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Abstract

Deep neural networks (DNNs) have shown great success
in image super-resolution (SR) task, which is generating
a high-resolution (HR) image from a low-resolution (LR)
image. However, most SR networks are computationally
challenging, requiring substantial computation and mem-
ory consumption.

Although there exist many research applying model com-
pression techniques to a classification task, applying them
to image restoration has not been studied extensively. This
is mainly because an image restoration model needs to
maintain the details of the image, and compressing may lose
some of the features of the image. To address this prob-
lem, SwinIR was proposed, which is lightweight restoration
model based on Shifted Window Transformer (Swin Trans-
former). In this work, we aim to compress SwinIR net-
work further to achieve even lower computational cost. Our
main approaches are knowledge distillation (KD) and net-
work pruning. Our experimental results show that our mod-
els achieve performance comparable to that of the original
SwinIR network with much fewer channels and parameters.
There are some challenges remaining, and we would like to
share them in this paper.

1. Introduction
Image super-resolution (SR) aims at recovering a high-

resolution image from its low-resolution counterpart. Deep
neural networks (DNNs) have brought a lot of improvement
in image SR as much as other computer vision tasks [8].
Various network architecture designs and training strategies
have continuously improved SR performance. Many recent
works showed that increasing the model depth helps to im-
prove the reconstruction quality. Kim et al. [15, 16] proved
in their paper that the deeper the model gets, the better
the performance gets in the SR task. GAN-based methods
have attracted a lot of attention showing outstanding perfor-
mance [17, 31].

Recently, Transformer-based methods have been intro-
duced in image restoration tasks and showed competitive

results compared to other advanced SR models [2,4,20,32].
Despite of the outstanding performance, most state-of-the-
art SR networks are very deep and complex and thus not
efficient for general applications such as using on mobile
devices due to high computational cost and memory con-
sumption. Liang et al. [20] proposed SwinIR which applies
Swin Transformer [23] to image restoration tasks includ-
ing SR and image denoising. Swin Transformer, originated
from Vision Transformer (ViT) [7], applies bounded self-
attention to reduce computational complexity. SwinIR uses
residual Swin Transformer blocks (RSTB) for feature ex-
traction and achieves good performance with fewer param-
eters.

In this paper, we utilize SwinIR as our baseline model
and apply model compression techniques for Transformer
networks. In particular, we focus on knowledge distillation
[10,28,29,35] and network pruning [22,25,34,38]. Knowl-
edge distillation is a process of transferring knowledge from
a large (teacher) model to a small (student) model. The
student model is trained to learn the exact behavior of the
teacher network by trying to replicate it’s outputs. We
train the original SwinIR with 6 Residual Swin Transformer
Blocks (RSTB) as a teacher model, and that with 4 RSTBs
as a student model. A loss function is updated to consider
the loss from comparing the teacher and the student output
and also the difference between ground truth and student
output together. Network pruning is removing parameters
from a trained model. It cuts off redundant parameters and
reduce the size of the network. We apply pruning on the
multi-layer perceptron (MLP) and multi-head self-attention
(MSA) layers in transformer blocks of SwinIR.

DIV2K dataset is used to train our model and performed
test on Urban100 and Manga109 dataset. The KD student
model taught by the teacher network along with ground
truth outperforms the plain student model that only learns
the ground truth by 0.25 dB PSNR and 0.01 SSIM. Despite
the optimal ratio of distillation loss leads to better outcomes,
weight more on it decreases the PSNR and SSIM. We ob-
served that the KD is more effective with a set of optimized
hyperparameters. The pruned model shows comparable re-
sults with the original SwinIR. When pruning 25% of MLP
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blocks, the average PSNR only drops by 0.22 dB (averag-
ing Urban100 and Manga109). When pruning 25% of both
and MLP and MSA blocks, PSNR drops by 0.37 dB. This
is a reasonable result as more channels are reduced. It is a
trade-off between the performance and computational load,
but the experiments demonstrate that the model can pre-
serve significant information even with large reduction in
parameters.

2. Related Work
2.1. Lightweight Super-Resolution

Hui et al. [13] proposed a lightweight information multi-
distillation network (IMDN) which outperforms state-of-
the-art models [1, 6, 15]. IMDN splits the output channel
of convolutional layer before information multi-distillation
block (IMDB) into ‘refined’ and ‘coarse’ features, to reduce
the number of parameters drastically. Utilizing adaptive
cropping strategy to process images of any arbitrary size di-
minishes the computational cost, memory occupation and,
inference time as well. Lattice Net [24] proposed another
approach of lightweight SR. The major idea of the network
is to have Lattice Block (LB) with two butterfly structures,
each of which comprises a residual block(RB). Lattice Net
is beneficial to attain to efficiency of its structure that lin-
ear combination patterns of two RBs. Lattice Net reduces
the parameters by up to half against state-of-the-art models
without compromising its performance.

2.2. Knowledge Distillation for CNN-based SR

Knowledge distillation is an efficient network training
idea that a small student model imitates a pre-trained heavy
model. [10]. There are only a few attempts to implant KD
onto CNN-based SR. A feature affinity-based KD (FAKD)
for image SR [9] used the correlation within a feature map
to transfer structural knowledge. Lee et al. [18] used ground
truth HR images as privileged information and feature dis-
tillation to train compact SR network. Both models success-
fully improved performance.

2.3. Vision Transformers

Vision Transformers. Recently, various studies have been
conducted using Transformer [30] in the field of com-
puter vision problems such as image classification [7, 19,
23, 26, 33], object detection [3, 21, 23, 29], and segmenta-
tion [23,33,37]. Ramachandran et al. [26] proposed ResNet
architecture consists of self-attention to capture long-range
dependencies. Dosovitskiy et al. [7] interpreted the im-
age as a sequence of patches and devised a model, ViT.
ViT showed similar performance to state-of-the-art CNN
based models while reducing computational resources to

train. Since ViT model relies on huge training datasets,
Touvron et al. [29] proposed Data-efficient image Trans-
former (DeiT) by applying knowledge distillation and data
augmentation to ViT. Liu et al. [23] proposed a Swin Trans-
former that can be used as a backbone for various vision
tasks. By applying shifted window approach and hierarchi-
cal feature maps, the parameters were reduced while suc-
cessfully handling vision problems.

Image Restoration Architecture. Several recent works
proved that image restorations using transformers can yield
remarkable performance [2, 4, 20, 32]. Chen et al. [4] de-
veloped a new pre-trained backbone model Image Process-
ing Transformer (IPT) for computer vision tasks based on
standard Transformer. Cao et al. [2] proposed a VSR-
Transformer for video super-resolution. However, both IPT
and VSR-Transformer employ patch-wise attention, which
may introduce border artifacts around each patch in the re-
stored image. To address this problem, Wang et al. [32]
presented Uformer, which is Swin Transformer based U-
shaped architecture for image restoration. Liang et al. [20]
proposed the SwinIR model and with feature extraction
modules, image reconstruction module, and several residual
connections, SwinIR achieves better Peak Signal-to-Noise
Ratio (PSNR) with fewer parameters compared to prevalent
CNN-based image restoration models.

2.4. Compressing Transformer-Based Model

Transformer-based models showed remarkable perfor-
mance in many tasks. However, these models are very
heavy and cause high latency. A model compression is an
active area of research these days, and there are some main
methods: Knowledge Distillation and Pruning.

Knowledge Distillation (KD). Sun et al. [28] proposed
MobileBERT for compressing and accelerating the popular
BERT model. They use knowledge distillation and quanti-
zation methods to lighten it. Jiao et al. [14] proposed Tiny-
BERT and Sanhet et al. [27] proposed DistilBERT which
also use distill strategies.

Pruning. Zhu et al. [38] showed a dimension-wise pruning
for Vision Transformers. They applied pruning operations
on the MSA and MLP blocks. Yang et al. [34] proposed
NVIT, which applies global structural pruning with latency-
aware regularization on all parameters of the ViT model.
Mao et al. [25] and Hou et al. [12] presented pruning with
KD methods for BERT.
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Figure 1. The architecture of the SwinIR (adopted from [20]).

3. Method
3.1. Preliminaries

3.1.1 SwinIR Network Architecture

The SwinIR [20] architecture is presented in figure 1. L1
pixel loss is employed as a loss function.

Shallow and Deep Feature Extraction. A 3 × 3 convo-
lutional layer is used in Shallow feature extraction module.
Then SwinIR extract deep feature FDF by deep feature ex-
traction module HDF . The module contains sequentially
stacked K RSTBs and a 3× 3 convolutional layer at the end
of the module. Through this RSTB, intermediate features
F1, F2, . . . , Fk are created, and finally the output deep fea-
ture FDF are extracted by applying the last convolutional
layer to the last intermediate feature Fk as

Fi = HRSTBi
(Fi−1), i = 1, 2, ...K, (1)

FDF =HCONV (FK), (2)

where HRSTBi
denotes the i-th RSTB and HCONV is the

last convolutional layer.

Image Reconstruction. SwinIR reconstructs the high-
quality image IRHQ by aggregating shallow and deep fea-
tures as

IRHQ = HREC(F0 + FDF ), (3)

where HREC is the function of the reconstruction module.
With the skip connection, deep feature extraction module
can focus on high-frequency information and stabilize train-
ing.

Residual Swin Transformer Block and Swin Trans-
former layer. The RSTB is a residual block consists of L
Swin Transformer Layers (STLs) and a convolutional layer.
When the input feature is the i-th RSTB, Fi,0, the inter-
mediate features, {Fi,1, Fi,2, ..., Fi,l}, are extracted by j-th
Swin Transformer Layers of the i-th RSTB HSTLi,j as

Fi,j = HSTLi,j
(Fi,j−1) (4)

Swin Transformer layer (STL) is adopted from the Swin
Transformer architecture in [23].

3.2. Model Compression

3.2.1 Knowledge Distillation

Knowledge distillation (KD) is a process of transferring
knowledge from a large model (teacher model) to a small
model (student model). This is a special technique that does
not explicitly compress the model from any dimension of
the network [10]. To utilize the KD method, we should de-
fine a teacher model and a student model first. 3

In TinyBERT [14], which has fewer layers than the orig-
inalBERT, the authors used the original BERT as a teacher
model and TinyBERT as a student model. So that they could
make a lightweight network by cutting some layers from the
original network while minimizing the performance loss.
We applied this idea to the SwinIR [20]. Original SwinIR
has 6 RSTBs and each RSTB consists of 6 STLs. We use the
original SwinIR as teacher model and lightweight SwinIR
which has 4 RSTBs and each of them consists of 4 STLs as
a student model. Since the authors of the SwinIR provided
a pre-trained classical model which has achieved SOTA, we
used that model as a teacher to solve limited computing re-
sources problem.

We also adapt the idea of distillation token from the DeiT
model [29]. The structure is shown in 2. We add a distil-
lation token along with the patch tokens, in the process of
patch embeddings, so that the token interacts with other em-
beddings through self-attention. The distillation embedding
makes the student model learn from the teacher’s output.
The distillation loss is reduced through back propagation.

In case of the SR task, the loss function of KD can be

Figure 2. The diagram of inducing a distillation token. The
distillation token which is input of the STL learns by back-
propagation(adapted from [29]).
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Figure 3. Framework of the proposed knowledge distillation in SR task. The student model is trained with distillation loss and reconstruc-
tion loss.

applied by the following function [36],

Ldistill = Ex∈px(x)[||T (x)− S(x)||1], (5)

where x is the training sample and px(x) is the distribution
of the original dataset. T is the teacher network and S is the
student network.

We define the global loss function as an affine combina-
tion of the reconstruction loss Lrecon and distillation loss
Ldistill as below.

Lglobal = (1− λ)Lrecon + λLdistill, λ ∈ [0, 1] (6)

Lglobal = (1− λ)||IRHQ − IHQ||1 + λ||ITRHQ − IRHQ||1,
(7)

For the reconstruction loss, the loss function of original
SwinIR has been selected, where IRHQ is the reconstructed
high-quality image from the student model and IHQ is the
high-quality ground truth image. Distillation loss is calcu-
lated as reconstruction loss does with ITRHQ, reconstructed
image by the teacher model. λ is the only hyperparameter
of this loss function.

3.2.2 Network Pruning

The network pruning is removing parameters from an
existing network. The pruning is categorized into two: un-
structured pruning and structured pruning. The unstructured
pruning is pruning individual weights and the structured
pruning is pruning channels. Generally, the pruning consists
of three parts. 1) training, 2) pruning, 3) fine-tuning [22,38].
an Zhu et al. [38] proposed a vision transformer pruning.
They applied channel pruning on ViT, and demonstrated

comparable performance with the original model despite of
large reduction of parameters. NVIT paper [34] presented
latency-aware global structural pruning method for making
lightweight ViT model [7]. We adapted the idea to SwinIR.

As Swin Transformer [23] is originated ViT, we utilize
the channel pruning method. The channel reduction is done
on MSA and MLP in the STLs. We first train the importance
score for each channel of linear projections in the STLs.
This is done along with the training of the network. To push
the importance score to zero, ℓ1 regularization is applied to
the importance score as in γ∥a∥, where γ is the sparsity hy-
perparameter and a is the importance score. [22, 38]. This
is added to the objective function in training. We multi-
ply the channels with the learnt importance scores to get
pruned channels: X∗ = Xdiag(a), where X is channels.
The importance scores for all channels are ranked from low
to high. After aligning channels along with the ranked im-
portance scores, we cut the channels starting from the ones
having low importance score. The amount to pruning is de-
termined by the pruning rate. We apply pruning on all MLP
and MSA blocks.

4. Experiment
4.1. Datasets and Metrics

We train SwinIR (Classical, Lightweight) and our mod-
els on DIV2K dataset. DIV2K dataset contains 900 2K res-
olution images. DIV2K is divided into 800 train images and
100 test images. Due to the limitations on resources, we
use only 384 train images for training and resize the height
of weight of images into 1/8 from the originals. Then, we
test our models on Urban100 and Manga109 datasets. Per-
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Figure 4. The channel pruning architecture. Channels with low
importance scores are pruned.

formance measures (PSNR and SSIM) and model compres-
sion(reduction of number of parameters and channels) is es-
timated as quality metrics.

4.2. Implementation Details

All experiments are performed with a scaling factor of
x2 between LR and HR images. The training HR images
are resized to 255 x 169 and LR images are resized to 127
x 84. We set the batch size to 32, window size to 8 x 8
and the patch size to 48 x 48. For training model, we uti-
lize GeForce RTX 3090 TI GPUs in GSDS cluster. There-
fore, we attempted distributed data parallel programming
and succeeded using multiple GPUs for training.

However, since we are sharing GPUs with other col-
leagues and students in the college, it was limited to train
numerous versions of the model with different hyperparam-
eters. For the reliable and consistent result comparison in
time, it was forced to use single GPU experiment with max-
imum GPU access time to 12 hours.

4.3. Results

As image quality evaluation methods for the SR task,
we used PSNR for objective method and SSIM for subjec-
tive method which are well described in the paper [11]. A
small PSNR value implies high numerical differences be-
tween images. The SSIM is a quality metric used to con-
sider the quality perception of the human visual system. As
a combination of three factors that are loss of correlation,
luminance distortion, and contrast distortion, SSIM is de-
signed to catch image quality loss.

Table 1 shows the test result of SwinIR on two datasets.
The classical SwinIR model has an average PSNR value
of 27.46 dB for the Urban100, and 28.41 dB for the
Manga109. SSIM values of Urban100 and Manga109 are
0.9135 and 0.9088, respectively. All results are based on
scale factor x2. Visual comparisons are shown in Figure 5,6
.

4.3.1 Knowledge Distillation

The global loss function of the knowledge distilled
lightweight SwinIR which is well represented in equation 6
and 7 is a sum of reconstruction and distillation loss terms,
balanced by the hyperparameter λ. We test with three λ
value: 0.25, 0.5, 0.75, and each result is shown in table 1.
The larger the lambda value, the more weight is given to
reduce the loss between the teacher and the student, and the
smaller the lambda value, the more weight is given to re-
duce the loss between the student and the ground truth.

The parameters of the lightweight model was nearly re-
duced by a factor of 13 (from 11750k to 910.15k), com-
pared to the classical model, but the model performance
was also decreased. For example, the average PSNR value
of the Manga109 was decreased by 0.51 dB (from 28.41 dB
to 27.90 dB), and that of Urban100 was decreased as well
by 0.42 dB (from 27.46 dB to 27.04 dB).

When knowledge distillation was applied, the number of
parameters was 910.45k, which was similar to that of the
lightweight model as 910.15k. However, when the hyper-
parameter λ is 0.25, PSNR in the Manga109 was 28.26dB,
which increased by 0.36 dB compared to lightweight with-
out KD, and in the Urban100, it increased by 0.13 dB to
27.17 dB. That is, when KD was applied, the number of
parameters could be dramatically reduced, and the model
performance drop could be minimized at the same time. Vi-
sual comparisons in Fig 5, 6 are also reflect the qualitative
comparison results as above.

However, when applying KD, the principle concern is
setting the appropriate hyperparameter λ. In our training
environment, the restoration performance was superior than
the lightweight model when the λ is 0.25. This implies
that model performance loss due to the lightweight-ization
could be lessened when the student model focused more on
reducing the loss with the ground truth than on reducing the
loss with the teacher.

4.3.2 Network Pruning

The original SwinIR network consists of 6 RSTBs and
each RSTB contains 6 STLs. We have 36 blocks of MLP
and 36 blocks of MSA in total. Each STL has 6 heads. Each
MLP block has 360 channels and MSA has 180 channels.
The hyperparameters are:

• Pruning rates : 0.25, 0.5, 0.75

• Sparsity γ : 1e−4, 1e−5

Pruning (MLP) When pruning 25% of channels (75%
remaining), the average PSNR of Urban100 is 27.32 dB,
28.20 dB for Manga109. The average SSIM is 0.9201 and
0.8655 for Urban100 and Manga109, respectively. When
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(a) High-Resolution (Original Image) (b) Super-Resolution (Classical model) (c) Super-Resolution (Lightweight model)

(d) Low-Resolution ( Downsample, 1/2 H x W) (e) Super-Resolution (Knowledge Distillation) (f) Super-Resolution (Pruning)

Figure 5. Cropped partial images for the purpose of better visual comparison. (a) Ground truth when training. (b) SR image by classical
SwinIR. (c) SR image by lightweight SwinIR. (d) LR input, half the width and height of the original image. (e) SR image by KD model.
(f) SR image by pruned model.

(a) High-Resolution (Original Image) (b) Super-Resolution (Classical model) (c) Super-Resolution (Lightweight model)

(d) Low-Resolution (Downsample, 1/2 H x W) (e) Super-Resolution (KD model) (f) Super-Resolution (Pruning model)

Figure 6. Cropped partial images for the purpose of better visual comparison. (a) Ground truth when training. (b) SR image by classical
SwinIR. (c) SR image by lightweight SwinIR. (d) LR input, half the width and height of the original image. (e) SR image by KD model.
(f) SR image by pruned model.

50% are pruned, the average PSNR drops to 27.33 dB (Ur-
ban100) and 27.94 dB (Manga109). As can be seen in the
experiment, pruning half of MLP channels barely affects the
performance. The results are based on γ = 1e−5.

Pruning (MLP+MSA) When pruning 25% of channels,
the average PSNR of Urban100 is 27.52 dB, 27.62 dB for

Manga109. Manga109 shows even higher PSNR than the
classical model. The average SSIM is 0.9139 and 0.8691
for Urban100 and Manga109, respectively. With 50% prun-
ing, the PSNR drops to 26.24 dB (Urban100) and 26.56 dB
(Manga109).

γ = 1e−5 shows better performance than γ = 1e−4.
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Base KD Pruning(MLP) Pruning(MLP+Attention)
C1) L2) 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Manga PSNR 28.41 27.90 28.26 27.37 26.40 28.20 27.94 27.33 27.62 26.56 23.00
SSIM 0.9088 0.9152 0.9208 0.9072 0.8908 0.9201 0.9149 0.8620 0.9139 0.8877 0.7461

Urban PSNR 27.46 27.04 27.17 26.13 24.61 27.32 27.33 27.36 27.52 26.24 20.97
SSIM 0.9135 0.8583 0.8729 0.8567 0.8252 0.8655 0.8620 0.8540 0.8691 0.8310 0.5694

Table 1. Experimental results of all models. Best and second best performance are in red and blue colors, respectively. 1) C means
‘Classic’. 2) L means ‘Lightweight’. KD’s parameter indicates λ and Pruning’s parameter indicates γ

γ Urban100 Manga109

γ = 1e−5 27.52/0.8691 27.62/0.9139
γ = 1e−4 25.06/0.8256 26.69/0.9053

Table 2. Average PNSR/SSIM results of two sparsity regulariza-
tion (25% MLP+MSA pruning)

The comparison is shown in Table 2. With γ = 1e−4, the
pruning mostly occurs on the front layers. Whereas with
γ = 1e−5, the pruning happens across the entire channels.
The Fig 5, 6 show the image after pruning. It is hard to
distinguish the original model and the pruned model per-
ceptually.

5. Conclusions

5.1. Summary

In this paper, we propose a lightweight SR model using
KD and the network pruning. We use SwinIR as our base-
line model. The KD and the pruning is applied to the STLs
of SwinIR, the part where the deep feature extractions of
images occurs. The experiments show that the model com-
pression could reduce computational costs and number of
parameters without losing the performance. The KD with
appropriate hyperparameter λ reduces the number of pa-
rameters by a factor of 13 (11750k to 910.15k) compared
to the classical model. At the same time, the model per-
formance drop improves by nearly 70% (0.51 dB to 0.15
dB) on Manga109 and 30% (0.42 dB to 0.29 dB) on Ur-
ban100 compared to the model without teacher guidance on
a PSNR basis. Pruning 25% of channels from linear projec-
tions in STLs reduces PSNR level by 0.37 dB and -0.020
SSIM level (averaging Urban100 and Manga109) as com-
pared to the original SwinIR model. We demonstrate the
effectiveness of model compression in Transformer based
SR.

5.2. Limitations and Future Work

In our experiments, we had limited resources in terms of
the number of GPUs and training time. Under the limited

computing resources, we could not reproduce the models as
the original SwinIR experiment setting. With an optimum
computational power, we will be able to establish a better
baseline for verifying the efficiency of model compression
methods we have applied in this paper.

As future works, different model compression methods
can be attempted. Network quantization could be another
good compression methods for Transformer. It compresses
the original network by reducing the number of bits required
to represent each weight [5]. The computational costs of
vision transformer heavily depend on the large matrix mul-
tiplication in MSA and MLP module, thus the quantization
can be applied on Transformer layers as well.
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