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Abstract

With a lot of deep learning models being used in safety-
critical scenarios, such as self-driving cars and financial
industries, there is a growing sense that neural networks
should be interpretable by humans. To shed the light
on neural networks which are known as black-box, many
studies have utilized feature visualizations that maximize
patterns detected by neurons. However, we questioned
the practicality of feature visualizations and conducted ex-
periments to measure their quantitative/qualitative perfor-
mance. In addition, we proposed a noble Interpretability
metric, I-metric, to measure the interpretability of feature
visualizations. As a result, we demonstrate our visualiza-
tion support with feature visualization can help humans un-
derstand patterns detected by neurons based on I-metric

1. Introduction
Deep learning has recently seen rapid development and

received significant attention due to its state-of-the-art per-
formance on previously-thought hard problems [11]. How-
ever, because of the internal complexity and nonlinear struc-
ture of deep neural networks, the underlying decision-
making processes for why these models are achieving
such performance are challenging and sometimes are called
black-box [11]. As a result, many threat cases and stud-
ies have been reported on AI vulnerabilities, not intended
on model building step, such as fairness [19](‘Lee-Luda’
scandal [13]), data poisoning [16], and adversarial at-
tacks [8, 17] (Tesla’s burger king issue [24]) and can be
affect trust on AI technologies. Furthermore, the limita-
tions of non-interpretable AI, which makes debugging is-
sues difficult, are fatal to deployment in safety-critical sce-
narios such as autonomous vehicles, financial services, and

healthcare.
Many works have strived to achieve the interpretabil-

ity of deep learning. Gilpin, Leilani H., et al. [9] intro-
duced fundamental concepts of explainability and its util-
ity. F.Hohman., et al [11] surveyed visual analytics in deep
learning. An approach to understanding how neural net-
works work internally is to study neurons’ activation pat-
terns. To interpret what concept a neuron is detecting, fea-
ture visualization [3, 7, 20, 23] creates a visualization that
maximizes such neurons. Circuits [21] and Summit [4] vi-
sually explain how higher-level concepts can be constructed
by neural connections. Activation Atlas [3] visualizes neu-
ron activations per layer and analyzes how models can be
exploited when predicting on manipulated input.

In some studies, the limitations of feature visualiza-
tions(not interpretable and wide search space, etc.,) are re-
ported [23]. Therefore, we were curious about the feasi-
bility and application of feature visualization techniques.
To reveal that, in this work, we designed and conducted
experiments to evaluate quantitative/qualitative aspects of
feature visualizations. In Particular, we proposed a noble
interpretability metric, I-metric , to evaluate feature visual-
ization for patterns detected by neurons. In this project, our
contributions the contents below.

• User study of feature visualizations

• New prototype for visualization supports with require-
ments to provide explainability

• Experiment design and I-metric

2. Backgrounds and related works
2.1. Feature Visualization

Feature visualization answers questions about what a
network (or parts of a network)are looking for by generating
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examples [23]. By optimizing the inputs to an optimization
objective, we can generate an example of visualized fea-
tures. Optimization objectives can be different by selecting
different targets that we are interested in. Targets can be a
single neuron, single channel of output, whole layer, class
logits or class probabilities.

There is another method to achieve interpretability of ex-
planation for neuron activation: attribution, which studies
what part of an example is responsible for the network acti-
vating a particular way [23]. We can combine two methods
like [22] to build more interpretable visualization to help
human understanding

2.2. Interpretability Metrics

2.2.1 What are good metrics?

[1, 18, 15] introduced the requirements of good metrics

• Comparative : The probability of success is a better
metric than the number of successes. Using a metric
defined by ratio or rate is a good strategy.

• Understandable : It should be easy to understand
when explaining metrics to third parties.

• Behavior changing : the metric we use should be
tracking the target we want.

2.2.2 What is good interpretability?

There is no consensus or definition of what is good inter-
pretability for now. In a rough sense, interpretability can
be defined as the ability to explain or to provide the mean-
ing in understandable terms to a human [7]. Then, the next
question will be ‘what is a good explanation to a human?’.
[20, 23] shared the answers to the questions.

• Contrastive : The best explanation is the one that
highlights the greatest difference between the object
of interest and the reference object.

• Selected : Humans are used to selecting one or two
causes from a variety of possible causes as the expla-
nation.

• Social, focusing on the target scenario, Truthful,.. etc.

2.2.3 Interpretability metrics

Previous research on interpretability metrics has been con-
ducted in many ways. These can be divided into two
main categories: model interpretability and attribution in-
terpretability. In Model Interpretability, some metrics were
studied to measure the interpretability of latent representa-
tions of CNNs by introducing network dissection and inter-
pretable units [2]. In Attribution Interpretability, a metric

was studied to measure how much the model’s prediction
changed when we removed the input pixel with high attri-
bution scores [12].

3. Pilot Study
3.1. Experiment Settings

CNN has the automatic feature extraction ability and can
learn good internal representation from raw pixels. [14] So,
we can extract a ‘representation vector’ of an input image
from CNN architecture. We’ll focus on this representation
vector. Using the feature visualization technique to see if
we humans can understand what a model learned.

3.1.1 Methods

We compared 2 methods: Madry [6] and Lucid [23]
Madry is related to the ‘robustness’ package which stu-

dents in the MadryLab created to make training, evaluating,
and exploring neural networks flexible and easy. [5]

They [6] propose using the robust optimization frame-
work to enforce (user-specified) priors on features that mod-
els should learn. It can visualize recognizable features of
the model easily, by directly maximizing the coordinates of
robust representations suffices.

Lucid [23] is a collection of infrastructure and tools
for research in neural network interpretability. They re-
searched various aspects on how neurons work and tried
different regularization and parameterization techniques
to make the feature visualization more recognizable to
humans(Lucent [23] is a PyTorch version of the Lucid
method).

3.1.2 Models and details

We selected the ResNet50 model which is trained by the
Restricted-ImageNet dataset from MadryLab GitHub [5].
Next, we took the output of the average pooling layer as
the representation vector with a size of 2048. Each single
neuron in the representation vector can be our target to get
the feature visualization image.

In Experiment 1, five neurons were randomly selected
from a total of 2048 representation vector neurons to create
a dataset. Using six random noise images with 0.5 stan-
dard deviation as input, we did the optimization on input
images which activated the selected neuron mostly for each
method(Lucent, Madry) through 200 iterations. The output
images are in Appendix A.

In Experiment 2, we used the same neurons and meth-
ods in Experiment 1. We build data from the same random
noise inputs for every 30 iterations(30 300 iterations) to see
how feature visualization is working in a certain step and
whether this can help humans to understand more about the
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representation vector neurons. The output images are in Ap-
pendix B.

3.2. Latency Experiment

To check the feasibility of the feature visualization, we
tested the latency. The method are described as follows:

We initialized six random noise images with 0.5 standard
deviation to feed the network and randomly selected 1000
activation index from the length of representation size as
our target optimization. At last, we ran 200 iterations for
each method to do the optimization.

The experiment was runned on a computer which has
32GB memory and NVIDIA GTX 1080 GPU with 11GB
memory.

3.3. User study

3.3.1 qualitative interview

In addition to quantitative evaluations, we performed semi-
structured interviews for qualitative evaluations. We se-
lected 3 interviewee who has pre-knowledge about CNN
and machine learning backgrounds. First, we explained the
definition of a representation vector and how the feature vi-
sualization process has been performed. And the specific
question is as follows.

Experiment 1

• Q1.1: What patterns do you think it represents?

• Q1.2: How many patterns do you think it represents?

• Q1.3: Can you understand what this feature visualiza-
tion means?

Experiment 2:

• Q2: How the 6 images(2 groups between starting from
random noise images(3)and original images(3)) are
different?

Experiment 3:

• Q3: In which number of iterations do you see the pat-
tern the most clearly?

3.3.2 findings

Feature visualization provides a much richer representation
than describing features dependent on the dataset. However,
despite seeing the same feature visualizations for target neu-
rons, the concepts people derived were inconsistent

• Rich expression and flexibility Feature visualizations
represent a variety of visual concepts and a wide range
of functional levels. (edge, pattern, texture, parts,
objects, (Figure 1). It provides visual information

Figure 1: various concepts and levels of feature
visualizations

about the concept more explicitly than dataset exam-
ples due to its operating principles, which generate
visual features to maximize the activation of the tar-
get neuron.(Figure. 2 On the other hand, if we were
limited to understand features on the fixed examples
of dataset examples, lower-level concepts(like texture,
pattern etc.) would be much more challenging to ex-
plore. Also, the probability of the presence of sample
images with noticeable inclusion of features that neu-
rons perceive would be sparse. [23]

• Various Interpretations Feature Visualization could
be interpreted from person to person in various con-
cepts. This implies that single feature visualization
alone makes it difficult to convey consistent concepts
of features perceived by neurons. The cause of these
results is listed below based on the findings from the
user study.[user study link]

– Cause 1 : Feature visualizations vary depending
on the parameters(seed img, iteration numbers,...
etc)

– Cause 2 : In some cases with single feature visu-
alization were difficult to map the example in the
real world and to find the regular patterns. Be-
cause neurons can learn non meaningful patterns,
feature visualization does not always generate se-
mantically meaningful patterns. [6]

– Cause 3 : Since the part where neurons become
highly active in feature visualization is unknown,
we can recognize and derive various patterns like
optical illusions. [10]

4. New visualization prototype
4.1. Design Requirements

By utilizing feature visualization rich expression and
flexibility, as a result, we expected that humans could un-
derstand the features recognized by neurons. To achieve the
goal, we tried to devise a visual support tool that can over-
come the limitations in section . We have derived design
requirements from the limitations of existing attributions
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Figure 2: above: feature visualizations of nueron 356,
below: dataset examples which make nueron 356 highly

activate

• R1. cover the various concepts and wide levels of fea-
tures that neurons perceive.

• R2. provide the information of activations of sample
images by spatiality. (feature visualization limitation)

– R1-1. explain the spatial features which cover se-
mantic patterns, not pixel units. (Grad-cam limi-
tation)

– R2-2. reflect the various crop sizes of sample im-
ages and the sliding window concept. (Grid-cam
limitation)

• R3. support exploration of multiple images to avoid
obtaining concepts biased.

• R4. support to derive consistent concepts and map the
concepts to real data.

4.2. New visualization support prototype

We designed the noble visualization tool with 4 main
functions to satisfy the requirements in section to under-
stand the features that highly activate neurons.(Fig. 3)

• A: Views with 4 example images that make neurons
activate highly. [R1,R3] (2 from datasets and 2 from
feature visualizations with random noise seed and a
dataset example)

• B,C : Grid-cam views and sliders for each image exam-
ple to compare and extract intersect features between
samples that make neurons activate highly(R4). To ex-
plore various crop sizes, 4 levels grid cam views can be

Figure 3: New prototype for visualization supports

switched by sliders. (bigger value means bigger crop
size). To reflect sliding window concepts, we averaged
the activation values of windows which include each
grid.(R2)

• D : Hover interaction to visualize original images

5. Experiments Design
5.1. Interpretability metric for attributions

5.1.1 Interpretability metric for explanation for neu-
ron activation

As far as we know, we were the first attempt to measure
the interpretability of feature visualizations, and we de-
vised a noble metric, I-metric , to evaluate how explana-
tion for neuron activation, such as feature visualizations and
Grad-CAM [25], affect a person’s understanding of patterns
perceived by the model. Our metric measures how much
the level of recognition of features of target visualization
matches the model and the human being after exploring at-
tributions for feature visualizations. Our measurement of
interpretability for explanations which visualize and explain
the pattern detected by neurons proceeds in three steps Fig.5

1. Explore the user interface which contains feature visu-
alizations and attributions for the pattern detected by
target neurons and identify visual concepts of patterns.

2. Select the top 3 images(Human response) which most
contain the patterns that are identified in step 1 among
9 options.

3. Obtain the top 3 images(Machine response) which ac-
tivate the target neurons and measure the count of how
many machine and human responses are matched.

In [Table.1], We summarized our metric coverage to re-
quirements for good metrics and reflection of interpretabil-
ity in sections 2.2.1 and 2.2.2. Therefore, our metric can be
said to be appropriate for explaining the interpretability of
attributions.
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Figure 4: I-metric Measurement Scenario

Requirements Descriptions
Comparative The data type of our metric

is the ratio type.
Understandable Our interpretability metrics

have been explained to
several experts in the
HCI(Human-Computer
Interaction) field, and our
metrics have received
intuitive and simple
evaluations.

Behavior changing,
Contrastive, Selected

Behavior changing,
Contrastive, Selected &
Our indicators reflect how
well people can detect the
patterns that neurons
activate, consequently,
means that humans can
choose images that
maximize neurons.

Table 1: Good interpretability metric requirements satisfied
by I-metric

5.1.2 Experiments scenarios for interpretability evalu-
ation

We designed 3 experiment scenarios to measure the inter-
pretability of explanations that visualize and support the
exploration of the patterns detected by neurons. 3 scenar-
ios cover different attribtutions each to check the scenergy
of feature visualization and our techniques. Exeperiment
Overview with test page examples are in Figure. 5. And
Each experiments will provide 10 questions with target at-

Figure 5: Test page for 3 experiments for I-metric
s

Figure 6: Test page example(exp3)
s

tributions and 9 options from dataset which are only 3 an-
swers. (hihgly activated group)

• feature visualization : 1 single feature visualization
image from random noise will be provided as an at-
tribution

• our visualization without feature visualization : 4
dataset examples which activates target nurons highly
will be provided instead of 2 dataset example and 2
feature visualizations

• our visualization with feature visualization : 2 dataset
examples and 2 feature visualizations will be provided.

Each experiment is given a total of 10 questions, with at-
tributes describing the features of target neuron recognition.
And participants have to find and 3 correct answers from 9
options from the dataset. At least seven participants were
recruited per experiment to participate in only one experi-
ment, and for fairness, the target neurons used in each ex-
periment and the choices were the same.
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Figure 7: 1. various activation distributions 2. top-100
minimum/ bottom-100 maximum activation values
3.top-100 minimum activation values 4.bottom-100

minimum activation
s

5.1.3 Test set generations and challenges

To generate fair test sets, we had to control some factors that
can affect the test set level and results.

• Avoid too simple problems The dataset was skewed
to a particular class(dog(5000)/validation set(10500)).
There would be many dogs in the options from the
skewed dataset, which can encourage users to exclude
them when picking the answers. So We adjust each
class to be evenly distributed.(Debiased Dataset :we
adjust each class to contain 150-250 samples)

• Avoid too difficult problems To distinguish between
answers and wrong answers, 2 groups’ activation val-
ues must be clearly different. Also, the answer group
has to result in high activation values for target neu-
rons sufficiently. If not, it means that samples contain
less of the features that activate the target neuron. As a
result, humans will not be able to perceive the features
from the sample images. The activation value distri-
bution of neurons has been shown in a wide variety of
distributions and ranges.(Fig. 7) We selected neurons
by developing a module that can be obtained by sepa-
rating groups of answer options with sufficiently high
activations and options of incorrect answers that are
sufficiently low activations from them according to the
examiner’s criteria.

To control the problem quality, we selected 13 neurons
which satisfying our criteria below in debiased dataset and
remove the neurons which feature visualizations are similar.

• topEdgeNum=100, topMin =0.11 : The minimum acti-
vation value for the top 100 images activating the target
neuron must be greater than 0.11.

• bottomEdgeNum = 100, minMaxRatioMin = 10000 :
The ratio between the minimum value of the upper ac-
tivation image for the target neuron and the maximum
value of the lower activation image is at least 10000
times.

As a result, we piked 10 neurons of representation vec-
tors(291, 356, 660, 906, 908, 1526, 1591, 1943, 1994,
2031) as target neurons of questions. And we picked 3 an-
swers and dataset examples of attributions from top-100 im-
ages activating the target neurons and 6 incorrect answers
were picked in bottom-100 images for each selected target
neuron.

We generate 2 feature visualization images for attribu-
tions, with random noise and dataset example by Madry’s
method with iteration 200. It was not a noticeable difference
in use study results and pilot experience(exp 1) between
Madry’s and Lucent’s method. But Madry’s method can
represent more various concept because the method high-
lights the parts of the original image which activates tar-
get neuron highly. Meanwhile, Lucent’s generate consistent
images. And from the user study, we could derive the itera-
tion number of feature visualization that needs to be larger
than 150.

6. Results

6.1. Latency

As we mentioned at section 3.2, we tested the latency
by randomly choosing 1000 neurons in the representation
vector neurons and running 200 iterations of optimization.
The result is different between two methods, Madry took
2:54:38 in total (average 10.48 second for each optimiza-
tion) and Lucid took 5:05:41 in total (average 18.34 second
for each optimization).

6.2. User Study

We conducted user study through a couple of questions.
We could see some findings as below and with Table. 2.

• Most had consistent results in both Lucent and
Madry’s method, But in some cases, people recog-
nized different patterns and number of patterns even
the same feature visualization(Table. 3).

• Both Madry and Lucent methods had significant pat-
tern expressions after 150 iterations.

• However, It is reported to be more vivid and colourful
in Madry’s way
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Question Findings

Experiment1
What patterns do
you think it
represents?

There is a case in
which each
person
recognizes
different patterns
in the same
image.

How many
patterns do you
think it
represents?

In some cases,
people recognize
multiple patterns
in one feature
visualization.

Can you
understand what
this feature
visualization
means?

People can
recognize clearly
in about half
feature
visualization
images.

Experiment2 How the 6
images are
different?(2
groups between
starting from
random noise
images(3) and
original
images(3))

In Madry
method,
participants said
there are
differences
between the two
groups. Vice
versa. Images in
Madry method
have more clear
pattern than
Lucent one.

Experiment3 Which iteration
number of
feature
visualizations
make the most
sense?

The number of
iterations starting
to express a
pattern is similar
in both ways. In
both ways,
patterns are
better recognized
after more than
120-150
iterations.

Table 2: User study results and findings

6.3. Interpretability of Attributions

6.3.1 Participants

A total of 25 students(CSE, DS, Statistics, Physics) who has
deep learning backgrounds participated in the experiment.

• Experiment 1 : 7 participants(4 female), average age
26.9 (23-31)

Lucent Madry
Object 6 7
Parts 6 5

Pattern 5 6
Texture 2 3
Edge 3 0

Table 3: Count of patterns that participants described in
User study

Figure 8: I-metric results for 3 scenarios

• Experiment 2 : 10 participants(7 male), average age
31.1 (25-42)

• Experiment 3 : 8 participants(7 male), average age
29.4 (23-35)

6.3.2 Results

Participants solved the problem at each experimental web
interface we deployed and the results were stored in JSON
file form and we recorded participants reactions during the
test. We count the number of corrected answers of the 30
answers to be found in the test set, we counted how many
answers the participants actually found. In experiment 1,
participants got an average of 13.7(10-17). In experiment 2,
participants got an average of 15.6(12-19). In experiment
3, participants got an average of 17.5(14-19). Also we plot
a histogram for comparing the distributions of each experi-
ments.(Figure. 8)

Participants in experiment 3 found more answers(2 4)
than in experiment 1 and experiment 2. It can be inter-
preted to be synergistic when feature visualization and our
new visualization techniques are combined than when used
separately. Also it is consistent with what we expected.

Also, We can find features ,for each same questions,of
similar concepts mentioned by participants in experiments
3. For examples, in Figure. 9 (exp3), many of the partici-
pants mentioned fur after looking at the left attribute and the
right attribute and the leg. It means that attribution in exp3
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Figure 9: consistent mentioned features: ’fur’(left),
’leg’(right)

provided some consistent concepts to explain the features
of neuron perceived and we satisfied R4 in section 4.1.

Moreover, some participation mentioned that levels 1 to
4 of the grid-cam actually help them analyze. Also, some
participation required on/off function to look at once 4 orig-
inal images instead of hover interaction for one. And some
participation mentioned learning curve of our visualization
support. ”I think I have a sense of what to do when I get
used to it a little bit.”

7. Discussion

There seem to be a number of factors in the part where
there were no people who got more than 20 correct answers.
There is a reason why our tool’s learning curve requires time
to get used to it. Also, existing threats like adversarial at-
tacks can be the reason for a lower score of results. It reveals
the model itself learns non-semantic concepts.

Like the visualization tool proposed this time, feature vi-
sualization is likely to help us understand the model further.
In addition, there are many places to look into the model,
so a system that effectively navigates such a search process
must be supported to be deployed in real-life situations.

8. Conclusion

In this project, we analyzed the limitation of existing
attribution techniques from user studies. And we devel-
oped the visualization support for understanding the fea-
tures which make neurons highly activate by extracting re-
quirements that can better understand the model. Also, we
devised interpretability metrics and experiments to demon-
strate the effectiveness of our prototype. As a result, we
proved our tool to be able to overcome the limitations of
existing attributions. If we reflect feedbacks from experi-
ments in future work, we can expect to provide more useful
interpretability used in other visualization tools.

9. Deployment
You can experience the testsets provided in the 3 experi-

ments on the site below.

• Experiment 1: https://edw2n.github.io/
MLVU-Exp1/.

• Experiment 2: https://edw2n.github.io/
MLVU-exp2/.

• Experiment 3: https://edw2n.github.io/
MLVU-exp3/.
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