
Unsupervised landmark detection for video generation

Sangho Lee, Ayoung Lee, Seoha Baek, Yoonseup Lee
Seoul National University, Seoul, Korea

sangho.lee@snu.ac.kr, ayoung1002@snu.ac.kr, bshfight@snu.ac.kr, navy10021@snu.ac.kr

Abstract

Novel idea to detect landmark from generating motion
transfer video

1. Introduction
In these days, computer vision seeks to understand object

structures that reflect the physical states and representation
of objects. And images and videos are an endless source of
data, but many of them is hard to be used because of lack
of annotations to train. Manual annotations or designs of
object structures (e.g., skeleton, semantic parts) are costly
and barely available for most object categories, making the
automatic representation learning of object structure an at-
tractive solution to this challenge. So, I propose this subject
for this project to solve such challenges with unsupervised
methods.

1.1. Key idea

Previous works show limitation in detecting landmarks.
Detecting landmarks from each frame shows highly correct-
ness with labelled points. However when detecting from
video, it sometimes detects semantically different land-
marks or highly escaped from expected key points. So when
generating videos with such key points, it fails to generate
continuous clip. It comes from not existing regularization
for the location of landmark in the model, so we limit the
difference of location of each landmark to prevent sudden
change of landmark. There is a key idea of regularizing
sudden change of location, which is using optical flow com-
pared from source and target frame.

2. Related works
Unsupervised landmark detection. An extensive tech-

niques on detecting landmark with unsupervised learning
are exist in the literature. Unsupervised learning of object
landmarks by factorized spatial embeddings [1] proposed an
unsupervised method that landmarks effectively learn the
place where a convolutional neural network detects stable

visual patterns, but this method have well-constrained prob-
lems not to point landmark at critical location. Unsuper-
vised Learning of Object Landmarks through Conditional
Image Generation [2] proposed a method for learning land-
mark detectors via conditional image translation for visual
objects without supervision. However, the landmarks are
hard to interpret in the image. For this reason, Unsuper-
vised Discovery of Object Landmarks as Structural Rep-
resentations [3] discovers landmark with a differential au-
toencoder structure for informative landmark detection. Ex-
panding this method, Unsupervised Part-Based Disentan-
gling of Object Shape and Appearance [4] suggests disen-
tanglement between object shape and appearance and Un-
supervised Human Pose Estimation through Transforming
Shape Templates [5] proposed a method for the unsuper-
vised estimation of 2D keypoints requiring only a simple
template and an unannotated video of a single human per-
forming actions.

Generative model based landmark detection. Re-
cently, deep generative models based landmark detection
have been studied for image animation and video retarget-
ing [6–9]. In these process, Generative Adversarial Net-
works(GANs) [10] and Variational Auto-Encoders(VAEs)
[11] have been used to derive pattern and generate videos.
Animating Arbitrary Objects via Deep Motion Transfer [12]
have shown Monkey-Net consisting of three networks that
predicts sparse key points, motion modeling, motion recon-
struction through the self-supervised learning. However,
low result can be obtained if input image and frame size
are large. To overcome this drawback, First Order motion
model for Image Animation [13] extended Monkey-Net by
the combination of keypoints and local affine transforma-
tion for modeling motion and improved the object appear-
ance when large pose transformations occur.

Predict next frames with optical flow. To find relation-
ships between several image frames, optical flow is a com-
mon technique [1]. Unsupervised Discovery of Parts, Struc-
ture, and Dynamics [14] recognizes object, predicts hierar-
chical correspondences, and learns dynamics. Optical flow
between two frame images helps to model motion of ob-
jects using hierarchical model and dynamics. Unsupervised



Part Representation by Flow Capsules [15] take a similar
approach but use a capsule network, which parses the rela-
tionship of layers for objects, parts, and relations. Capsule
encoder makes flow capsules for single image in prepara-
tion that state-of-arts approaches are not able to describe
low level part of image. In this process, optical flow takes a
role for calculating flow field of images as a self-supervised
methodology. It shows better performance in unsupervised
segmentation evaluation tasks compared to PSD.

Learning landmarks from video. Learning object land-
mark from an image is widely studied [2]. However, label-
ing process into frame-by-frame keypoints is necessary for
video prediction and takes time for preprocessing. Unsu-
pervised Keypoint Learning for Guiding Class-Conditional
Video Prediction [16] proposed an unsupervised approach
to find keypoints of a dynamic object in an image to learn
future frames. In terms of video, action conditioned key-
points sequence is generated based on initial keypoints and
action. Also, conditional VAEs (CVAEs) [17] framework
for learning future distribution and Long-Short Term Mem-
ory (LSTM) network [18] for the sequential data are used
and shows good performance.

Figure 1. Learn representation from video generation

3. Approach
In this section, we will discuss how to learn motion pre-

sentation using optical flow. The model learns to predict
how this part will proceed in the next step after detecting
the motion of key points which is represented as transfor-
mation mapping, and this process proceeds without human
annotation.The data input output and the entire structure are
shown in Figure 1.

3.1. Overview

It is optical flow that shows changes over temporal move-
ment in video data processing. Thus, in this paper, an op-
tical flow that predicts the movement after given steps is
generated, and the image is generated based on this . This

model first finds the key point in each Source image S and
driving frame D through the key point detector. The ex-
tracted key point is converted into an affine transformation
mapping value to be converted into a point corresponding
to each other in S and D. Dense motion network receives
this conversion value indicating the movement of each key
point, and The movement of each point is output as the
movement of the area represented by the point. The mo-
tion value of the predicted region, that is, the optical flow,
generates an image in region D through synthesis with the
original image through the Generation model.

3.2. Network Structures

The structures of each network part is as follows.
The key point detector is the part that receives the im-

ages of S and D respectively, and calculates the key points
of each image in a self-supervised manner. Key points ob-
tained from each image of S and D are predicted individu-
ally through the encoder-decoder network. This key point
representation acts as a bottleneck resulting in a compact
motion representation. Calculated using key points, this
transformation takes place through a reference frame R as
one abstract concept before being converted from D to S.
The reason why this referenceec frame R is necessary is that
the images of S and D are visually very different because
they belong to very different areas. Therefore, instead of
calculating the conversion from D to S directly, the conver-
sion proceeds through each R frame. This method makes it
possible to process D and S separately.

Affine transform. The movement of each key point is
newly modeled through local affine transform. Unlike us-
ing the aforementioned key point displacement, the reason
why this transformation is necessary is that the affine trans-
form calculates the movement of the point including the
movement of the neighbor around the point. To this end,
Taylor expansion is used to represent ´TD←R by a set of
keypoint locatins and affine transformations. ´TS←D is es-
timated near the keypoint in D. In order for this, the trans-
formation ´TR←D is estimated near the pixel location in the
drivng frame D first.Then the transformation ´TS←R near the
pixel loacation in the reference frame R. ´TS←D is obtained
as follows :

´TS←D = ´TS←R ◦ ´TR←D = ´TS←R ◦ ´TD←R−1 (1)

After computing the first order Taylor expension of Eq.?
the result is below :

´TS←D ≃ ´TS←R + J́k(z − ´TD←R) (2)

where

J́k(z − ´TD←R) = (
d

dp
´TS←R)(

d

dp
´TD←R)

−1 (3)



´TS←R and ´TD←R are predicted by the keypoint detec-
tor. K heatmaps are estimated by U-Net architectur for each
keypoint.The last layer of the decoder uses softmax activa-
tions in order to predict heeatmaps able to be interpreted as
keypoint detection confidence map.

Dense motion. Dense motion network combines the
local approximations to obtain the resulting dense motion
field ´Ts←d. For each keypoint pk Heatmaps Hk is com-
puted that indicates to the dense motion network where each
transformation happens. Each Hk(z) is implemented as the
difference of two heatmaps centered in ´TD←R and ´TS←R.
The heatmaps and the transformed images S0, ... SK are
concatenated and processed by a U-Net.

Generation module. The generation module uses the
transformed map and renders an image of the source ob-
ject acting as the driving image. The generation network G
warps the source image according to the predicted optical
flow, which is the output of dense motion Ts←d. Since the
source image S is not pixel-to-pixel aligned with the output
image , feature warping method is used. Original feature
map ξ ∈ RH́×Ẃ of dimension H́ × Ẃ is warped to ´Ts←d.
The transformed feature map is written as :

ξ́ = fw(ξ, ´TS←D) (4)

where fw() denotes the back warping operations and ξ
represents feature map.

3.3. Training Details

Loss function L consists of two separate components :

L = Lopticalflow + Lperceptual (5)

Lopticalflow =

k∑
k=1

|Φ(Hk(ut + ϕ(ut+1, ut)), Hk(ut))

− Φ(Hk(ut+1, Hk(ut))|
(6)

Lperceptual =

K∑
k=1

|V GG(Hk(ut + ϕ(ut+1, ut)), Hk(ut))

− V GG(Hk(ut))|
(7)

The first component is optical flow loss, which allows the
model to increase the accuracy between the actual optical
flow and predict optical flow.

The second component is perceptual loss, which encour-
ages the model to accurately generate each parts in the
frame at target step based on the predicted optical flow.
TBD.

4. Experiments
In this section, we evaluate our model in various tasks in-

cluding landmark detection and image pose reconstruction.
In the first section 4.1. we show the qualitative results of
our model for the task of unsupervised landmark detection
on Deep-Fasion dataset. In Sect.4.2. we evaluate landmark
detection and image reconstruction based on our baseline.
Finally, We comparison with Previous Works and report the
qualitative and quantitative results in Sect.4.3.

4.1. Landmark Detection on Deep-Fashion

In this section we show the results of part and landmark
detection on Deep-Fashion dataset. In our work we only
used images of full-body from the front-view. We randomly
picked 20 percent of images as the test set. Fig.2. visual-
izes 10 out of 10 part activation maps of given images, spa-
tially transformed images and appearance transformed im-
ages. Activation maps are learned in a self-supervised man-
ner through an image reconstruction task. we can see impor-
tant keypoints like face, hair, arms, legs, torso, wrists and
feet which are detected from the resulting activation maps,
even when there is a change in pose and appearance of the
object. We can see that model is automatically learned to
not overlap, as it leads to lower reconstruction loss and bet-
ter reconstructed images.

Figure 2. Landmark Detection. Visualization of 10 part activation
maps for the given image

Our 10 part activation maps learned 2D Gaussian distri-
butions each acting as a part representation and their corre-
sponding predicted landmarks. We consider center points
as part activation maps, which are parameters of Gaussian
distributions as our predicted keypoints. Without any labels,
our model can detect decent keypoints, especially for arm,
leg, hand, feet regions.

4.2. Evaluation based on Generative model

In this section, we introduce a some metrics and present
a in-depth evaluation result compared to three techniques



tested on Vox dataset. We first evaluate our model landmark
on the task of videos reconstruction. This consists in recon-
structing the input video from a representation in which mo-
tion and content are decoupled. This task is a “proxy” task
to image animation and it is only introduced for the pur-
pose of quantitative comparison. In our case, we combine
the extracted keypoints of each frame and the first frame of
the video to re-generate the input video. Second, we eval-
uate our approach on the problem of Image-to-Video trans-
lation. This problem consists of generating a video from
its first frame. Since our model is not directly designed for
this task, we train a small recurrent neural network that pre-
dicts, from the keypoints coordinates in the first frame, the
sequence of keypoints coordinates for the other 32 frames.
Additional details can be found in the Supplementary Mate-
rial A. Finally, we evaluate our model on image animation.

Figure 3. Landmark Detection. Visualization of 10 part Land-
marks for the given image

Metrics. We adopt several metrics in order to provide an
in-depth comparsion with other methods. We employ the
following metrics and attach result of AKD on Vox dataset.

1) AKD. For the Vox dataset we use the facial landmark
detector. We compute these keypoints for each frame of
the ground truth and the generated videos. From these ex-
ternally computed keypoints, we deduce the Average Key-
point Distance(AKD), i.e. the average distance between the
detected keypoints of the ground truth and the generated
video.

2) MKR. The facial-position estimator returns also a bi-
nary label for each keypoint indicating whether the key-
points were successfully detected. Therefore, we also report
the Missing Keypoints Rate (MKR) that is the percentage of
keypoints that are detected in the ground truth frame but not
in the generated one. This metric evaluates the appearance
quality of each video frame.

3) AED. We compute the feature-based metric employed
in that consists in computing the Average Euclidean Dis-
tance (AED) between a feature representation of the ground
truth and the generated video frames. The feature embed-
ding is chosen such that the metric evaluates how well the
identity is preserved.

4) FID. When dealing with Image-to-video translation,
we complete our evaluation with the Frechet Inception Dis-

Table 1. Image reconstruction comparisons on VOX dataset

Model Ll AKD AED

X2Face 0.078 7.687 0.045
Monkeynet 0.049 1.878 0.199
FOMM 0.043 1.294 0.140
Ours - 1.292 -

tance (FID) in order to evaluate the quality of individual
frames.

4.3. Comparsion With Previous Works

Video Reconstruction. We compare our results with the
X2Face model, Monkey-net and FOMM that is closely re-
lated to our proposal on the Vox dataset.

5. Conclusion
We presented keypoint detection based on first order mo-

tion model. The motion field between two frames is rep-
resented by keypoints and local affine transformation and
manipulated source image following target image’s action
is generated based on the motion field. In addition, we sug-
gest optical flow method to solve an inconsistency problem
with detecting keypoints. We showed that our approach out-
performs state of the art methods in AKD.
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