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Abstract 

To date, there is no brain-derived biomarker for autism spectrum disorder (ASD), which leads to delayed 
or inaccurate diagnosis. Though studies have tried to use machine/deep learning with imaging data for the ASD 
diagnostic tool, it is hard to be generalized to clinical practice due to small and imbalanced data. Given the 
problems, we used big data (ABIDE and ABCD) and CT-GAN for the small sample size and imbalanced data 
between groups, respectively. We show the ASD group in ABIDE is classified by 2D/3D DenseNet. Then we 
apply transfer-learning to ABCD data after CT-GAN. As a result the better performance is shown from the CT-
GAN-generated data set. This indicates the problem of the limited and the imbalanced number of data can be 
overcome by combining two different machine learning methodologies, CT-GAN with DenseNet. 

1. Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with multiple biological etiologies, 
characterized by social communication deficits and fixated interests and repetitive behaviors (American 
Psychiatric Association, 2013). Despite the substantial advances in understanding neurobiology and abnormal 
brain maturation in ASD, the diagnosis still depends on behavioral tools for assessing social problems such as 
attentional problems and theory of mind (ToM) (Falkmer et al., 2013), which leads to delayed or inaccurate 
diagnosis of ASD. For an objective clinical diagnosis and a better understanding of biological mechanisms 
underlying symptoms, biomarkers should be used. Literature shows that ASD has an atypical trajectory of 
anatomical and functional brain development. In terms of attention problems, specifically, frontal eye field (FEF), 
superior colliculus (SC), thalamus, BG have been reported (Esterman et al., 2015; Matsumoto et al., 2018; Xuan 
et al., 2016). The temporal parietal junction (TPJ) and medial prefrontal cortex (mPFC) have been studied as 
brain regions for ToM (Filmer et al., 2019). Although volumetric differences have been reported in both gray and 
white matter, the findings have been inconsistent due to differences in study design, methodology and subject 
heterogeneity.  

Based on the brain abnormalities in ASD, several studies performed a data-driven machine learning 
approach for classification, prognosis prediction, and treatment response prediction using structural (Kong et al., 
2019; Sen et al., 2018) and functional MRI (Dekhil et al., 2018; Eslami et al., 2019; Guo et al., 2017; Heinsfeld et 
al., 2018; Li et al., 2018) However, it is difficult to generalize the findings to clinical practice due to small sample 
size and the imbalanced number of clinical data (Eslami et al., 2020), which makes it difficult to optimize the 
accuracy of the model. To figure out the sampling problem, therefore, firstly, we used the ABCD and ABIDE data 
which are the largest developmental and international autism brain imaging data, respectively. For the 
imbalanced data, we utilized CT-GAN to handle the imbalanced number of data between ASD and non-ASD. 
Furthermore, we attempted to investigate the neuroanatomical features, which contributed to the classification. 

2. Related work 

2.1. Machine Learning for Neuroimaging-based Diagnosis for ASD 

 Machine learning has been successfully applied on medical image classification. For neuroimaging-
based ASD classification, several studies performed machine learning algorithms. Of the 12 studies using sMRI 
data reported in the review paper (Moon et al., 2019), 10 studies implemented the analysis with sample size less 
than 200. Although a higher accuracy (%) up to 98.67 ± 1.7 was reported in ASD classification, it is difficult to 
generalize the results to other sites due to its small sample size (n=40) (Subbaraju et al., 2015). Indeed, the 
similar approach using larger sample size shows the poor performance of accuracy (%) 52 ± 7 (n=650) 
(Demirhan, 2018) and 60 (n=734) (Katuwal et al., 2015). Therefore, it is essential to evaluate the extent to which 
machine learning can classify large, ecological valid datasets to test the clinical utility of predictive models. 

2.2. Working with imbalanced data 

 In the real world, the major challenge of clinical data is the imbalanced number of data samples. To 
handle the imbalanced classes, we consider two complementary and alternative methods of deep neural 
networks: transfer learning and conditional generative adversarial networks (CT-GAN). Transfer learning acquires 
the knowledge from related tasks to improve generalization in the current interest task (Valverde et al. 2021), so it 
is beneficial in terms of learning speed and generalization of the neural network when learning data is limited 
sample size (Park and Ahn 2021). CT-GAN can be utilized to model complex and large-scale dataset by adding 
conditional variable y to both the generator and discriminator (Alotaibi 2020). In conditional GAN, the model 



combines random noise and target conditional variables in  the real data x with conditional information y (Alotaibi 
2020). 
 

3. Dataset 

3.1. ABCD Participants 

We obtained the data from the Adolescent Brain Cognitive Development (ABCD) study release 3.0 
(http://abcdstudy.org) (Charness, 2018). The ABCD Study is the largest longitudinal study of brain development 
and child health across the United States. The aim of the ABCD study is to investigate psychological and 
neurobiological development trajectories for adolescent mental health. 11,875 children aged 9 to 10 years olds 
were recruited from 21 research sites. After quality control and preprocessing, we used 9,210 participants in this 
study including 113 ASD participants 

3.2. ABIDE Participants 

 We used Autism Brain Imaging Data Exchange (ABIDE) II data 
(http:/fcon_1000.projects.nitrc.org/indi/abide) (A. Di Martino et al., 2014; Adriana Di Martino et al., 2017). The 
ABIDE aims to discover the neural bases of ASD. 1,114 participants (593 non-ASD and 521 ASD) aged 5 to 64 
years were recruited from 19 research sites. After quality control and preprocessing, we used 603 participants in 
this study. 

3.3. Image acquisition and preprocessing 

We acquired T1-weighted (T1w) 3D structural MRI from the ABCD and ABIDE data (Cameron et al., 
2013) preprocessed with fMRIprep (RRID:SCR_016216) version stable (Esteban et al., 2019), a Nipype 
(RRID:SCR_002502) (K. Gorgolewski et al., 2011; K. J. Gorgolewski et al., 2017) based tool. Each T1w volume 
was corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and 
skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS template). Spatial normalization to the ICBM 
PediatricAsymmetrical template (RRID:SCR_008796) (Fonov et al., 2009) was performed through nonlinear 
registration with the antsRegistration tool of ANTs v2.1.0 (RRID:SCR_004757) (Avants et al., 2008), using brain-
extracted versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), 
white matter (WM), and gray matter (GM) were performed on the brain-extracted T1w using fast (Zhang et al., 
2001) (FSL v5.0.9, RRID:SCR_002823). The output size of T1wMRI data is 99 x 117 x 95.  

4. Methods 

4.1. Densely Connected Convolutional Networks (DenseNet) 

We performed densely connected convolutional networks (DenseNet) to classify ASD and non-ASD 
based on T1w 3D structural MRI data. Original 2D DenseNet connects each layer to every other layer in a feed-
forward way, which increased direct connections between the low and high layers (Huang et al., 2017).  With the 
direct connection between layers, DenseNet enhances the information flow, strengthens feature propagation, 
alleviates the vanishing-gradient problem, and reduces the number of parameters (Huang et al., 2017). Our 3D 
DenseNet model has a similar architecture to the original DenseNet where the number of spatial dimensions of 
the input image is three instead of two. Preprocessed images (99 x 177 x 95) were resized into 96 x 96 x 96 and 
fed into 3D DenseNet with 4 dense blocks (DenseNet121) (see Figure 1). 3D convolution was applied with filter 
size 7, stride 2, and padding 3, followed by 3D batch normalization and ReLU activation. Then, 3D MaxPool with 
the kernel size 3, stride 2, and padding 1 was conducted and fed into 4 dense blocks with transition blocks. In 
each dense block, 1x1x1 3D convolution and 3x3x3 3D convolution filter was used and the number of filters used 
in dense blocks was (6, 12, 24, 16). In the transition block, 3D batch normalization, ReLU activation, 1x1x1 3D 
convolution, and 3D AvgPool were applied. After 4 dense blocks with 3 transition blocks, a 3D adaptive AvgPool 
layer was added to make 1024 1x1x1 dimensions, which is then flattened and fed into a softmax classification 
layer. 



 

 
Figure 1: The architecture of DenseNet 

4.2. Transfer Learning 

 Transfer learning is an idea of reusing the pre-trained network on the target dataset, where another 
large dataset similar to the target dataset was used for the pretraining (Torrey & Shavlik, n.d.). It improves the 
model performance of the target task by enabling the transfer of knowledge from a similar previous task. This 
technique is particularly important when it comes to the large brain MRI dataset as it can address the issue of 
variation of imaging protocols or scanners. Many previous studies utilizing brain images already applied the 
transfer learning technique (Valverde et al., 2021). We had adopted transfer learning in experiments by pre-
training the DenseNet model using ABIDE dataset then applied it to ABCD. We expected improvement of model 
performance as the ABIDE dataset is more balanced and has a bigger ASD sample size compared to ABCD.   

4.3. Conditional Generative Adversarial Networks (CT-GAN) 

The generative adversarial networks (GAN) is a deep learning model that has a generative model and 
discriminative model. A generative model learns the generator’s distribution and generates new data, while a 
discriminative model discriminates between data instances  (Goodfellow et al., 2020). With the generated 
synthetic data, previous studies have successfully performed image generation and object detection with 
insufficient training data (Douzas & Bacao, 2018; Islam & Zhang, 2020; Isola et al., 2017; Ledig et al., 2017). 
However, one of the existing limitations of image-to-image translation in this work is the lack of sample size to 
generate synthetic images. Therefore, we first extracted the value of each brain region from image data as 
tabular, then applied conditional GAN (CT-GAN) to handle imbalanced data between cases. The CT-GAN is a 
synthetic data generator for single and complex, multi-table datasets. which can be used to supplement, augment 
and replace real data (Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, Kalyan Veeramachaneni, 2019). With 
the 6149 non-ASD and 93 ASD samples, we generated 535 ASD data. Furthermore, the CTCAN allows the 
generation of multi-data types, such as numerical, discrete, and time, so it has been utilized in multimodal 
medical data. 
 

4.4. Explainable AI (XAI) 

Explainable AI (XAI) refers to the learning algorithm where the results can be understood by humans 
(Sample et al., 2017). Many complex learning algorithms such as Deep Neural Network are regarded as black-
box models because humans are not able to understand the underlying mechanism even when they show good 
model performances. The black-box-ness poses a challenge of trust or justification of conclusions drawn by the 
models. The challenge exactly puts a big limitation on the medical domain using brain MRI data (e.g. diagnosis) 
(Holzinger et al., 2017). The complex Deep Neural Networks trained by high-dimensional brain MRI data hamper 
the application of the results in medical practice since the medical professionals cannot understand how and why 
a machine decision has been made. To address the problem, we visualize the occlusion sensitivity (Zeiler & 
Fergus, 2014) for the model's prediction by using a python package, MONAI (Ma et al., 2021). The occlusion 
map enables us to interpret where the brain area affects certain decisions made by the network. The higher 
values in the map mean that the occluded region had more impact on the decision process. 



5. Experiments and Results 

5.1. ABIDE dataset  

5.2.1. 2D DenseNet on MRI slices 
We conducted 2D DenseNet architecture on the slice of 3T MRI images in ABIDE dataset. We used 

sagittal images for 2D classification with the size of (193, 193). The algorithm was optimized by Adam optimizer 
with a learning rate of 1e-3. The final model was selected based on accuracy metrics in the validation set. The 
results of accuracy metrics for the test dataset are in Table 1. 

5.1.2. 3D DenseNet on MRI images 

Whole 3T MRI images were used to classify ASD patients in ABIDE dataset by the 3D DenseNet 
algorithm. The original size of images (193, 229, 193) was resized into (96, 96, 96), and the model was optimized 
with Adam optimizer (learning rate 1e-5). The final model was selected based on accuracy metrics in the 
validation set, and the results of test data are in Table 1. 
 

Table 1. Summary of accuracy metrics for the test datasets in 2D DenseNet and 3D DenseNet 

 2D CNN 3D CNN

Sensitivity 63% 59%

Specificity 53% 68%

Positive Predictive Value 52% 59%

Negative Predictive Value 64% 68%

Accuracy 57% 64%

 

5.1.2.1. Occlusion sensitivity 

 We computed the occlusion sensitivity for ASD test examples that were successfully classified into ASD 
groups. Given 3T MRI images, the change of prediction as the mask occludes each part of images was 
measured. Through occlusion sensitivity map (Figure 1), it could be confirmed which part of the brain in ASD 
participants was particularly used for ASD classification in each sample. 

A. An example of axial 3T MRI image 

   



 
B. Occlusion sensitivity map in ASD examples 

Figure 1. Occlusion sensitivity map in ASD  

 

5.2. ABCD dataset 

5.2.1. Transfer learning on 3T MRI images 

From the model using 3D DenseNet architecture on ABIDE dataset, we also conducted ASD 
classification in ABCD dataset. Original dimensions of 3T images (99, 117, 95) were resized into (96, 96, 96) and 
the pre-trained model was optimized with Adam optimizer (learning rate 1e-10). The results of the test dataset 
were sensitivity 14%, specificity 90%, PPV 23%, NPV 83%, and the total accuracy was 76%.  

 

5.2.2. Data Augmentation using CT-GAN 

To handle the unbalanced sample size between non-ASD and ASD, we implemented GAN-based data 
augmentation with CT-GAN. Based on the training set (non-ASD: 6159, ASD: 93), we generated 535 ASD. We 
performed baseline classification tasks to compare the results of the proposed frameworks. We used a 
generalized linear model (GLM), random forest (RF), gradient boosting machine (GBM), and automated machine 
learning framework before and after CT-GAN in the ABCD dataset. The summary of classification performance 
using automated ML is shown in Table 2. Overall, the original dataset shows better performance than the 
generated data using CT-GAN. However, synthesized data present higher performance when using a stacked 
ensemble model (74.77 % of ROC-AUC). 
 
Table 2. Summary of classification performance using automated ML before and after data augmentation with 
CT-GAN to handle the imbalanced sample set. 

 Before CT-GAN After CT-GAN 

Automated machine learning framework XGBoost
58.40%

Stacked Ensemble
74.77%

generalized linear model (GLM) 56.76% 49.15%

GLM with lambda search 66.29% 52.06%

random forest (RF) with 50 trees 66.21% 47.24%

RF with 100 trees 64.60% 43.90%

RF with 5-fold cross-validation 60.79 67.24%

gradient boosting machine (GBM) with 50 trees 55.40% 54.00%

GBM with 500 trees 60.67% 47.09%

 
 

5.3. Visualization 
Through the dimension reduction algorithm (t-SNE), the whole dataset was reduced into 2-dimensional 

planes, and checked if there is any site-/group-specific difference in each dataset (Figure 2). Figure X.A shows 



that inter-site difference exists in ABIDE dataset. For ASD classification, ASD group (red) had lower values of t-
SNE embeddings compared to non-ASD group (blue)) in ABIDE dataset (Figure 2.B; y-axis). However, no 
difference between ASD and non-ASD groups was observed in the ABCD dataset. 
 

A. Site-specific visualization in ABIDE dataset 

 
 

 
 

B. Group-specific visualization (Left) ABIDE dataset (Right) ABCD dataset 
(Red) ASD participants (Blue) Non-ASD participants 

 
Figure 2. t-Stochastic Neighbor Embedding (t-SNE) of ABIDE/ABCD dataset 

6. Conclusion 

In this paper, we proposed several models for ASD classification from brain imaging data. In particular, 
we have explored i) 2D slice-level and ii) 3D patch-level DenseNet models in two different datasets, respectively. 
In the ABCD dataset, we detected a problem of imbalanced sample size between non-ASD and ASD. Therefore, 
we consider two domain adaptation approaches of transfer learning and CT-GAN. We found that 2D CNN and 3D 
CNN showed 57% and 64% accuracy, respectively, in the ABIDE dataset. By using transfer learning, the pre-
trained 3D CNN in the ABIDE dataset could identify non-ASD children with 90% specificity but ASD children only 
with 14% sensitivity in the ABCD dataset. However, after synthesizing data produced by CT-GAN (ASD N = 535), 
the ROC-AUC increased to 74.7% when using a stacked ensemble model in the ABCD dataset.  

The main limitation of the research lies in that transfer learning could not increase the model 
performance. It might indicate that the features of ASD in the brain differ by age group. Since the ABCD dataset 
only includes a specific age group (9 to 10 years), the learned features from all age groups (5 to 64 years) would 
not be applicable. Also, the difference in image preprocessing might lead to the result in that the brain data from 
ABIDE was skull stripped but ABCD was not. Furthermore, although CT-GAN shows 74.7% accuracy, we cannot 
rule out the possibility that  the result of CT-GAN was overfitted due to limited sample size. 

In summary, this study reports an acceptable, generalizable performance in predicting ASD with large 
sample size. To handle imbalanced sample size with transfer learning and CT-GAN, we present a useful 
framework for future research of studying ASD neuro-biomarker. 
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