dual re-
gression loss is limited to be similar to the input LR image
when downsampling is performed on the reconstructed im-
age from the LR. USRNet and MZSR methods are models
proposed to perform robust super-resolution in various ker-
nel environments. USRNet is a method to restore an image
by setting the noise level and kernel type as hyperparame-
ters and adjusting them.

3. Method
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Figure 1. Overview of proposed meta-learning scheme.

Figure 1. shows the overview of our proposed scheme.
We divide the process of generating a low resolution image
from a high resolution image into two operations: down-
sampling and activation quantization. Our interest is on a
base model that needs to be adaptive to any task. Optimiza-



Layer Name Output Size (w/ SR or w/o SR)
Training input (raw) Bx3x32x32 Bx3x128x128
Training input (resized) | Bx3x128x128 Bx3x32x32
Conv3x3-BN-ReLU 1 | Bx32x128x128 | Bx32x32x32
Max pooling 1 Bx32x64x64 Bx32x16x16
Conv3x3-BN-ReLU 2 Bx32x64x64 Bx32x16x16
Max pooling 2 Bx32x32x32 Bx32x8%8
Conv3x3-BN-ReLU 3 Bx32x32x32 Bx32x8x8
Max pooling 3 Bx32x16x16 Bx32x4x4
Conv3x3-BN-ReLU 4 Bx32x16x16 Bx32x4x4
Max pooling 4 Bx32x8x8 Bx32x2x2
Flatten Bx2048 Bx128
fc, softmax Bx101

Table 1. Structure of compared (left, with SR) and proposed (right,
without SR) CNNs. Resize operation is done by SR network or
selected downsampling-quantization. B stands for mini-batch size.

tion of the base model requires M query (post-adaptation)
loss from M meta-tasks. In every meta-task, our scheme
randomly selects downsampling method and quantization
method among two predefined set, respectively. A meta-
task needs two labeled mini-batches; support (to adapt via
repetitive fine-tuning) and query (to evaluate the adapta-
tion), which are converted from high-resolution by the com-
bination of selected downsampling and quantization meth-
ods (i.e., the task). The base model is adapted to task-
specific model by fine-tuning with support mini-batch, then
the task-specific model outputs query loss with query mini-
batch. From the averaged query loss over M meta-tasks,
the base model is updated (one ’step’).

4. Experiments
4.1. Compared scheme

We adopt Enhanced Deep Super-Resolution (EDSR)
[15] as the compared scheme using SR network. EDSR has
enhanced SR performance by removing unnecessary mod-
ules in conventional residual networks and expanding the
model size along with training stabilization. We’ve fetched
EDSR using the official PyTorch code uploaded on Github.
EDSR is before the CNN model for image classification.
We use pretrained EDSR (using DIV2K) then freeze it. In
other words, training with Food-101 dataset is only for up-
dating the CNN for classification (see Table 1).

4.2. Proposed scheme

We’ve implemented the proposed meta-learning scheme
using PyTorch. SR network doesn’t exist, but there are
M = 4 meta-tasks per step. In every meta-task, down-
sampling method is selected among {max pooling, aver-
age pooling}. Meanwhile, in every meta-task, quantization

method on every pixel value is also selected among {2, 3, 4,
8, 16, 32}-bit. For quantization, we use the operation on ac-
tivation in DoReFa-Net [30], an early work on quantization-
aware training. The number of repetitive fine-tuning with a
support mini-batch equals to 5. Because there is no SR net-
work, training with Food-101 dataset is only for updating
the base CNN for classification (see Table 1).

4.3. Dataset

We mainly use Food-101 dataset [10] for meta-learning,

fine-tuning, and inference. It consists of 101 food categories
with 750 training and 250 test images per category, making
a total of 101k images. The labels for the test images have
been manually cleaned, while the training set contains some
noise.
We do not directly use DIV2K dataset, but it has been used
for pretraining EDSR. It consists of 1000 2K resolution
RGB images which contain a large diversity of contents.
These images are divided into three parts: 800 images for
training, 100 images for validation, and 100 images for test-
ing.

4.4. model architecture

In similar to [5], we use 4 convolution blocks including
3x3 convolution using 32 filters, Batch Normalization (BN),
and ReLU activation function. Table 1 shows the structure
of compared (left, with SR) and proposed (right, without
SR) CNNs.

4.5. Training details

For the compared scheme using EDSR and CNN, we use
Adam optimizer with learning rate 0.01. On the other hand,
for the proposed scheme using CNN, we use Adam opti-
mizer with learning rate 0.0001 for base model optimiza-
tion and SGD optimizer with learning rate 0.01 for task-
specific model optimization. Batch size is set to 32 for train-
ing and 16 for validation. In validation, regardless of com-
pared/proposed scheme, an input is of size Bx3x32x32, de-
graded by bicubic operation (neither SR nor downsampling-
quantization). The total number of epochs equals to 11.

4.6. Result

We can see that it is possible to reduce the training and
validation loss even without a heavy SR network. However,
due to the insufficient hyper-parameter tuning and (meta-
)training time, we couldn’t compare the converged perfor-
mance.

5. Future work and Conclusion

We’ve explored a new possibility of more efficient low-
resolution image classification via end-to-end training with-
out a super-resolution network. We regard a low-resolution



Figure 2. Training loss vs. steps for EDSR-attatched CNN. There
are 2368 steps per epoch.

Figure 3. Validation loss vs. steps for EDSR-attatched CNN.
There are 2368 steps per epoch.
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Figure 4. Training query loss averaged over M = 4 tasks vs. steps
for proposed CNN. There are 1184 steps per epoch.
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Figure 5. Validation query loss vs. steps for proposed CNN. There
are 1184 steps per epoch.

image as downsampled and quantized version of corre-
sponding high-resolution image. Assuming that single
CNN in a device is to classify low-resolution images de-
graded by a certain combination of downsampling and
quantization methods, we utilize meta-learning with newly-
defined task for a base model adaptive to any low-resolution
or a combination of the methods. By analyzing converged

performance and dealing with some remaining problems, it
may be possible to develop a low-resolution CNN which
really works well without SR network.
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