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Abstract

Alzheimer disease is neuro-degenerative disease that
requires early detection and intervention. Unlike previ-
ous deep learning approaches that cannot discriminate the
severity in the same classes determined by prescriptions, we
propose 3D GAN-based anomaly detection model that can
provide reliable anomaly scores for predicting Alzheimer’s
disease. We adapted two recent 3D GAN architecture,
Cycle-Consistent GAN(CCEGAN) and α-WGAN-gp, to the
f-AnoGAN framework to improve the quality of generated
images and embedding vectors. Compared to baseline 3D
CNN models, CCEGAN with f-Anogan show comparable
performance in classifying the participants of Normal and
Mild Cognitive Impairment groups.

1. Introduction

Alzheimer’s disease (AD), the most common cause of
dementia, is a neurodegenerative disease with multiple
symptoms associated with cognitive impairment. Many pa-
tients with Alzheimer’s disease have difficulty in remem-
bering recent events and suffer from several behavioral and
emotional problems as the symptoms become worse.

Alzheimer’s disease is associated with changes in the
brain structure resulting from the accumulation of amyloid-
β(Aβ) plaques and hyperphosphorylated tau. Imaging
methodologies, such as Positron emission tomography
(PET) or magnetic resonance imaging (MRI), are usually
used to detect the biomarkers of the disease. Previous study
suggests that Alzheimer’s disease shows structural changes
in medial temporal lobe involvement (hippocampus and en-
torhinal cortex) before cognitive impairment appear [7].

Recently, the FDA approved the first medicine for
Alzheimer’s disease, Aducanumab, which alleviates the

symptoms and delays the progression by reducing the Aβ
plaques. However, the medicine focuses on delaying the
progression, not a complete cure, so early detection and
intervention is highly required. Image-derived features in-
cluding cortical thickness, subcortical volumes, and cere-
bral Aβ accumulation in the regions of interest (ROI) were
widely used to detect AD [13].

Researchers have adopted deep learning technologies
like Convolutional Neural Network (CNN) from the com-
puter vision area to enhance the performance by automati-
cally extracting features from the brain images [2]. How-
ever, clinical datasets usually confront the issue of imbal-
ance among the normal and diseased groups, which makes it
difficult to have desired performances [10]. In addition, pre-
vious researches have focused on classifying Alzheimer’s
Disease, Mild Cognitive Impairment, and Normal control,
which could not represent the severity of subjects in the
same group.

To tackle the issue, unsupervised anomaly detection can
be a remarkable approach. Anomaly detection is defined
as the identification of test data deviating from the normal
data distribution learned during training. For our case, we
can find the brain images with Alzheimer’s diseases using
anomaly scores, which represents the degree of deviance
from the normal brain images [15].

Recent studies have tried to apply anomaly detection
to enhance the classification of Alzheimer’s disease using
PET images [3, 4]. In particular, the research [3] used
GAN-based anomaly detection with 2-dimension PET im-
ages beating the performances of Densenet169 in classifica-
tion of Alzheimer’s disease. However, the effect of anomaly
detection for the structural MRI of Alzheimer’s disease was
not yet verified. It is expected that MRI containing anatom-
ical information would provide great insight that was not in-
cluded in PET images. Furthermore, previous 2D-based ap-
proaches overlook volumetric information in complex brain
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anatomy which can be found in 3D MRI [18]. Moreover,
they have the limited numbers of normal subjects because
they usually utilize only one source of database such as
ADNI(http://adni.loni.usc.edu/).

In this work, we propose a unsupervised 3D anomaly
detection model that can detect the severity of Alzheimer’s
disease using 3D MR images. We adapt the structure of Cy-
cle Consistent Embedding GAN(CCE-GAN) to the frame-
work of f-AnoGAN. [16, 19] With cycle-consistency loss
and Wasserstein loss, the network of CCE-GAN is trained
to encode the informative representation required for gen-
erating the original images. After learning from training
dataset, the encoder, generator, and discriminator from the
GAN model are used to calculate anomaly score in accor-
dance with f-AnoGAN. Contribution of our research is as
follows:

• This is the first approach using a 3D anomaly detection
model for Alzheimer prediction.

• We improved the quality of generated images by decreas-
ing the Wasserstein loss and cycle-consistent loss.

• Practically, our model can provide reliable anomaly
scores, which may represent the severity and progress of
Alzheimer’s disease.

2. Related works
3D classification model for Alzheimer’s prediction.

Image-derived features including cortical thickness, subcor-
tical volumes, and cerebral Aβ accumulation in the regions
of interest (ROI) were widely used to detect AD [13]. Re-
searchers have adopted deep learning technologies such as
Convolutional Neural Network (CNN) from the computer
vision area to enhance the performance by automatically
extracting features from the brain images [2].

There are two distinct approaches for classifying
Alzheimer’s disease from brain MRI data using 3D con-
volutional neural networks. One method is to apply 3D-
CNNs to extract generic features automatically from MRIs
then add other classifiers. [8, 20] The other method trains
3D-CNNs end-to-end using only MRI scans and labels as
input. [11] Hosseini-Asl et al. [8] evaluated a short stack
of unsupervised 3D convolutional auto-encoders (3D-CAE)
on MRI data using the entire brain as input. Notably, they
obtained a classification accuracy of 61.1 percent but found
overfitting in the training data. In more recent research,
Abrol et al. [1] constructed 3D CNNs based on the ResNet
architecture and experimented with many binary and multi-
class tasks using ADNI dataset. Despite the fact that their
findings were encouraging, they conducted no additional
comparisons to other established grading systems.

Unsupervised anomaly detection models. Unsuper-
vised learning for visual anomaly identification is used to

various biomedical imaging datasets, most notably brain
and retinal images. Schlegl et al. firstly used GANs to
predict the distribution of healthy retinal patches and found
anomalies by computing the difference between the reti-
nal patch and a healthy equivalent restored by the GAN.
Schlegl et al. [14] recently published a follow-up work of
f-AnoGAN, began by modeling the distribution of healthy
retinal anatomy dataset using the Wasserstein-GAN algo-
rithm.

Unsupervised anomaly detection in Alzheimer predic-
tion with brain imaging has seen a variety of approaches.
In particular, Generative models, such as Variational Au-
toencoders (VAEs) and Generative Adversarial Networks
(GANs), are widely used to learn the distribution of the
normal samples. For example, Choi et al. [5] intro-
duced anomaly detection model based on Variational Au-
toencoder to detect anomalies from Positron Emission To-
mography(PET), providing abnormality scores for identi-
fying Alzheimer’s disease. Baydargil et al. [3] proposed
GAN-based anomaly analysis beating the performances of
Densenet169 in classification of Alzheimer’s disease. Re-
cently, Han et al. [9] introduced a new Wasserstein-based
Medical Anomaly Detection Generative Adversarial Net-
work(MADGAN) using self-attention to take multiple ad-
jacent slices of T1-weighted MRI as the input for the recon-
struction, showing the usefulness of MRI to the detection of
Alzheimer’s disease.

However, most anomaly detection work has focused on
2D brain slices overlooking volumetric information in com-
plex brain anatomy. Most studies using 3D volumes are
mostly limited to generating brain images through 3D GAN
rather than anomaly detection [12, 19]. For the first 3D ap-
plication of AnoGAN, Viana et al. [18] proposed a volumet-
ric extension of the 2D f-AnoGAN model to detect trau-
matic brain injury(TBI) abnormalities, combining a state-
of-the-art 3DGAN with refinement training steps. Still,
to the knowledge of this researcher, studies on the appli-
cation of 3D Anogan to Alzheimer’s disease have not yet
been published. Therefore, we aim to predict Alzheimer’s
disease with 3-dimensional t1-weighted MRI, applying the
state-of-art 3D Generative Adversarial Networks to the
anomaly detection framework proposed by Schlegl et al.

3. Method

3.1. 3D GAN

The core idea of our method is to train encoder and
generator of 3D GAN with the healthy subjects neces-
sary for calculating anomaly scores of the diseased sub-
jects. To learn the distribution of healty subjects, we
use two 3D GAN approaches, α-Wasserstein GAN with
Gradient Penalty (α-WGAN-gp) [12] and Cycle Consis-
tent Embedding GAN (CCE-GAN) [19], which were re-
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ported previously. Both methods combined the advantages
of Variational Auto-Encoder (VAE) and Wasserstein GAN
(WGAN). In [12], they added an module “code discrimi-
nator”, which played adversarial learning with the encoder
module, and optimized encoder-generator and code dis-
criminator, seperately.

Figure 1. 3D GAN Model – 3D α-WGAN-GP

We adopt 3D α-WGAN-GP architecture for training as
Figure 1 with different parameter λ2 in Equation 1.

LD = Eze [D (G (ze))] + Ezr [D (G (zr))]− 2Exreal [D (xreal )] + λ1LGP−D

LG = −Eze [D (G (ze))]− Ezr [D (G (zr))] + λ2 ‖xreal −G (ze)‖L1

LC = Eze [C (ze)]− Ezr [C (zr)] + λ1LGP−C

(1)

On the other hand, [19] trained the encoder and generator
module at once with cycle consistency loss [21] to improve
the embedding of the encoder module.

Figure 2. 3D GAN Model – 3D CCE-GAN

We also adopt 3D CCE-GAN architecture for training as
Figure 2 with different parameter λ2 in Equation 2. With
cycle-consistency loss and Wasserstein loss, the network of
CCE-GAN is trained to encode the informative representa-
tion required for generating the original images.

argmin
D

Eze [D (Xe)] + Ezr [D (Xr)]− 2Exreal [D (xreal )] + λ1Lgp(D)

argmin
G,E

− Eze [D (Xe)]− Ezr [D (Xr)] + λ2 ‖Xr −Xe‖1 +

λ3 ‖zr − zre‖2 + λ3 ‖ze − zee‖2 +Wl (zr, ze)

(2)

3.2. Anomaly detection

F-AnoGAN. F-AnoGAN is specialized in training a
generator with an encoder that is used to transfer the test-

ing images to the embedding space of training images. α-
WGAN-gp also train encoder network which generates em-
bedding from images. Therefore, we can use the genera-
tor, discriminator, and encoder of α-WGAN-gp trained with
healthy subjects for calculating anomaly scores of the dis-
eased subjects in the framework of f-AnoGAN.

Figure 3. 3D f-ANoGAN Model

Anomaly detection score. Anomalies are detected via a
combined anomaly score based on the building blocks of the
trained model – comprising a discriminator feature residual
error and an image reconstruction error. The anomaly quan-
tification formulation follows directly the specific definition
of the loss used for encoder training (Equation 1, 2). For
the proposed f-AnoGAN model, which implements the dis-
criminator guided encoder training (Equation 1, 2), the final
anomaly score A(x) for a new image x is defined by

A(x) = AR(x) + κ · AD(x) (3)

where
AR(x) =

1

n
· ‖x−G(E(x))‖2 (4)

AD(x) =
1

nd
· ‖f(x)− f(G(E(x)))‖2 (5)

and k is a weighting factor(Figure 3). In general, both for-
mulations yield high anomaly scores on anomalous images
and small anomaly scores on normal input images. Since
the model is only trained on normal images, it only “recon-
structs” an image visually similar to the input image and
lying on the manifold of normal images X . The ability
of reconstructing visually similar images is inversely pro-
portional to the degree or distinction of anomaly. Normal
query images result in small deviations whereas anomalous
images are mapped to “reconstructions” yielding large de-
viations.

3.3. BaseLine Models

Machine learning(ML). T1-weighted images were pre-
processed using recon-all script from FreeSurfer V7.0 [6].
We obtained cortical thickness values and subcortical vol-
ume features for grey matter(GM), white matter(WM) and
cerebrospinal fluid (CSF) surface. Penalized logistic re-
gressions (Ridge logistic regression and Lasso logistic re-
gression) were built with above MRI features. The grid-
searchCV on scikit-learn library from python was con-
ducted to find the optimal hyper-parameter values.
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3D CNN. For pre-processed MR images, we cropped
each image to minimize background and normalized MR
images to change the range of voxel intensity values from
0 to 1 per image using ScaleIntensity on Monai library. Fi-
nally all the images were resampled to the size of 96x96x96.
We built two 3D CNN models. First, a simple CNN model
was composed of 6 3D convolutional layers, 4 max pool-
ing layers and 2 fully connected layers. Each 3D convolu-
tional layer consisted of 3x3x3 kernel size, 1x1x1 stride and
each max pooling layer with 2x2x2 size were constructed
at the end of each two convolutional layers. After the final
max pooling layer, two fully connected layers were adjusted
with 4096 input nodes and 2 output nodes. Second, we con-
ducted a 3D VGGNet11 [17], which added just 1 dimension
compared to the original VGGNet11 to adjust 3D images.
The 3D VGGNet11 consisted of 8 3D convolutional lay-
ers, 5 max pooling layers and 3 fully connected layers. The
classifier of 3D VGGNet11 was replaced with three dense
layers which composed of 4096 input nodes and 2 output
nodes and finally a softmax layer was adjusted to predict
the probability.

4. Experiments
4.1. Datasets

ADNI. From the Alzheimer’s Disease Neuroimaging
Initiative(ADNI), we use 3D T1-weighted MRI images of
Normal Control(NC), Mild Cognitive Impairment(MCI),
and Alzheimer’s Disease(AD) participants. There are 1807
subjects for baseline year, and total 6414 volumes. We pre-
process the datasets with recon-all function of FreeSurfer,
which includes motion correction and intensity normal-
ization. To decrease unnecessary memory use, we re-
move redundant background and resized the volumes into
64*64*64.

4.2. Image Generation

We adopt the structure of α-WGAN-gp and CCEGAN.
We train α-WGAN-gp for 100,000 iterations and CCE-
GAN for 50,000 iterations with batch size 8. To maximize
the similarity between real images and fake images, we in-
crease the relative importance of λ2 in (1),(2). Plus, we
leave out the intensity randomization proposed in the pre-
vious models. We sampled 148 participants as test dataset
from 738 Control Normal(CN) participants. Including im-
ages collected several times from the same subjects, the
test dataset has 453 CN images, and remaining 1887 im-
ages are used to train our GAN models. All the participants
from MCI and AD is included into test dataset.(MCI:3003,
AD:1071) Figure 4 are the comparison between original im-
ages and reconstructed images by Cycle Consistent Embed-
ding GAN. Despite minor differences, it su. Figure 5 are
slices from the sampled fake images.

Method CN vs MCI CN vs AD MCI vs AD
Acc. AUC Acc. AUC Acc. AUC

Baseline(ML) 0.57 0.61 0.76 0.84 0.68 0.76
Baseline(simple CNN) 0.52 0.52 0.80 0.75 0.70 0.67
Baseline(VGGNet11) 0.63 0.63 0.87 0.83 0.73 0.72
Ours(alpha+f) 0.56 0.45 0.69 0.42 0.34 0.48
Ours(CCE+f) 0.59 0.62 0.66 0.70 0.61 0.58

Table 1. Classification results with anomaly score of the pro-
posed model compared with baseline models

Figure 4. Center Cut Slice Visualization – Original and Recon-
structed Images of Normal Control generated by CCE-GAN

4.3. Baseline Experiments

Unlike anomaly detection, we use the 1,807 volumes
from the baseline year to avoid data leakage. Data for train-
set and testset are randomly split up as 8:2 respectively. We
measure accuracy, and area under the ROC curve (AUC)
as the metrics for model performance. Experiments are re-
peated 10 times with several random seed and, finally, aver-
aged each metric, respectively. For each model, the exactly
same random seeds are adjusted.

4.4. Results

ML The classification results of our model are com-
pared with baseline models (see Table 1). First the penal-
ized logistic (machine learning method) with cortical thick-
ness and subcortical volume features shows the accuracy of
56.8%, the AUC of 0.61 for CN vs MCI classification, the
accuracy of 75.8%, the AUC of 0.75 for CN vs AD and the
accuracy of 67.7%, the AUC of 0.76 for MCI vs AD.

3D CNN we compare our methods to two 3D CNN mod-
els with the pre-processed images. First, with the simple
CNN model, we obtain the accuracy of 52.1%, the AUC of
0.52 for CN vs MCI classification, the accuracy of 80.2%,
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Figure 5. Slice Series Visualization – Fake Images generated by 3D α-WGAN-GP

the AUC of 0.75 for CN vs AD and the accuracy of 72.9%,
the AUC of 0.72 for MCI vs AD. The VGGnet11 model,
which improve the accuracy and the AUC than the simple
CNN model, show the accuracy of 63.2%, the AUC of 0.63
for classifying CN vs MCI, the accuracy of 86.5%, the AUC
of 0.83 for CN vs AD and the accuracy of 72.9%, the AUC
of 0.72 for CN vs MCI (see Table 1).

Figure 6. CCE + f-ANoGAN Model box plot of anomaly score

Anomaly detection Among the three intermediate
scores, we decide to use anomaly score, which contains
the l1 loss between original and reconstructed images, and
difference between scores from discriminator for the two
images. Figure 6 shows that the three groups are differed
in anomaly scores to some extent. AD participants tend
to have higher anomaly scores than MCI and CN partic-
ipants. However, the boxes are overlapped among three
groups, which means that the difference is not significant.
To gauge more concrete measures, we choose a threshold
that maximizes the difference between true positive rate and
false positive rate as an optimal threshold. Table 1 shows
that CCEGAN has better AUC over three groups than α-
Wasserstein GAN. Furthermore, its performance is compa-
rable to a general 3D classification model in classifying CN
and MCI.

4.5. Conclusion and Discussions

Even though our model falls short of performance that
can be utilized in the real world, it shows the possibility
of unsupervised anomaly detection to Alzheimer’s disease.
Our model can encode and reconstruct high quality brain

images from training dataset. In addition, there are room for
improvement. Sufficient hyper-parameter tuning was not
performed due to the extended learning time. We found that
it is important to make the GAN focus on reconstruction by
adjusting the loss differently. In addition, the embedding
size seems to play a role in its capacity to learn represen-
tations of the training dataset. On top of that, we plan to
use warped t1-weighted images in the future. It is usual that
researchers warp 3D brain images into common space such
as the MNI space when running a deep learning classifier.
Considering the high variability in ADNI dataset, our GAN
model might gets some benefits from spatial normalization.
Furthermore, the spatial normalization can provide solution
to supplement insufficient numbers of normal participants.
We can utilize tremendous numbers of brain images from
other sources such as UK Bio-bank. However, our model
has some limitations in discriminating the abnormalities in
unseen images. Learning the distribution of normal brain
images does not prove that the model can disentangle the
distribution in the unseen dataset. It seems that we have to
develop a method that can control the output of generator.
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