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Abstract

There are ongoing works trying to understand the rep-
resentation space of deep neural network. In this work, we
are investigating the representation space using a geometric
property, Intrinsic Dimension (ID), the minimal number of
coordinates required for describing the distribution of rep-
resentations. We first compare existing ID estimators and
find the accurate and robust estimator. Then, we perform
overall experiments to derive useful correlation between ID
and other general metrics on various deep learning scenar-
ios, especially data augmentation and transfer learning.

1. Introduction

It is well known that high-dimensional data (e.g. natural
languages and images) consist of low-dimensional structure
[28,31]. Deep Neural Networks (DNN) is a powerful tool
for extracting low-dimensional representations from high-
dimensional data, such as Convolutional Neural Networks
(CNN) in image classification [6].

Though DNN could precisely predict output from unseen
data (i.e. generalizability), it still remain unclear why they
perform well and what does the representation imply. A
large body of prior works try to answer the unfolded ques-
tion [29, 35]. Intrinsic Dimensionality (ID) is one of them
which starts to give us quantitative explanations of represen-
tation manifold, derived when high-dimensional data passes
forward neural networks [31].

Intrinsic Dimension (ID), a geometric property of data
representations, is the minimal number of coordinates re-
quired for describing the distribution of data representations
with minimal information loss. By measuring ID, we could
measure the dimensionality of the representation manifold,
and it leads to the estimation of representation complexity.
Since ID is one of the major physical characteristic of the
representation space, it could be used as a key for unveiling
DNN’s hidden part.

It is shown that the dimensionality plays an important
role in deciding the number of samples to train machine
learning models (i.e. sample complexity) [25], which is re-

lated to the generalization capacity of models [12,28]. It
is also known that measured IDs of data representations are
negatively proportional to the model performance [2] with
regards to overparameterization. Considering the redundant
number of parameters in models reduces generalization ca-
pacity [8], ID of data representations may be a useful tool to
compare redundancy and generalization capacity between
models.

In this work, we look into Intrinsic Dimension from in-
vestigating the existing ID estimators to various applica-
tions using ID estimation. First, we compare various ID
estimators to give understanding of the existing ID mea-
surement methods. Considering the accuracy and robust-
ness of the estimators on real and synthetics images, we
choose TwoNN [9] as our base method on following exper-
iments.

Then, we perform extensive experiments to find correla-
tion between ID and other metrics. We focus on the most
elementary scenarios on deep learning tasks, data augmen-
tation and transfer learning. We find patterns of ID at the
intermediate layers during training with data augmentation
or finetuning, and show the relationship between ID estima-
tion and the validation accuracy for each scenario.

Here is a summary of our contributions:

* We introduce various ID estimators and show their ac-
curacy and robustness on the real and the synthetic
dataset. Considering the robustness and the computa-
tional efficiency, we use TwoNN [9] for the remaining
parts.

* We show how ID estimation could be utilized for ana-
lyzing data augmentation in respect of data model ac-
curacy and the role of each CNN layer.

* We show the pattern between the ID estimation values
and the validation accuracy, which is also related with
transferred model’s performance and overfitting.

2. Related works

Intrinsic Dimensionality and generalization capacity. ID
of data representation could help us to reveal requirements
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(d) Banana, dim=32

Figure 1. Synthesized images with varying latent dimensionality by BigGAN [5]

for generalizable neural networks. First, ID gives expla-
nations linking sample complexity to the model perfor-
mance of CNN. The larger the number of ID (i.e. man-
ifolds are more complex), the larger the number of sam-
ples are required (i.e. sample complexity increases) for the
learning function to approximate underlying manifolds of
data [25,26]. Building on these theoretical literatures, re-
cent study with synthetic and natural image datasets show
that the number of training samples, required for CNN to
achieve the highest accuracy in test samples, increases as
ID increases [28]. Second, ID reveals the difference be-
tween generalization and memorization in training CNN.
[36] shows that CNN has a risk of memorizing all the train-
ing samples and poorly predicting the test samples by com-
paring the accuracy of models trained with original image
data to randomly re-labeled image data. A recent study
adopts this framework and compares ID of each layer in
two different models [2]. As a result of this study, a model
trained with original data shows an increasing tendency of
ID in earlier layers and vice versa in later layers. In contrast,
a model trained with randomly labels data shows a peak of
the number of ID in later layers, which reflects poor gener-
alization capacity of the model [2, 23].These experimental
results imply the utility of ID as a quantitative metric for
evaluating the generalization capacity of CNN in classifica-
tion tasks.

Utility of ID. Recent studies have explored ID, and revealed
its utility for DNN. With data composed of heterogeneous
manifolds, ID has been used to assess the complexity of
a search query [16, 19], to control the early termination of
a search [14, 15], and to detect outliers [32]. Also, it has
been extensively validated that the performance of neural
networks depends on the ID, not the high extrinsic dimen-
sionality of data [24]. Therefore, ID is regarded as an im-
portant component to overcome the curse of dimensional-
ity [4,21,22,34]. [24] shows that the rates of approximation
and generation errors only depend on the ID. [12] shows
the usefulness of estimating ID at a fundamental level and

a practical level. At a fundamental level, ID determines the
capacity and complexity of the representation data variation
and analyzes generalization capability by estimating the re-
dundancy of the representation. At a practical level, ID may
help us to increase the generalization performance of neural
networks with reduced memory and time since ID contains
low dimensional and essential representations of images.

ID estimation methods. The efficiency and effectiveness
of ID in describing much higher dimensions of real-world
data distributions highly depend on the choice of estima-
tors [1]. There are two primary approaches to estimating the
ID, the global approach and the local approach. Global ID
defined by [3] is the minimum number of parameters to de-
scribe the data while minimizing the information loss, and is
estimated globally with a whole data set. These global esti-
mation methods try to linearly estimate the ID of manifolds
underlying the whole data distribution. However, global es-
timation methods have not worked well because it has lim-
itations in preserving the local structures of manifolds [27].
Local estimation methods simply try to estimate the topo-
logical dimension of the data manifolds using only the in-
formation contained in the sample neighborhood [17]. [10]
proposed the fundamental algorithm, and some variants of
Fukunaga-Olsen’s algorithm have been proposed to locally
estimate ID. Among many local methods, Nearest Neigh-
bor Algorithm [27] and its variants are widely adopted in
various works [7].

Nearest neighbor(NN)-based estimation methods de-
scribe the distribution of neighboring data points as func-
tions of the ID, d with an assumption that neighborhood
points are uniformly drawn from the small dimensional
manifold. Among NN-based estimation methods, kNN [13]
uses k-nearest data points, and twoNN [9] uses the dis-
tance of the first two nearest data points. Estimation with
smaller neighborhood size allows to lower the influence of
dataset inhomogeneities [9]. Maximum Likelihood Estima-
tor(MLE) [20] calculates the NN estimators with a Pois-
son process approximation, maximizing the log-likelihood



dim=4 | dim=8 | dim=16 | dim=32
kNN 3.00 4.00 5.00 5.33
GeoMLE 0.30 14.52 52.08 104.26

TwoNN | 4.66 | 10.68 | 1830 | 24.71
MLE(k=14) | 491 | 941 | 1444 | 17.87

Table 1. ID estimation with various latent dimension variability
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Figure 2. Normalized ID of MLE estimator with varying k

of the observed process. GeoMLE [11] is a kind of MLE
method with geodesic distance [ | 8], calculating the distance
along the surface of a manifold.

3. Comparison of ID Estimators
3.1. Estimation Accuracy

We first compare the accuracy of baseline ID estimators,
kNN [13], GeoMLE [11], TwoNN [9], and MLE [20]. We
generate synthetic images using pretrained BigGAN [5].
Each image has 128 x 128 RGB data, and 1,500 samples
from 3 categories (Yorkshire Terrier, Banana, Ski) are sam-
pled with limiting the number of varying latent variables to
4, 8, 16, and 32. Figure | shows several samples from the
generated images.

Table | shows the estimated ID value for various estima-
tors with varying latent dimension. It is shown that TwoNN
and MLE show much accurate results compared with other
estimators, specifically MLE performs better at the interme-
diate latent dimension regime while TwoNN is more accu-
rate for large latent dimensional images.

Note that MLE estimator needs additional hyperparam-
eter k to determine the number of neighborhood samples
used for measurement. We plot Figure 2 to find the corre-
lation between k value and the ID estimation accuracy, and
empirically find that MLE estimator shows stable ID value
atk > 8.

3.2. Estimation Robustness

Robustness to the variable factors is another element for
estimator. We measure the standard deviation of estimated

TwoNN MLE
Img D D D D D ID
Resize | (cifar10) | (svhn) | (cub200) | (cifarl0) | (svhn) | (cub200)
32 17.62 18.27 9.18 25.92 18.31 28.55

64 17.05 18.17 9.26 25.92 18.31 29.50
128 17.06 18.17 9.38 25.92 18.31 29.69
256 17.07 18.17 9.38 25.92 18.31 29.67
std 0.28 0.05 0.10 0.00 0.00 0.54

Table 2. ID estimation with image resizing

TwoNN MLE

Sampling ID ID ID ID
Rate (cifar10) | (svhn) | (cifar10) | (svhn)
0.05 22.92 16.89 26.28 18.04
0.1 20.78 17.03 25.99 18.23
0.2 18.33 18.44 26.24 18.32
0.5 17.58 18.38 26.06 18.29
1.0 17.62 18.27 25.92 18.31
std 2.34 0.77 0.16 0.11

Table 3. ID estimation with various sampling rate

value for TwoNN and MLE. Note that other methods are
emitted due to the low accuracy discovered at Section 3.1.

We compare the variation of estimation with resized in-
put dataset. cifar-10, svhn, and cub200 [33] are chosen as
the base dataset, and their default image size is (32 x 32),
(32x32), and (150 x 150), respectively. We resize the input
image with bicubic interpolation into (32 x 32), (64 x 64),
(128 x 128), and (256 x 256).

Followed by the comparison with various resizing op-
tion, we also compare the ID esimation with different sam-
pling rate to find the impact with the dataset size. Varying
the sampling rate as [0.05,0.1,0.2,0.5,1.0], standard devi-
ation is calculated at cifar-10 and svhn.

Table 2 and Table 3 illustrate the robustness of ID esti-
mation for TwoNN and MLE. It is found that both estima-
tors show reasonable estimation robustness while MLE is
slightly better at small and scarse dataset.

3.3. TwoNN

For the following sections, we use TwoNN [9] to es-
timate the Intrinsic Dimension of data and representation
manifold, since TwoNN method shows both accurate and
robust measurements throughout Section 3.1 and Section
3.2. There is also an engineering benefit that it uses only
the distances of the first and the second nearest neighbor for
each sample, so it can efficiently estimate the ID of high-
dimensional data. Note that considering the high compu-
tational complexity, MLE is not used for the rest of our
experiments despite of better robustness. We will briefly
introduce the basic idea of TwoNN and illustrate the imple-
mentation of the methods in this chapter.

Let rl(i) be the [-th nearest neighbor of the sample ¢ and



d be the intrinsic dimensionality. Then the the volume of

space enclosed by two successive shell with radius rl(i) and

rl(i)l is given by

~d N d
Av; = wy (rl(z) — rl(i)l )

where wy is the volume of the unit d-sphere. Assuming the
the constant density p around the sample 1,

P(Avl(i) € [v,v + dv]) = pe”P’dv

Let R be ﬁ;’] , then pdf for R is derived as:

1
= e
and by defining a quantity 4 = 7 and letting R = %ﬁ
R= ,ud —1
flp) = dp= "1

F(p)=(1-pn"7

where f(u) and F'(p) are cdf, pdf of p, respectively. So, by
estimating the cumulative density function of the value p,
we can derive the intrinsic dimension d through the follow-
ing equation:
log(1 — F(y))
log(p)

Note that equation 1 can be calculated from the estima-
tion of v and F'(p).

=d (1)

Algorithm 1 ID measurement with mini-batch

Require: X = (data samples), s = (mini-batch size)
N <« (sample number)
m < ceil(N/s)
dists = Zeros(N,3m)
for i in range(m) do
for j in range(m) do
Xi < Ximin(s(i+1),N)
Xj « ij:min(s(j+1),N)
dist < FuclideanDist(X;, X;)
distS giimin(s(i+1),N),35:3(j+1) < 1 op3s(dist)
end for
end for
for i in range(N) do
i < Top3(dists;)/Top2(dists;)
end for
< Sort(p)
cdf < Arange(N)/N
id < LinearReg(log(n), —log(1 — cdf))siope
return id

Augmentation Method | Dataset ID
Raw dataset 114
RandFlip&Rotate 27.6
RandCrop&Resize 43.1
ColorlJittering 39.7
All 56.6

Table 4. Dataset ID with various image augmentation method

ID measurement with mini-batch. Since measuring pair-
wise distances of samples requires O((nm)?) memory size
with n samples with m representation dimension, it is
nearly impossible to measure ID at dataset with large num-
ber of samples and the high dimensionality. So, we suggest
to split the measuring process into small mini-batches.

We describe the detailed process at Algorithm 1.

4. Application of ID Estimation
4.1. ID at Data Augmentation

Data augmentation encompasses various techniques that
enhance the size of training data without changing their
semantics, enabling models to robustly learn features of
data [30]. Diverse data augmentation methods, such as flip-
ping, cropping, and changing the intensity of color space,
are widely applied to computer vision [30]. In these exper-
iments, we explore the relationship between data augmen-
tation methods and generalizability of models in terms of
ID. We apply three types of widely-used data augmentation
methods, i.e., random flipping-rotating, random cropping,
and random color jittering, to image classification tasks
with cifar-10 dataset. We use VGG-16 and ResNet-50 as
our training models. We train models with non-augmented
(e.g., baseline) or augmented images (e.g., RandFlipAn-
dRotate, RandCropAndResize, ColorJittering, and all three
types of augmentation methods) and estimate ID of features
extracted from test datasets to which augmentation methods
are not applied.

As seen in Table 4, training dataset without any data
augmentation is constituted by the lowest number of ID,
whereas the training dataset to which all types of data aug-
mentation methods are applied shows the highest number
of ID. It could be said that data augmentation enhanced the
complexity of the data space of images.

In Figure 3a and Figure 3b, ID of features extracted from
intermediate layers reaches the peak point at right before
the last pooling layer (i.e., conv4 block6 in ResNet-50 and
block4 pool in VGG-16), and they become similar at dense
layer. Of note, after the dense layer, ID of features ex-
tracted by models trained with augmented images shows
higher ID than features extracted by models trained with
non-augmented images.

Interestingly, in ResNet-50, IDs of features extracted
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Figure 4. Test accuracy vs. ID measure at intermediate layers of VGG-16

by the baseline model at each pooling layer are higher
than IDs of extracted features by models trained with aug-
mented images. Whereas, at the dense layer, ID of the
baseline model’s features is the lowest compared to aug-
mented images’ features. In VGG-16, except for Rand-
FlipAndRotate model, IDs of features extracted by mod-
els trained with augmented images are lower than the
baseline model’s ID. Regarding changing patterns of the
number of ID across the layers, both model architec-
tures show quite distinct configurations. While ResNet-50
shows an increasing-to-decreasing pattern, VGG-16 shows
a decreasing-to-increasing pattern. In short, regardless of
whether models were trained with non-augmented images
or augmented images, ID changing patterns across pooling
layers are quite different according to model architecture.
We find another interesting result at Figure 4. After ag-
gregating the overall relationship between the test accuracy
and the ID estimation at each intermediate layers, we find

that there are positive relationship at pooling layers and the
negative relationship at dense layer. It might imply that the
well-trained model should preserve high ID value for the
intermediate dimension and the dimension should be suc-
cessfully compressed at the last layer.

4.2. ID at Transfer Learning

In this section, we show how ID estimation works during
transfer learning, one of the most common scenario in deep
learning. We observe the ID measurement with parametriz-
ing datasets, models, finetuning layers, but there are few
consistent results over our experiments.

We assume the transfer learning case that the pretrained
VGG-16 and Resnet-50 models are being finetuned on
cifar-10 and cub200 dataset. Note that each dataset rep-
resents 'easy’ and "hard’ transfer scenario, since finetuning
at cifar-10 easily achieves high validation accuracy while
finetuning at cub200 usually fails due to the categories with
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similar features (distinguishing the species of birds) and the
small number of samples in the dataset. During finetuning,
we tested scenarios with freezing/unfreezing model layers
in various way. And the ID estimations are performed at
featured pooling layers of each model. Each finetuning task
continues until the early stopping occurs with validation ac-
curacy metic, or it reaches the maximum number of epochs,
100.

Interestingly, we observed contradicting results at two
distinct experiments, one with cub200, ResNet50 on Figure
5a, and the other with cifar-10, VGG16 on Figure 5b. At
Figure 5a, we could observe the negative relationship be-
tween ID at dense layer and the validation accuracy, while
we find positive relationship at Figure 5b. It seems like the
different patterns are occurred from the different validation
state, the first one is at converging / non-converging state
and the second experiment is at non-overfitting / overfitting
regime. That is, it might be possible that ID at the last layer
increases while the model is being trained, but starts to be
decrease when the model is being overfitted.

Figure 5c shows that the correlation between ID at
block5_pool layer is slightly negative which is reversed at
the next layer, dense layer.

We also investigate the change of ID estimation during
the finetuning VGG-16 model on cifar-10. As it is shown at
Figure 6, ID values are dynamically changing during fine-
tuning. During the experiment, the highest validation accu-
racy is measured at 5 20 epochs. So we can find the pat-
tern that all intermediate layers’ ID change during training
phase, and only a single block3_pool3 layer’s ID is chang-
ing when the model performs best. After that, ID values are
start to being diverged.

5. Conclusions

In this research, we cover a wide range of tasks regarding
ID estimation from comparing estimators to applying into
common deep learning scenarios. By comparing previously
suggested ID estimators of the estimation accuracy and the
robustness, we find both TwoNN and MLE show impressive
performance. During the training with data augmentation,
we find that models trained with augmented images are ca-
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Figure 6. ID at intermediate layers during finetuning

pable of extracting features represented by less number of
ID than models trained with non-augmented-images at the
intermediate layers while being opposite at the output. This
may imply that data augmentation helps models to capture
simpler manifold structures at the earlier stage, while more
complex but sufficient to represent the variation of each cat-
egory at the last stage. On analyzing ID the transfer learn-
ing, we find that there are distinct correlations of ID and the
validation accuracy at training and overfitting regime. Also,
we find a clue to detect overfitting by utilizing the ID values
at intermediate layers of model.

Since we have performed only few experiment for each
concept, it needs large-scale experiments to validate the hy-
pothesis concretely. But, we suggest that our research pro-
vides possibilities of using ID estimation as a tool of judg-
ing the state of training neural network which might lead to
unveil the hidden black box.
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