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Abstract

State representation learning aims to extract useful fea-
tures from the observations received by a Reinforcement
Learning agent interacting with an environment. These
features allow the agent to take advantage of the low-
dimensional and informative representation to improve the
efficiency in solving tasks. Especially, recent contrastive
state representation learning methods have shown impres-
sive performances. While these contrastive methods mainly
focus on generating invariant features by minimizing the
distance between two consecutive states, they are prone to
overlook action relationship between them.

In this work, we introduce novel method that learns state
representations by not only maximizing mutual information
across spatially and temporally distinct features of a neural
encoder of the observations but also training an auxiliary
network to predict the action taken by the agent to go from
one observation to the next. Our method shows significant
performance improvements over state-of-the-art generative
and contrastive representation learning methods 7

1. Introduction
One major problem of current state-of-the-art Reinforce-

ment Learning (RL) algorithms is still the need for millions
of training examples to learn a good or near-optimal policy
to solve the given task. To mitigate this problem, One idea,
the researchers came up with is decoupling representation
learning from the actual policy learning for the RL agents.
Representations that precisely capture the true state of the
environment should empower agents to effectively transfer
knowledge across different tasks in the environment, and
enable learning with fewer interactions.

Modern image-recognition systems learn image repre-
sentations from large collections of images and correspond-

Figure 1. We use Atari 2600 games to evaluate state representa-
tions. We leveraged the source code of the games to annotate the
RAM states with important state variables such as the location of
various objects in the game. We compare various unsupervised
representation learning techniques based on how well the repre-
sentations linearly-separate the state variables. Shown above are
examples of state variables annotated for Montezuma’s Revenge.

ing semantic annotations. These annotations can be pro-
vided in the form of class labels [35], hashtags [31], bound-
ing boxes [29], etc. Pre-defined semantic annotations scale
poorly to the long tail of visual concepts [23], which ham-
pers further improvements in image recognition.

Self-supervised learning tries to address these limitations
by learning image representations from the pixels them-
selves without relying on pre-defined semantic annotations.
In the context of learning state representations [28], current
unsupervised methods rely on generative decoding of the
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data using either VAEs [12,18,21,39] or prediction in pixel-
space [15, 33]. Since these objectives are based on recon-
struction error in the pixel space, they are not incentivized
to capture abstract latent factors and often default to captur-
ing pixel level details. Spatiotemporal Deep Infomax (ST-
DIM) [1] is a self-supervised state representation learning
technique which exploits the global-local contrastive task
of visual observations in a reinforcement learning setting.
However, ST-DIM does not utilize the action-related infor-
mation. Also, certain action may change the state signifi-
cantly, which means xt and xt+1 are no longer similar.

In this work, motivated by the limitaion of ST-DIM, we
assumed that by exploiting action-related information, we
could learn better state representation. Action-based Spa-
tiotemporal Deep Infomax (ABST-DIM) improves ST-DIM
by considering action relationship between consecutive ob-
servations. The objective of ABST-DIM is maximizing not
only the mutual information between global and local rep-
resentations in consecutive time steps, but also conditional
likelihood P (at | xt, xt+1), given a triplet {xt, at, xt+1}
composed of two consecutive observations, xt and xt+1,
and the action at taken by the agent. Even though predict-
ing action at is not directly related with learning represen-
tations, we showed that it is still beneficial to use the infor-
mation if it is somewhat related.

To evaluate ABST-DIM, we used the Arcade Learning
Environment [4] benchmark based on Atari 2600 games
(See Fig. 1.)

Contributions.

• We propose a new self-supervised state representation
learning technique, named ABST-DIM, which exploits
action relationship between consecutive observations in
a reinforcement learning setting.

• Based on a baseline algorithm ST-DIM, we add a new
loss term La to maximize conditional likelihood P (at |
xt, xt+1).

• A variety of experimental results show clear advantages
of ABST-DIM over the existing state-of-the-art represen-
tation learning methods.

• Our new approach is applicable to any kinds of RL con-
trastive representation learning architectures.

2. Related works

Unsupervised representation learning via mutual infor-
mation objectives. Recent work in unsupervised represen-
tation learning have focused on extracting latent representa-
tions by maximizing a lower bound on the mutual informa-
tion between the representation and the input. Belghazi et
al. [3] estimate the mutual information with neural networks

using the Donsker-Varadhan representation of the KL diver-
gence [11], while Chen et al. [7] use the variational bound
from Barber and Agakov [2] to learn discrete latent repre-
sentations. Hjelm et al. [22] learn representations by max-
imizing the Jensen-Shannon divergence between joint and
product of marginals of an image and itspatches. van den
Oord et al. [36] maximize mutual information using a multi-
sample version of noise contrastive estimation [17,30]. See
[34] for a review of different variational bounds for mutual
information.

State representation learning. Learning better state rep-
resentations is an active area of research within robotics
and reinforcement learning. Recently, Cuccu et al. [9] and
Eslami et al. [13] show that visual processing and policy
learning can be effectively decoupled in pixel-based envi-
ronments. Jonschkowski and Brock [25] and Jonschkowski
et al. [26] propose to learn representations using a set of
handcrafted robotic priors. Several prior works use a VAE
and its variations to learn a mapping from observations to
state representations [20,37,39]. Single-view TCN [30] and
TDC [37] learn state representations using self-supervised
objectives that leverage temporal information in demonstra-
tions. ST-DIM [1] can be considered as an extension of
TDC and TCN that also leverages the local spatial structure
.

A few works have focused on learning state representa-
tions that capture factors of an environment that are under
the agent’s control in order to guide exploration [8, 27] or
unsupervised control [38]. EMI [27] harnesses mutual in-
formation between state embeddings and actions to learn
representations that capture just the controllable factors of
the environment, like the agent’s position. ST-DIM [1] cap-
tures every temporally evolving factors (not just the control-
lable ones) in an environment, like the position of enemies,
score, balls, missiles, moving obstacles, and the agent po-
sition. Lastly, ST-DIM uses an InfoNCE objective instead
of the JSD one used in EMI. Our work is also closely re-
lated to recent work in learning object-oriented representa-
tions. [5, 16, 41]

Inverse prediction. Inverse models rely on a loss function
that computes the prediction error on the action at taken
by the agent to move from state st to st+1. We can use
two consecutive states st and st+1 to predict which ac-
tion at made the transition happen. The inverse model g
is implemented by Pathak et al. [14] and defined as ât =
g(st, st+1; θI). where, ât is the predicted estimate of the
action at. This inverse model parameters θI are trained to
optimize, minθI LI(ât, at) ,where LI is the loss function
that measures the discrepancy between the predicted and
actual actions. In case at is discrete, the output of g is a
soft-max distribution across all possible actions and mini-
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Figure 2. A schematic overview of Action-based SpatioTempo-
ral DeepInfoMax(ABST-DIM). The red-dotted part is our new ap-
proach to predict action made the state trasition happen. Without
this part, the model is just ST-DIM where there are different mu-
tual information objectives: local-local infomax and global-local
infomax. However, The detailed structure varies from method to
method.

mizing LI amounts to maximum likelihood estimation of
θI under a multinomial distribution.

3. Method

3.1. ABST-DIM: Action-based Spatiotemporal
Deep Info-max

For improved representation learning, we aim to exploit
not only the mutual information between features embed-
ded from states across different time and space, but also the
action between the states. This is based on the belief that
employing actions would aid to capturing observations re-
lated to movement of the agent rather than variation of the
environment independent of the agent.

We follow ST-DIM [1] for mutual information estima-
tion, which uses spatial and temporal relationship of locally,
and globally embedded features. We assume a set of ob-
servations as state space S = {x1, x2, ..., xn} and a rep-
resentation network f : S → Rp which maps the states
into p-dimensional vector. Global features can be denoted
as f(xt) where xt is an observation at time t, while local
features are denoted as fl(xt) where l = (m,n) is a loca-

tion on intermediate layer of f at which the local feature
is produced. Score function of features, f(xi) and f(xj)
for example, is defined as a bilinear model f(xi)

T

Wf(xj).
Scores between consecutive observations (xt, xt+1) and
non-consecutive observations (xt, xt∗ ) is combined with
infoNCE to set objective of maximizing mutual informa-
tion among consecutive states. As like ST-DIM, we con-
struct two losses: the global-local objective (GL) and the
local-local objective (LL). The global-local objective is as
follows This can be formulated as follows:

LGL =
∑
l

−log exp(f(xt)
T

Wgfl(xt+1))∑
xt∗∈Xnext

exp(f(xt)
TWgfl(xt∗))

(1)

LLL =
∑
l

−log exp(fl(xt)
T

Wlfl(xt+1))∑
xt∗∈Xnext

exp(fl(xt)
TWlfl(xt∗))

(2)
where Xnext indicates set of next states, LGL and

LLL denote objective according to mutual information with
global and local features respectively.

We leverage this method by adding action estimation to
the objective. For this, action is collected in addition to the
states in the data acquisition process which is done by an
agent exploring the environment following certain policy,
in this case random policy(steps through the environment
by selecting actions randomly). This collection of actions is
used as a ground truth for training action classifiers. In our
evaluations, we compare the following methods:

1. Fully Connected Discriminator

2. Region Sensitive Module

3. Attention Mask

Combining all the objectives, the final loss function is as
follows:

L = LGL + LLL + λLa (3)

where LGL and LLL denote objective according to mutual
information with global and local features respectively, and
La is a maximum likelihood loss between estimated and
ground truth distribution of action. Degree of significance
of the action estimation is regulated via factor λ. Overall
architecture is described at Figure 2. Based on existing ST-
DIM architecture, we added auxiliary network to predict
the action at. Note that we tried three different methods
to build the structures of the action predicting networks.
The model is forced to learn not only semantic meaning
of states(images), but also action-relationship between con-
secutive states(temporally consecutive images). In other
words, it is not a simple unsupervised learning task any-
more, because we use subsidiary labeled information.
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3.1.1 Auxiliary Fully Connected(AFC) Discriminator

First, we simply added Auxiliary Fully Connected(AFC)
layer to discriminate the action. Detailed network ar-
chitecture is described at Figure 3.(a). Given a triplet
{xt, at, xt+1} composed of two consecutive observations,
xt and xt+1, and the action taken by the agent at, we pa-
rameterise the conditional likelihood as P (a | xt, xt+1) =
h(f(xt), f(xt+1)), where h is a one fully connected layer
followed by a softmax. Here, f(xt) and f(xt+1) are global
feature embedding of current and next state respectively.
The result can be denoted as h(f(xt), f(xt+1)) which is
trained by maximum likelihood

The loss function of Auxiliary Fully Connected Discrim-
inator is as follows:

La = La(h(f(xt), f(xt+1)), at) (4)

3.1.2 Auxiliary Region Sensitive Module(ARSM)

We also present Auxiliary Region Sensitive mod-
ule(ARSM) based on two considerations. First, humans
tend to look at some regions directly related to rewards
rather than looking at the entire game screen. Second,
important information in the game is concentrated on each
essential object rather than in the background that is not
directly related to the game.

Detailed network architecture is described at Figure
3.(b). To design ARSM, we employ two convolutions with
ELU activation function [40]. ARSM’s input ffinal(xt) is
the output of last convolutional layer of the encoder at time
t, and ARSM’s output A = RS(ffinal(xt)) is a score map
of the same size as the input ffinal(xt), where ARSM is
RS(). Each element on a score mapA corresponds to a spa-
tial location on ffinal(xt) and means each local pixel’s im-
portance to represent the action from entire image. We ap-
ply sigmoid function to normalize the score map A, where
A is the learned probability distributions.

We generate the 2-D image embedding vector F , defined
as the element-wise multiplication of A and ffinal(xt), as
F = A

⊗
ffinal(xt). To obtain one dimensional vector,

we apply additional fully-connected layer. These 1-D vec-
tors coming from two different time domain encoders are
concatenated to estimate action of agent.

The loss function of Auxiliary Region Sensitive module
is as follows:

La = La(h(FC(F (xt)), FC(F (xt+1))), at) (5)

where F is the element-wise multiplication of score map A
and ffinal(xt), and FC is a fully connected layer.

3.1.3 Attention Mask Module(AMM)

Figure 3. Detailed structure of each network for the three method-
ologies. (a) is Auxiliary Fully Connected Discriminator(AFC),
simple discriminator for action estimation. (b) is Auxiliary Region
Sensitive module(ARSM), considering spatial location to repre-
sent the action from entire image. (c) is Attention Mask Mod-
ule(AMM), predicting the action and embedding global features.

Lastly, we applied Attention Mask Module(AMM) before
the last fully connected layer of the encoder to not only
predict the action but also embed global features. De-
tailed network architecture is described at Figure 3.(c). We
aimed to mask out insignificant regions in terms of both
preserving generative features and action inference, in the
embedding stage. Before reducing 2D convolutional fea-
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tures into a 1D latent vector at the last stage of embedding
network, the final convolutional feature map ffinal(xt)
goes through attention mask module [19] (same architec-
ture as the region sensitive module) which outputs a sin-
gle channel layer of normalized weights for each spatial
coordinates. This weights are multiplied element-wise to
the feature map from which it originated and also to the
final feature map of Siamese encoder ffinal(xt+1), re-
flecting regional interest in both global-global contrastive
learning and action inference process. In other words,
the final embeddings f(xt) and f(xt+1) in the total
loss function L is now ffinal(xt)

⊗
m(ffinal(xt)) and

ffinal(xt+1)
⊗
m(ffinal(xt)) reduced to a vector through

a fully connected hidden layer, where m denotes the atten-
tion mask network. The loss function of Attention Mask
Module is same as equation(5). However, LGL is slightly
changed because Global features at time t, ft is no longer
same. Global feature ft can be reformulated as follows:

ft(xt) = ffinal(xt)
⊗

m(ffinal(xt)) (6)

ft(xt+1) = ffinal(xt+1)
⊗

m(ffinal(xt)) (7)

3.2. The Atari Annotated RAM Interface (Atari-
ARI)

Measuring the usefulness of a representation is still an
open problem, as a core utility of representations is their use
as feature extractors in tasks that are different from those
used for training (e.g., transfer learning). Measuring clas-
sification performance, for example, may only reveal the
amount of class-relevant information in a representation,
but may not reveal other information useful for segmenta-
tion. It would be useful, then, to have a more general set
of measures on the usefulness of a representation, such as
ones that may indicate more general utility across numerous
real-world tasks. In this vein, we assert that in the context of
dynamic, visual, interactive environments, the capability of
a representation to capture the underlying high-level factors
of the state of an environment will be generally useful for a
variety of downstream tasks such as prediction, control, and
tracking.

Annotating Atari RAM. We used the same benchmark Ar-
cade Learning Environment(ALE, [4]) as Ankesh Anand et
al. [1]. ALE does not explicitly expose any ground truth
state information. However, ALE does expose the RAM
state (128 bytes per timestep) which are used by the game
programmer to store important state information such as the
location of sprites, the state of the clock, or the current room
the agent is in. Once this information is acquired, combin-
ing it with the ALE interface produces a wrapper that can
automatically output a state label for every example frame
generated from the game.

3.3. Implementation Details

We evaluate the performance of different representation
learning methods on our benchmark. Our experimental
pipeline consists of first training an encoder and an aux-
iliary network, then freezing their weights and evaluating
their performance on linear probing tasks. For each iden-
tified generative factor in each game, we construct a linear
probing task where the representation is trained to predict
the ground truth value of that factor. Note that the gradients
are not backpropagated through the our network, and only
used to train the linear classifier on top of the representation.

Dataset. We collect the data using a random agent (steps
through the environment by selecting actions randomly).
Note that learning representation is agnostic to the policy.
The reason why we collect data by a agent is to utilize a
triplet {xt, at, xt+1} composed of two consecutive obser-
vations including action, not only {xt, xt+1}. We ensure
there is enough data diversity by collecting data using 8 dif-
ferently initialized workers. We train the model with 35,000
frames and use 5,000 and 10,000 frames each for validation
and test respectively.

Network Architecture. Network used in encoding obser-
vations consists of 4 sequential convolution layers each ac-
tivated by ReLU, outcome of which is flattened and fed into
a dense layer to output a global feature vector. Local fea-
ture is the intermediate result from third convolution layer.
In detail, (channels, kernelsize, stride) of each convolu-
tion layer is (32, 8, 4), (32, 64, 4), (64, 128, 4), (128, 64, 3),
respectively. Global feature and local feature is resized into
a same sized vector by a dense layer before loss evaluation.
For action estimation, two resized vectors are concatenated
and processed with another dense layer to match the size of
the one-hot encoded action space before performing MLE.

For Auxiliary Region Sensitive Module(ARSM), two 1×
1 convolution layers are used with ELU activation function.
Each convolution layer is (512,9,6), (2,9,6) in that order. An
embedding vector for the image xt is calculated by element-
wise multiplying the input and output of ARSM. For AMM,
the network architecture is the same as for ARSM.

Hyperparameters. As mentioned, we give variation to the
weight of the loss function La, which measures the discrep-
ancy between the predicted and actual actions, by applying
hyperparameter λ. In our experiment we use three values,
(0.5, 1, 3) to observe the impact of action estimation in each
Atari environment.
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ABST-DIM(empirical best λ)
GAME ST-DIM(Baseline) AFC(Method 1) ARSM(Method 2) AMM(Method 3)
Berzerk 0.51 0.56(3) 0.53(1) 0.49(1)
Pitfall 0.59 0.72(3) 0.70(0.5) 0.61(3)
Pong 0.82 0.84(0.5) 0.83(0.5) 0.78(0.5)
Qbert 0.72 0.77(1) 0.74(1) 0.70(0.5)
Mean 0.66 0.72 0.70 0.64

Table 1. F1 scores of each method averaged across categories for each game: a) Auxiliary Fully Connected(AFC) Discriminator b)
Auxiliary Region Sensitive Module(ARSM) c) Attention Mask Module(AMM)

ABST-DIM AFC(λ)
GAME VAE CPC ST-DIM(baseline) 0.5 1 3 Max(vs ST-DIM)

Asteroids 0.36 0.42 0.45 0.45 0.47 0.43 0.47(+0.02)
Berzerk 0.45 0.56 0.51 0.50 0.52 0.56 0.56(+0.05)
Boxing 0.20 0.29 0.62 0.67 0.62 0.58 0.67(+0.05)

DemonAttack 0.26 0.57 0.66 0.66 0.69 0.65 0.69(+0.03)
Hero 0.69 0.90 0.90 0.91 0.93 0.91 0.93(+0.02)

Mspacman 0.56 0.65 0.70 0.71 0.70 0.70 0.71(+0.01)
Pitfall 0.35 0.46 0.59 0.70 0.68 0.72 0.72(+0.13)
Pong 0.09 0.71 0.82 0.84 0.82 0.80 0.84(+0.02)

PrivateEye 0.71 0.81 0.88 0.91 0.90 0.91 0.91(+0.03)
Qbert 0.49 0.65 0.72 0.74 0.77 0.74 0.77(+0.05)
Tennis 0.29 0.60 0.56 0.57 0.59 0.57 0.59(+0.03)
Venture 0.38 0.51 0.57 0.61 0.57 0.58 0.61(+0.04)

YarsRevenge 0.08 0.39 0.40 0.41 0.45 0.41 0.45(+0.05)
Mean 0.38 0.58 0.64 0.67 0.67 0.66 0.69(+0.05)

Table 2. F1 scores of Auxiliary Fully Connected(AFC) Discriminator averaged across categories for each game.(data collected by random
agents)

4. Experiments
4.1. Baselines

An important baseline is the ST-DIM [1] as it pro-
poses self-supervised state representation learning tech-
nique which exploits the spatial-temporal nature of visual
observations in a reinforcement learning. It magnify mutual
information of representations across spatial and temporal
domains. Based on ST-DIM architecture, we tried three dif-
ferent approaches to attach an auxiliary action-predicting
network.

4.2. Training details

We preprocess frames primarily in the same way as de-
scribed in [32], with the key difference being we use the full
210x160 images for all our experiments instead of down-
sampling to 84x84. We use early stopping and a learning
rate scheduler based on plateaus in the validation loss. We
ensure the distribution of realizations of each state variable
has high entropy by pruning any variable with entropy less
than 0.6. We also ensure there are no duplicates between
the train and test set.

4.3. Evaluation: Linear probing

Evaluating representation learning methods is a chal-
lenging open problem. In vision tasks, it is common to
evaluate based on the presence of linearly separable label-
relevant information, either in the domain the representation
was learned on or in transfer learning tasks. In this work, we
focus only on explicitness, i.e the degree to which underly-
ing generative factors can be recovered using a linear trans-
formation from the learned representation. This is standard
methodology in the self-supervised representation learning
literature. [6, 10, 36] We train a different 256-way1 linear
classifier with the representation under consideration as in-
put. Specifically, to evaluate a representation we train linear
classifiers predicting each state variable, and we report the
mean F1 score.

4.4. Results

As introduced in section 3, we applied three different
auxiliary networks for action inference task. The results are

1Each RAM variable is a single byte thus has 256 possible values rang-
ing from 0 to 255.
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CATEGORY ST-DIM(Baseline) ABST-DIM AFC
SMALL LOC 0.46 0.50
AGENT LOC 0.48 0.51
OTHER LOC 0.60 0.64

SOCRE/CLOCK/LIVES/DISPLAY 0.89 0.92
MISC 0.78 0.80

Table 3. F1 scores for different methods averaged across all games for each category (data collected by random agents)

shown in Table 1. As suggested by the result, action infer-
ence in general improved the representation performance.
However, sophisticated methods such as ARSM and AMM
did not shown any performance advantage over relatively
simple AFC. We believe this is caused by the bigger em-
phasis on action inference network and focusing more on
the action classification itself, not maximizing the similar-
ity between the positive samples.

We employed the best performing network AFC for ac-
tion inference, and collected the F1 score averaged across
all categories for each existing method and ABST-DIM with
different λ for each game in Table 2. In addition, we provide
a breakdown of probe results in each category, such as small
object localization or score/lives classification in Table 3 for
the random agent. The results show that ABST-DIM largely
outperforms other methods in terms of F1 score in every
category. For the best λ, the coefficient of La, ABST-DIM
AFC improved ST-DIM by 5% in overall. Specifically, in
case of Pitfall, Berzerk and Boxing, the proposed algorithm
indicates superior performance, increasing the performance
13%, 5% and 5% respectively. Conversely, in the case of
Mspacman and Asteroids, the performance was not signifi-
cantly improved.

The F1 score according to the different λ values indi-
cates a different tendency to each Atari environment, sug-
gesting that it is related to the dependency of the agent’s
behavior for each game. For the larger λ, the agent’s action
is more considered during self-supervised learning process
rather than the mutual information on the spatial and tem-
poral axes. Therefore, when an environment has few vari-
ability independent of the agent’s actions(such as Pitfall and
Berzerk), ABST-DIM shows significant performance im-
provements. Otherwise, when there are a lot of the vari-
ability in the environment that is not affected by the action
taken by the agent(such as Mspacman and Asteroids), our
new action-based approach has a little effect. To be more
specific, the obstacles in Pitfall tends to move in a certain
range with a consistent pattern while in Asteroids, move-
ment of the enemies is stochastic and cannot be intuitively
distinguished from the agent’s action. Refer Figure 4 for
more details. The Figure 4 shows that our new model im-
proved a lot better when there are few uncontrollable objects
in the environments. For example, in Asteroids, variety size
of asteroids are drifting in various directions on the screen,

which means predicting action is little helpful to learning
representations.

To summarize, using action inference as an auxiliary ob-
jective in addition to contrastive loss is helpful to some de-
gree, but does have negative effect to it’s performance if
unnecessary effort is put on to our model. Additionally, the
performance advantage may vary depending on the move-
ments independent of the action inside the environment.

Figure 4. Two environments with significant differences in perfor-
mance improvement.(13% and 2% respectively) (a) has few un-
controllable obstacles in the environment. In contrast, (b) includes
multiple objects that is not affected by the agent’s action.

5. Discussion
5.1. Ablation

We investigate two ablations of our ABST-DIM model:
ABST-DIM without local-local objective(LLL), which only
use global-local objective(LGL) and Global-ABST-DIM,
which only maximizes the mutual information between the
global representations (similar in construction to PCL [24]).
We report results from these ablations in Table 4 and Table
5 respectively. We see from the results in that Auxiliary
Fully Connected(AFC) Discriminator for action prediction
also improves the performance of both an ablation of ST-
DIM that removes local-local objective(LLL) and Global
ST-DIM. This means our new approach could be expand-
able to any constrastive learning framework. Note that
there should be a subsidiary labeled information for aux-
iliary learning. More specifically, in case of Qbert at Table
4 and Pong at Table 5, our proposed algorithm indicates big-
ger performance gain, increasing the performance 10% and
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ABST-DIM(GL) AFC(λ)
GAME ST-DIM(baseline) ST-DIM(GL) 0.5 1 3 Max(vs ST-DIM(GL))
Berzerk 0.51 0.51 0.51 0.51 0.53 0.53(+0.02)
Pitfall 0.59 0.71 0.73 0.72 0.72 0.73(+0.02)
Pong 0.82 0.82 0.82 0.83 0.83 0.83(+0.01)
Qbert 0.72 0.65 0.75 0.73 0.72 0.75(+0.10)
Mean 0.66 0.67 0.70 0.70 0.70 0.71(+0.04)

Table 4. Comparison of F1 Scores for ST-DIM, Global-Local ST-DIM(an ablation of ST-DIM that removes local-local objective) and
Global-Local-ABST-DIM

ABST-DIM(GG) AFC(λ)
GAME ST-DIM(baseline) ST-DIM(GG) 0.5 1 3 Max(vs ST-DIM(GL))
Berzerk 0.51 0.51 0.49 0.47 0.52 0.52(+0.01)
Pitfall 0.59 0.60 0.64 0.55 0.64 0.64(+0.04)
Pong 0.82 0.62 0.70 0.68 0.70 0.70(+0.08)
Qbert 0.72 0.59 0.58 0.60 0.61 0.61(+0.02)
Mean 0.66 0.58 0.60 0.58 0.61 0.62(+0.04)

Table 5. Comparison of F1 Scores for ST-DIM, Global ST-DIM and Global-ABST-DIM

METHOD ST-DIM(GG) ABST-DIM(GG) AFC(λ=1)
CLOCK 0.66 0.62

ENEMY SCORE 0.51 0.39
ENEMY X 0.16 0.15
ENEMY Y 0.14 0.16

PLAYER SCORE 0.51 0.55
PLAYER X 0.18 0.34
PLAYER Y 0.16 0.21

Mean 0.33 0.35

Table 6. Breakdown of F1 Scores for every state variable in Boxing for Global ST-DIM and Global-ABST-DIM

8% respectively. Based on this results, we could conclude
that when the performance gap between baseline ST-DIM
and the ablation methods is large, our new approach has a
significant impact.

5.2. Capturing the position of Agent

As we can see in Table 6, ABST-DIM performs better
at capturing the position of the agents than other methods.
The F1 scores of PLAYER X and PLAYER Y of Global-
ABST-DIM was improved by 16% and 5% respectively,
while overall F1 scores are slightly improved by 2%. This
is consistent with our intuition that action-predicting task is
helpful to represent the agent’s position.

6. Conclusions

This paper presents new algorithm(ABST-DIM) learning
state representations by agent’s action and mutual informa-
tion across spatially and temporally distinct features. We
tried three different action inference architectures and eval-

uated performance of each architecture in terms of F1 score
over generative features. We discovered that for auxiliary
objective, unnecessary complexity leads to negative effect
in representation performance as the result favored the rela-
tively simple solution, the AFC.

We then extensively evaluated the performance of
ABST-DIM based on AFC, and in most cases, ABST-DIM
shows improved performance. This emphasize that action
between observations gives certain intuition on semantics
of the observation itself. Also, auxiliary action inference is
implementable to any Reinforcement Learning setting.

However, the performance is greatly influenced by the
surrounding environment as well as by the agent’s behav-
ior. Our new model(ABST-DIM) did not achieve dramatic
performance improvement when the game environment has
many uncontrollable object. As a future research, we intend
to explore robust negative sampling and contrastive learning
methods.
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