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Abstract

The purpose of Image-based virtual try-on is to synthe-
size target clothing into a proper area of the person. A num-
ber of studies have been conducted in this area and per-
formed well on organized images. However, previously pro-
posed Image-based virtual try-on models have several chal-
lenges regarding untidy realistic images and model learn-
ing only on tops. First, previous models have mostly used
the VITON [1] dataset as train and test data. Images in
this dataset have a white background and are aligned in the
middle with only clothes and human images. However, the
realistic images are not aligned in the middle, and the back-
ground exists, so the results were very poor when applying
the existing models. Second, previous models have imple-
mented models with a focus on top, and some have imple-
mented models to make it impossible to train bottoms. To
alleviate these challenges, we improved existing models by
using DeepFashion2 dataset [2] and built a comprehensive
model that works for tops and bottoms.

1. Introduction
The online clothing market has a greater commercial ad-

vantage than the traditional clothing market, but it has a
disadvantage of not being able to try it on physically. To
provide a shopping environment that is close to reality, vir-
tual try-on techniques have received much attention because
they can provide information similar to trying on real prod-
ucts. This technique helps users make decision quickly
about whether or not to buy the clothes. Existing studies
have produced 3D models and synthesized them directly
through graphical manipulation, which requires a lot of time
and labor.

Recently, more economical methods have begun to
emerge to implement virtual try-on techniques with im-
ages themselves, rather than converting to 3D information.
Given the image of a person and the image of the clothes

user wants to wear, various studies have been conducted
on basic pipeline models that modify the image of clothes
based on human posture, body shape and characteristics of
clothes and synthesize them.

However, most studies are conducted by transforming
clothes and synthesizing them into images only for tops, and
most of the studies on other areas are based on 3D transfor-
mation. Try-on technique for skirts, pants and bottom has
also been proposed, but simply passing through a single net-
work during the inference process does not produce good
results and requires additional learning to achieve desired
results, which actually takes a lot of time to achieve.

Most models in try-on field learn a module that warps
clothes to fit the human form. For this learning, they mainly
use pose maps with segmented images by person part. How-
ever, it is very difficult to apply existing models because
the pose estimation is not done well for the lower body for
pants or skirts. Most pose estimations are carried out using
key points of the upper body, such as arms, chest, shoulders,
neck and face, and the image of a person wearing a bottom
is difficult to estimate the pose because most of the images
show only the lower body. Furthermore, even if the body is
fully visible, pose estimation is difficult in the case of skirts
because it is difficult to detect the leg which is key point for
pose estimation.

Therefore, we seek to create a network that allows people
to wear different types of clothing, such as pants and skirts,
rather than a virtual try-on network that only works well
on tops. In addition, we want to create a network for pro-
gressing learning using realistic dataset (DeepFashion2) [2]
and implement a network that is desirable to apply to real
images.

2. Related Works

2.1. Generative Adversarial Networks (GAN)

GAN has led to tremendous advances in image synthe-
sis [3, 4, 5] and processing [6, 7]. GAN consists of a gener-
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ator and a discriminator. Generator generates realistic im-
ages to deceive the discriminator, which learns to distin-
guish synthesized images among images in reality [8]. Al-
though GAN is used in many domains, it has resulted in
tremendous performance gains, especially in the field of im-
age synthesis [3, 4, 5].

To utilize additional information, such as text [9], and
attributes [10], in generating image process, conditional
generative adversarial networks (cGANs) were proposed.
Many cGANs conditioned on input images have been pro-
posed to generate high-resolution images [11, 12]. How-
ever, these models had the problem of generating blurry
images when dealing with very large spatial variations or
deformation between input and target images.

2.2. Fashion Analysis and Synthesis

Various tasks on fashion have received considerable at-
tention because there are many applicable fields in the real
world. Examples of current tasks include clothing compati-
bility and matching learning [13], clothing landmark detec-
tion [2], and fashion image analysis [14, 15]. Virtual try-on
field is also one of the main challenges in fashion.

2.3. Virtual Try-On Approaches

Most studies in the field of virtual try-on are based on 3D
graphics models which render the output images via the pre-
cise control of geometric transformations or physical con-
straints [16, 17, 18, 19]. Using these 3D models, they pro-
duce good results for Virtual Try-On. However, due to its
low efficiency, high computation resource and heavy labor,
a new methodology has been found and with the develop-
ment of deep neural networks it has become an important
area that has recently resurfaced.

Without 3D transition of images, maintaining human
pose and identity information was very important to syn-
thesize clothes into humans, and most recent studies have
approached how to learn this information. For example, CP-
VTON [20] and CP-VTON+ [21] used similar two-stage
frameworks and made the original Thin-Plate Spline (TPS)
transformation [22] learnable based on a convolutional net-
work for geometric matching [23]. Although the Virtual
Try-On results changed more naturally, the results were still
not good when there was high occlusion or large transfor-
mation was needed.

To alleviate these problems, ACGPN [24] was presented.
CP-VTON only focuses on the clothes, leading to coarse
and blurry bottom clothes and posture details. Therefore,
ACGPN added an additional semantic generation module
(SGM) to generate a semantic frame of spatial layout. Al-
though the performance has improved, it was still not good
enough to apply to real-world datasets.

Prior methods are heavily based on human parsing and
pose. However, wrong segmentation for human images

would lead to bad results on Virtual Try-on. To solve
this problem, PF-AFN(Parser-Free Virtual Try-on) [25] was
presented. PF-AFN treats the fake images produced by the
parser-based network as input of the parser-free student net-
work, which is supervised by the original real person image
in a self-supervised way.

3. Method

We adopt ACGPN because the model predicts and gen-
erates exactly where to synthesize, and would be best suited
to our method. We made two separate models for each
top and bottom generation based on ACGPN. Model dif-
fers at which mask to make in semantic generation mod-
ule (SGM). Each semantic generation module makes pre-
serving mask and warping mask which is the region of tar-
get clothes that have to warp. In spatial transform network
(STN), target cloth warps to warping mask. Finally, content
fusion module (CFM) uses the previous network’s outputs
and reference image with information from the clothing part
removed as an input and generates the final synthesized im-
age. We constructed the models for top and bottom gen-
eration each but for consistency, the following explanation
will focus on bottom clothes generation. Main difference
between each part is where to mask and preserve. By re-
placing legs to arms and bottom to top will explain for the
top generation.

3.1. Semantic Generation Module (SGM)

If the shape of the clothes you are wearing is different
from the shape of the target clothing, creating a clothing
mask when you are wearing the target clothing can preserve
body parts of the person [24]. To generate a new mask ap-
plying target cloth, change the label of lower body parts
(bottom clothes, legs) identically from reference mask M
and make a fused mask MF . Next, target cloth c, pose map
p [2], fused mask MF are concatenated to generate warp-
ing mask Mw. Once again, concatenating Mw, MF , p we
synthesized mask MS by G2.

For training, we used the structure of the conditional gen-
erative adversarial network (cGAN) [26] with a generator
using the U-Net [27] structure and a discriminator using
pix2pixHD [11]. Loss function of cGAN is:

LGAN = Ex,y[log(D(x, y))]

+ Ex,z[log(1−D(x,G(x, z))]

where x indicates the input and y indicates the ground truth
mask by reference mask. z is noise sampled from standard
normal distribution.

Overall Loss function is as follows,

Loss = λ1LGAN + λ2LPCE
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Figure 1: The overall architecture of our method for pants.

where λ1 and λ2 are trade-off parameters and LPCE is
pixel-wise cross entropy loss for training to achieve more
accurate segmentation results.

3.2. Cloth Warping Module (CWM)

By applying thin-plate splines [28] to spatial transforma-
tion network [23], transforms target cloth c to the mask of
the clothing part Mw. Additionally, using the second-order
difference constraint on cloth warping module ensures ro-
bust results for the complex text and rich color [24].

3.3. Content Fusion Module (CFM)

The final synthesized image should remain unchanged
except for the lower body part where we want to proceed
with overall networks from the reference image. For gener-
ating synthesized image, we used warped cloth cw, cloth ag-
nostic reference image Ip, synthesized masking result MS

and warping mask Mw as an input with U-Net structured
network and trained the network with L1 loss.

4. Experiment
4.1. Dataset

Our dataset was constructed by extracting images from
DeepFashion2 dataset [2] and organizing them into the form
our model needs. Compared to the VITON dataset [1]
used in many other virtual try-on networks, DeepFashion2
dataset includes more real-world unprocessed images. Im-
age sizes are not constant, numerous backgrounds appear,
and occlusion often occurs. DeepFashion2 dataset contains
391K images for training, 34K images for validation, and
67K images for test. An image can have several items and
each item has annotations including category, segmentation,
occlusion, and viewpoint. Also, an identical clothing item
can appear in several images.

For training, we had to make a dataset which contains
pairs of an image of a clothing item and an image of a per-

Figure 2: Examples of VITON dataset and DeepFashion2
dataset.

Figure 3: Examples of VITON dataset and DeepFashion2
dataset.

son wearing the same item. First, we extracted the list of
items with viewpoint label ‘no wear’ and ‘frontal’, respec-
tively. Then, we combined two lists, leaving only the items
that have both no wear image and frontal image. For items
that have several no wear images, we just left one with the
lowest occlusion value. Finally, by pairing the no wear im-
age with all the frontal images of the same item, the pairs
we needed were obtained. No wear image is used as the
clothing image, while frontal image is used as the person
image. We took these steps for both top items and bottom
items, where top items refer to the items with category la-
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bel ‘short sleeve top’, ‘long sleeve top’, ‘vest’, ‘sling’ and
bottom items refer to the items with category label ‘shorts’,
‘trousers’, ‘skirt’.

Using the aforementioned method, we extracted our
training set and test set each from the original DeepFash-
ion2 training set and validation set. For top items, the train-
ing set and test set each contains 27116 pairs and 4354 pairs.
For bottom items, the training set and test set each contains
11093 pairs and 1994 pairs.

Then, using the polygon segmentation annotation of the
DeepFashion2 dataset [2], we created cloth data without a
background for the no-wear dataset.

By preprocessed pose estimation [29] and human pars-
ing [30], we created cloth agnostic human representation
for semi-supervised learning. Unlike VITON [1], Deep-
Fashion2 dataset is not well-organized, so we often failed
to detect people in pose estimation. For better training we
excluded data which detected none. We used 18334 pairs
for top, and 5969 pairs for bottom in the training procedure.

4.2. Implementation Details

Architecture. The model contains semantic generation
module (SGM), cloth warping module (CWM) and content
fusion module (CFM). Generator of G1, G2, G3 uses the
structure of U-Net [27] and spatial transformation network
[23] consists of five convolution layers with U-Net and a
discriminator with pix2pixHD [11]. Because DeepFashion2
dataset has various resolutions, resized to resolution of VI-
TON, 256 × 192.

Training. We trained 20 epochs for each top and bottom
network with the pretrained network using VITON. We set
hyperparameters as batch size 16, λr = λs = 0.1, λ1 = λ2
= 1. Learning rate is initialized as 0.0002 and used Adam
with β1 = 0.5, β2 = 0.999.

Testing. We tested with the validation set of DeepFash-
ion2. For fair comparison, we made test pairs for top and
bottom and evaluated them in quantitative and qualitative
ways.

4.3. Qualitative Results

Since recent networks are already producing remarkable
results with VITON dataset, we wanted to see if we could
make progress on the results with trickier images. Also,
since DeepFashion2 dataset includes images of both top and
bottom clothing items while VITON dataset is restricted to
tops [1], we could make an attempt on virtual try-on with
bottom clothing items.

Regarding top clothing items, we tested our model on
DeepFashion2 dataset and compared the results to the
model trained with VITON dataset. As shown in the left
side of Figure 4, the model trained with VITON dataset
struggled detecting the exact area where the target clothing
should be put on. Also, lots of distortions and blurry points

PF-AFN ACGPN Our Model
(preserving background)

FID
(top)

71.678 213.576 27.057

FID
(bottom)

101.980 110.892 40.662

Table 1: Quantitative results with FID score.

occurred. In contrast, our model showed better performance
on rendering the target clothing on to the person, with less
distortions and misalignments. The right side of Figure 4
shows an example of synthesizing different clothing items
to the same person. The model trained with VITON dataset
has shown to be extremely unstable when the target clothing
is not well-aligned, and when the object size of the target
clothing differs from the one initially wearing. Our model
showed much more stability, performing better in warping
the target clothing into the body shape of the reference per-
son. It has shown the possibility of utilizing a wider range
of images in virtual try-ons.

In the case of bottom clothing items, we focused on gen-
erating more natural-looking images. As shown in in the
left side of Figure 5, our model generated some promis-
ing results, successfully synthesizing bottom clothing items
to the reference person. A notable fact is that the network
managed to straighten the folded jeans into the person’s
body shape, as it can be seen in the second row. The right
side of Figure 5 shows an example of synthesizing differ-
ent clothing items on the same person. On average, the
model worked better with shorts, trousers and short skirts,
than long skirts.

4.4. Quantitative Results

In virtual try-on tasks, there are no correct labels, so we
adopted Frechet Inception Distance (FID) [12] for quan-
titative evaluation. It calculates distance between dis-
tance of feature using inception model pretrained with Im-
ageNet [31]. Lower scores indicate higher quality of the
results. We did not adopt Inception Score (IS) [32] because
it is known that models which are not trained with ImageNet
give incorrect results [25].

For baseline, we used PF-AFN trained with VITON
dataset, ACGPN and our model trained with DeepFashion2
dataset. In order to compare models fairly, we made test
pairs which include target clothes and reference images to
generate an image where the person in the reference image
is wearing target clothes. As shown in Table 1, our model
showed the lowest score in both top and bottom, among the
three.
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Figure 4: Qualitative comparisons with top clothing items.

Figure 5: Virtual try-on results with bottom clothing items.
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Figure 6: Examples of failure cases.

5. Discussion

5.1. Failure Cases

During experiments, we observed some phenomena that
hinder producing acceptable results. These phenomena are
shown in Figure 6.

First, when the shape or the size of the target cloth-
ing doesn’t match that of the original one, the network of-
ten filled the missing part with monotonic gray color. Our
model succeeded in warping the shape smoothly when the
gap was manageable, but the real-world dataset contained
images that couldn’t be covered with the current network.
Examples are shown in the first row.

Second, the network sometimes generated images with
weird trousers shapes, even when the target clothing is a
skirt and the reference person is wearing a skirt. Examples
are shown in the second row. The general expectation is
a person wearing a new skirt, but this kind of failure hap-
pened. This might be due to the fact that the bottom training
set contained all shorts, trousers and skirts, and they were
trained all together. This phenomenon may be improved if
different models are applied according to the specific type
of bottom clothing, but this will require an additional clas-
sification network.

Third, the network put the target clothing on wrong areas
in some cases. The third row shows examples where short
skirts are stretched to the whole body. Indeed, the quality
of the synthesized images was disappointing. This kind of
failure occurred when the parsing result was not accurate.

Finally, some kind of twisted texture, which doesn’t exist
in the target clothing image, often appeared on the surface
of the synthesized cloth. This particularly happened with
top clothing items. Examples are shown in the fourth row.
We are not sure about the exact cause, but predicting it to
be due to the unstable nature of generative adversarial net-
works [8].

5.2. Failed Attempts

We attempted to synthesize try-on images in various set-
tings. First, we used PF-AFN which has the most superior
try-on result [25]. However, most of the results processed
with DeepFashion2 dataset were unrealistic. We assumed
that it is because the model has been trained with no back-
ground and images are aligned in the center. Also, Deep-
Fashion2 data with bad quality are hard to detect pose will
produce bad results. Furthermore, we assumed appearance
flow in PF-AFN, which is pixel sensitive in spatial way, may
struggle with various poses.
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Figure 7: Synthesized results of PF-AFN with VITON cloth
data (Reference image from VITON, DeepFashion2, Deep-
Fashion2 background removed).

Figure 8: Synthesized results with PF-AFN with different
target clothes from DeepFashion2.

Figure 9: Agnostic person representation from WU-
TON [33].

5.3. Future Work

As aforementioned, we often had failure of pose esti-
mation and lost considerable data for training. Regarding
Issenhuth et al. [33], cloth agnostic human representation
without pose estimation had better results. In real-world
data, following this agnostic representation in Figure 9 from
WUTON will make it possible to train without excluding
any data, leading to better results.

Also, we had some failure in human parsing. By ap-
plying distillation, we can make direct inference from ref-
erence images without making pose estimation and human
parsing [25, 33]. It can produce better results regardless of
the quality of the parsing result of the reference image.

6. Conclusion

In this work, we proposed an improved ACGPN for real-
istic images and bottom clothes. To make ACGPN perform
well in the realistic image, the training was implemented us-
ing DeepFashion2 dataset preprocessed for learning above

of the pretrained model using VITON data. Also, because
previous ACGPN implemented Virtual Try-On only for the
top, we changed the model to make it applicable to the bot-
tom. Qualitative and quantitative experiments show that our
new model outperforms previous models for realistic data
and bottoms.
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