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Abstract

Computer vision tasks such as image recognition, object
detection, and semantic segmentation made many contribu-
tions to autonomous harvesting. However, these tasks are
limited to visible parts of the object in the image. Still, they
pose a challenge in detecting green vegetables with the sub-
tle color differences in the neighborhood of targeted fruit.
In this sense, the nature of cucumbers makes them hard to
detect. To address this issue, we study reconstructing the oc-
cluded part of the cucumber to help autonomous robots de-
tect and locate the picking point position. A dataset with cu-
cumber images from three different farms located in South
Korea is generated. The dataset is superimposed with syn-
thetic leaf patches to simulate the occlusion effect. Using
this dataset, we propose an amodal segmentation model
with a U-Net reconstruction network. The model consists
of a course mask segmentation module for bounding box
regression and classification, a visible mask segmentation
module for refining visible masks, and an amodal segmen-
tation module for refining the amodal mask. Finally, the
refined amodal mask and refined visible mask are concate-
nated and trained with U-Net. Our proposed model outper-
forms the previous shape prior embedding, at least in the
cucumber dataset.

1. Introduction

Over the last few years, there has been a growing interest
in the autonomous robot for harvesting agricultural products
in the greenhouse. Because many field operations are cost-
ineffective and labor-intensive – crops must be hand-picked
at the right time to ensure good quality and high market
value. Using technology in the predefined growing setting
now permeates almost all facets of our lives. It is becoming
the norm as to balance out the labor shortage in the places
where farmers are more dependent on hand-harvesting.

Many computer vision tasks such as image recogni-

tion [9] [25], object detection [6] [22] [21], and semantic
segmentation [24] [13] made a notable contribution. These
may well have provided a foundation for the robot visual
system in distinguishing the crops from leaves and other
backgrounds [27] [10] [30]. But these tasks are limited
to the visible part of the object in the image and still pose a
challenge in detecting green vegetables with the subtle color
differences in the neighborhood of targeted fruit. In that
sense, the nature of the cucumber makes it hard to detect.
The contrast between the cucumber and its leaf is not ap-
parent, and the leaves can partially occlude cucumber. This
is shown in Figure 1.

Intuitively, working with the standard cucumber color
scheme has been explored. Zhang et al. [29] used blue and
saturation color components to reduce the illumination ef-
fect and improve the pixel’s semantic information. As an
extension to this method, Mao et al. [14] proposed a cucum-
ber detection pipeline based on I-RELIEF color component
selection and machine learning techniques. The pipeline is
as follows: (1) select three color components using the I-
RELIEF module; (2) use the multi-path convolutional neu-
ral network (CNN) for feature extraction; (3) classify the
cucumber fruit using a support vector machine (SVM) clas-

Figure 1: Cucumbers partially occluded by leaves or stems
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sifier. Fernandez et al. [4] also proposed a way to quantify
the intensity difference between the blue and green color
component in the RGB and quantify the hue component in
the HSV color space to make the SVM algorithm robust to
illumination conditions. The proposals listed above adopted
a way to utilize multiple color spaces to distinguish cucum-
ber fruit from other parts of the image. However, these de-
tection algorithms only work well under specific light con-
ditions and do not suggest the picking point position con-
sidering that cucumbers are in various sizes and found in
random orientations.

To tackle these problems, we study the problem of re-
constructing the occluded part of the cucumber to help the
autonomous robot detect and locate the picking point posi-
tion.

2. Related Work
This section will first explore the instance segmenta-

tion task for dealing with occluded objects and then ex-
plore three different approaches to the occluded object re-
construction. These are: semantic segmentation, amodal
segmentation, and generative model.

2.1. Instance Segmentation with Occlusion

Finding a target object from the mishmash stack is an on-
going area of research in computer vision. Because a pile of
objects tends to come in different shapes and arrangements,
it is hard to pick robots to aim for the desired object. Moti-
vated by this challenge, Wada et al. [26] designed a system
to recognise the visible and occluded region from the given
image. The system consists of two parts: (1) The image
synthesis of stacked objects generated with ground truth of
visible and occluded region proposal of each instance; (2)
The instance segmentation model that extends mask RCNN
for multi-class segmentation. The instance mask predicted
in the first stage of the Mask RCNN is converted to a density
map and used to predict the instance masks in the second
stage. Then these two stages are fused pixel-wise together
to predict visible, occluded, and other in the final layer.

Chen et al. [2] also designed a framework to handle
the occlusion problem. It starts by generating a category-
independent segmentation proposal using multiscale com-
binatorial grouping. Then, an SDS-based architecture uses
these proposals to extract features that are fed into class-
specific classifiers as inputs to obtain a likelihood map
and occluding regions. The output from the architecture
also serves as inputs to the exemplar-based shape predictor
to obtain a better shape estimation of an object. Finally,
graph cut with occlusion handling to infer occluding re-
gions, shape predictions, class-specific likelihood maps are
formulated into an energy minimization problem to obtain
the desired segmentation based on segmentation proposals
with top classification scores. Similarly, Ke et al. [11] pro-

posed a method for modeling the structure that decouples
the boundaries of both occluding and occluded instances.
This method consists of three modules: (1) Backbone with
FPN for feature extraction from the image; (2) Fully con-
volutional one-stage object detection for each instance’s
proposal region prediction; (3) The occlusion-aware mask
head, bilayer GCN structure, for decoupling overlapping
relations from the object detection. The last module refor-
mulates the traditional class agnostic segmentation to guide
target object segmentation.

2.2. Semantic Segmentation

Traditional semantic segmentation labels each pixel
in the image with corresponding semantic information.
Purkait et al. [19] extended this idea and assigned a group
of semantic labels at each pixel, indicating whether it is hid-
den or visible. They use U-Net [24] integrated model to
identify the area of the occlusion. This model comprises
encoder-decoder followed by instance normalization layers
and ReLUs except for the last layer. Furthermore, at the last
layer, the grouping strategy predicts semantic labels of the
visible object along with the occluded portion and groups
the semantic categories into one background.

2.3. Amodal Instance Segmentation

Amodal perception can interpolate the object’s physi-
cal structure when parts of it are not visible. Recent stud-
ies applied this idea to segment an instance of the object
with its occluded features. Li and Malik [12] proposed the
earliest work on generating an amodal dataset. They ran-
domly cropped an image with at least one foreground ob-
ject instance and overlaid another random object instance
on top of the cropped image. The dataset is then evaluated
on the Faster RCNN model [22]. Inspired by the previous
work, Zhu et al. [31] extended the Open Surfaces annotation
tool [1] to generate COCO amodal annotations. They also
proposed two deep networks - ExpandMask and Amodal-
Mask - and compared them to DeepMask [17] and Sharp-
Mask [18] as the baselines. ExpandMask takes an image
and a mask generated by SharpMask as an input and outputs
an amodal mask, whereas AmodalMask takes an image and
predicts an amodal mask.

Instead of focusing on augmenting the dataset from the
existing dataset, several amodal segmentation models are
developed to help advance amodal research. Qi et al. [20]
proposed a generic amodal segmentation network that infers
a missing shape of the instances in the image and outputs
the complete shape of the object. It consists of an occlusion
classification branch, determining whether there is an occlu-
sion in the RoI or not, and multi-level coding, guiding mask
prediction to complete the structure of the instances. Xiao et
al. [28] proposed a framework to help algorithm mimic hu-
man’s amodal perception. It extracts the features from the
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image and predicts the coarse visible mask and the coarse
amodal mask. Then these two masks each go into the vis-
ible mask segmentation module and amodal mask segmen-
tation module. The former refines the visible mask using
the amodal mask and the reclassification regularizer. Fur-
thermore, the latter refines the amodal mask concentrating
on the feature of the visible region and the object’s shape to
help alleviate the misleading occlusion features.

2.4. Generative Model

The generative adversarial network goes through a back-
and-forth process, generating the training-like data and dif-
ferentiating the data from the actual data until it comes to
its satisfaction [7]. Ehsani et al. [3] proposed a GAN-based
model called SeGAN that reconstructs the occluded por-
tion of the object. They first create a large-scale occlusion
dataset from the photo-realistic 3D scenes by changing the
camera’s location in the various scenes. Then use this gen-
erated data to segment occluded and non-occluded regions
of the object and generate the appearance of the occluded
region using cGAN [15].

3. Method
3.1. Data Acquisition

The dataset consists of cucumber images from three dif-
ferent farms, located in Gimje and Goheong, South Korea.
The images are collected using four different types of cam-
era - mobile phone camera, DLSR camera, and depth cam-
era RealSense D435i under various lighting conditions. A
detailed breakdown of the number of raw images in the
dataset is shown in Table 1. Because ground truth anno-
tations must represent the overall shape of the instances to
recover the occluded part of the instances, some modifica-
tions to the dataset have been made. First, all incomplete
masks of occluded instances are removed. Then synthetic
leaf-shaped patches are generated to occlude each instance
with 60% probability. Lastly, images with no masks are
removed from the dataset. Table 2 shows the number of
instances after modification.

3.2. Synthetic Patch

Some modifications to the dataset have been made to
train the model to recover the occluded parts of the instances
because ground truth annotations should represent the over-
all shape of the instances. First, all incomplete masks of oc-
cluded instances were removed. Then synthetic leaf-shaped
patches were generated to occlude each instance’s with 60%
probability. The annotations of the synthetic patch were
excluded from the baseline experiment as its structure did
not have any heads for processing invisible mask. How-
ever, annotations of the synthetic patches are required for
the amodal instance segmentation model in which the heads

for processing invisible masks are included. Lastly, images
with no masks or incomplete masks were removed from the
dataset. Table 2 shows the number of instances after the
modifications.

Because our amodal instance segmentation model in-
clude heads for processing invisible masks, the dataset is
augmented to generate invisible masks. Generating syn-
thetic patches similar to that of the masks is an efficient and
time-saving process. That being said, the human annota-
tor must extrapolate or interpolate the occluded part of the
cucumber when annotating the raw images so that human-
induced annotation errors are reduced even with a synthetic
patch. As mentioned above, the incomplete masks with oc-
cluded regions were removed, and masks that contain per-
fect cucumber shapes were only preserved to label invisible
masks and cucumber reasonably. Then, synthetic patches
were superimposed on the annotated area of the original im-
age. One hundred patches were made from our train dataset
by manually cropping cucumber stem and leaf as shown in
Figure 2 (a). The patches are randomly generated inside
the annotated area with a 60% probability in respect to the
annotation size. These patches are then synthesized into
the area with gradient-domain image processing for sponta-
neous synthesis [16]. Image stitching results in discontinu-
ous points in the image with unnatural features, as shown in
Figure 2 (b).

So, we implemented a gradient domain image process-
ing that reduces discontinuity and generates a more natural
synthesis. This technique extracts image gradients and
solves the Poisson equations in (1) and (2) while adjusting
the patch pixels. The H represents an improved version
of patch B that blends in better with source image A, N
represents the number of valid neighbors inside the patch
within the boundary, and Ω represents the selection area in
the B and H while excluding the boundary with partial Ω.

Let Bx = −Bx−1,y −Bx+1,y

By = −Bx,y−1 −Bx,y+1

Figure 2: Synthetic patch augmentation (a) Annotated Im-
age (b) Simple Image stitching (c) Gradient Domain Image
Processing
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H(x,y) = A(x,y)∀(x, y) ∈ ∂B (1)

|∇B(x,y)| = 4B(x,y) +Bx +By (2)

|N |H(x,y) −
∑

(dx,dy)+(x,y)∈Ω

H(x+dx,y+dy) −
∑

(dx,dy)+(x,y)∈∂Ω

A(x+dx,y+dy)

=
∑

(dx,dy)+(x,y)∈(Ω∪∂Ω)

B(x+dx,y+dy) −B(x,y)

(3)

As shown in Figure 2 (c) the leaf patches are naturally syn-
thesized into the image.

3.3. Cucumber Segmentation

Xiao et al. [28]’s amodal segmentation model sug-
gested a reconstruction network based on a pre-trained auto-
encoder in which the latent space generated by the encoder
works as a shape prior to each class. The use of shape
prior refines the amodal mask such that the model targets
the COCO dataset. Each class in the COCO dataset embod-
ies shape features that each latent space of the auto-encoder
can represent. However, in this study, the main goal is to re-
cover the occlusion region in a cucumber class. Like other
agricultural products, the cucumber comes in dynamic fruit
size and shape from the aspects of morphology. In that,
implementing a pre-trained shape prior for occlusion recon-
struction is not a promising solution; we implemented U-
Net as a reconstruction network to handle high shape varia-
tion characteristics in cucumber.

Semantic segmentation algorithm U-Net was first devel-
oped by Ronneberger et al. [23], built upon the concept of a
fully convolutional network. It only contains convolutional
layers and does not have any dense layer as a part of the
architecture. In the medical imaging field, U-Net is widely
used as a reconstruction model [5] because it can overcome
bottleneck problems. The algorithm contains two paths.
The first path is the contraction path that consists of re-
peated 3 x 3 unpadded convolutions followed by the ReLU
activation function and 2 x 2 max-pooling operations. This
path captures the context in the image. The second path is
expanding path, consisting of upsampling of feature map
followed by 2 x 2 convolution and 3 x 3 convolutions. This
path uses context from the first path to improve the local-
ization.

3.4. Overview of our approach

In this paper, we implement an amodal segmentation
model with U-Net as a reconstruction network instead of
an auto-encoder. The overall architecture is based on
Xiao et al. [28]’s work except for the removal of the re-
class network, which is unnecessary for our single class
dataset. First, the coarse mask segmentation module con-
sists of bounding box regression, classification, coarse visi-
ble mask, and coarse amodal mask. The ROI feature F goes

through visible mask head (fv) and amodal mask head (fa)
which consist of four convolution layers and one deconvolu-
tion layer. And then, in the visible mask segmentation mod-
ule, coarse amodal mask and feature F refines the visible
mask. Finally, in the amodal mask segmentation module, a
refined visible mask and reconstruction network refine the
amodal mask. The refined amodal mask and refined visible
mask are concatenated together and go through the amodal
mask head for the final amodal mask prediction, where U-
Net is now used in the amodal mask segmentation module
instead of the auto-encoder.

3.5. Loss Function

3.5.1 The coarse mask segmentation module

This module aims to extract the visual feature information
and predict the coarse amodal mask M c

a and the coarse vis-
ible mask M c

v . Four loss terms are used in this module:
classification loss Lcls, bounding box regression loss Lreg,
a coarse amodal mask loss LBCE(M c

a,M
g
a ), and a coarse

visible mask loss LBCE(M c
v ,M

g
v ), where LBCE(·, ·) is the

binary cross entropy loss function. It corresponds to a grey
section in the Figure 4.

3.5.2 The visible mask segmentation module

This module refines the visible mask using the amodal
mask. This amodal mask uses visible region to distinguish
occlusion in the image and alleviate the effect of the back-
ground features. The loss term of visible mask refinement
is Lr

v = 1
N

∑N
i LBCE(fv(FiM

c
a,i),M

g
v,i). It corresponds

to a blue section in the Figure 4.

3.5.3 Feature Matching

The feature matching accelerates and compresses the net-
work model. It reduces the gap between feature maps and

Figure 3: U-Net architecture Ronneberger et al. [23]
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Figure 4: The overview of present study

the refined mask prediction. The loss between the coarse
visible mask prediction and refined visible mask predic-
tion focus on the visible region for visible mask segmen-
tation. The loss of the visible mask head is Lvfm =

1
N ·S

∑N,S
i,j λjLS(f

(j)
v (Fi), f

(j)
v (Fi ·Mc

a,i)), where N , S,
and LS is the number of instances, the number of convolu-
tion layers of the visible mask, and cosine similarity respec-
tively.

3.5.4 The amodal mask segmentation module

This module is defined to refine the coarse amodal mask by
using the feature of the visible region and the shape prior.
This helps the model alleviate the misleading effect of the
occlusion feature. To imitate the perception of human that
infers the amodal mask by concentrating on the appearance
of the visible region and shape prior knowledge. This mod-
ule uses Lr

a = 1
N

∑N
i LCE(fa(cat(Mr

v,i,M
k
sp,i)),M

g
a,i)

loss function. And to enhance the capacity of focus-
ing on the visible region when applying feature matching
to the amodal mask head. This module uses Lafm =

1
N ·S

∑N,S
i,j λjLS(f ja(Fi), f

(j)
a (Fi ·Mr

v,i)) loss function. It
corresponds to a green section in the Figure 4.

3.5.5 Final loss

The model adds up all these loss functions in the section
3.5.x together to compute the final loss.

4. Experiment
4.1. Dataset

The model is evaluated on the cucumber datasets. The
training and test sets contain 1209 and 213 images, respec-

Camera Images Masked instances
Mobile phone 415 1391
Sony a6000 558 2442
RealSense D435i 447 1418

Total 1420 5251

Table 1: General information about the dataset

Camera Images Masked instances
Mobile phone 401 995
Sony a6000 506 1496
RealSense D435i 436 1119

Total 1327 3610

Table 2: Dataset after annotation modification

tively, and we hold out 213 images as a validation set. Each
dataset contains 2848, 328, and 434 cucumber instances.
The annotations of synthetic patches are not required for the
Mask-RCNN [8] model since its structure does not include
any heads for processing invisible mask.However, annota-
tions of the synthetic patches are required for the amodal
instance segmentation model in which the heads for pro-
cessing invisible masks are included. During the train-
ing process data augmentation random crop, flip, contrast,
brightness was implemented in turn. For the data augmenta-
tion implementation, FAIR Detectron2’s data augmentation
module was used.

4.2. Metrics

The mean average precision(mAP) and mean average re-
call(mAR) are used to evaluate and quantify the model’s
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performance. Specifically, COCO dataset APIs are imple-
mented in Detectron2. Specifically, in this paper, the pre-
dictions in regard to amodal masks are only considered.

4.3. Environment

Pytorch 1.4 deep learning framework was used, and
Mask RCNN, Amodal Segmentation models were imple-
mented with FAIR’s Detecron2 API. The training is per-
formed on a single NVIDIA QUADRO 6000 GPU, Intel
Xeon Silver 4214R CPU, and 32GB RAM. During the im-
plementation, the primary hyperparameter setting was as
follows: the batch size of 128, the learning rate of 0.00025,
and 20000 iterations. Training took approximately 2hrs
long.

4.4. Result

Our model was first compared with the original Amodal
Segmentation model on the COCOA class dataset. mAP
of amodal segmentation model based on U-Net shows bet-
ter performance by a small margin in mAP (Table 3). As
shown in Table 4, our amodal segmentation model with
U-Net reconstruction network and feature matching shows
mAP of 49.22. It took about 2 hours and 12 minutes to
train, and inference time was around 0.2762 seconds per im-
age. While without feature matching, mAP is 47.95, train-
ing took about 2 hours and 18 minutes and around 0.1557
seconds per image to infer. We compare our U-Net recon-
structive network model with the original amodal segmen-
tation model on the cucumber dataset. Also, some ablation
studies are included.

First, our baseline model, Mask RCNN, demonstrates
relatively high mAP(46.84) and mAR(57.23) even with-
out occlusion recovery task. In particular, this outperforms
two amodal segmentation models by far. The proposed
U-Net-based amodal segmentation model, however, per-
formed higher mAP and mAR than that of baseline.

Second, the comparison is made with 2 cases of the origi-
nal amodal segmentation model. For both cases, refinement
based on shape prior is available, while feature matching is
available for one case. As same as [28]’s experiment, the
amodal segmentation model performed better With the fea-
ture matching method available. However, our model per-
formed significantly better in all the cases when compared
with our amodal segmentation model with U-net. The auto-
encoder-based shape prior refinement performs well with
extracting features among several classes because it stores
them as prior shape knowledge. However, the U-Net seems
to learn more variations in the single class dataset.

4.5. Limitation

The synthetic patch on the complete cucumber shape is
necessary to retrieve morphological information of the oc-
cluded part of the cucumber in our dataset. So, we superim-

Method mAP mAP50 mAP75 mAR
Amodal

Segmentation 35.41 56.03 38.67 37.11
[28]

Amodal
Segmentation 36.50 56.59 40.27 51.66

(UNet)

Table 3: The Comparison of models on COCOA cls dataset

posed this patch to annotated part of the cucumber, and this
turns out that the patch suffers the potential risk of an over-
fitting problem. Further investigation on the use of a syn-
thetic patch to overcome this issue needs to be conducted.

5. Conclusion
This paper proposes a modified amodal segmentation

model that enables autonomous picking robots to recog-
nize and harvest cucumber. In particular, the results show
that adding U-Net based reconstruction network outper-
forms the concept of shape prior embedding in the cucum-
ber dataset. Though using shape prior may work well on
recognizing the objects such as cars and books. Its per-
formance on agricultural product dataset with large shape
variation is still questionable. As such, we propose a U-Net
based reconstruction network to enhance the capability of
the model to predict with fewer constraints.

6. Future Work
The synthetic patches are collected from hundred leaf

images from the training dataset, so there is a potential risk
of overfitting. To prevent this problem, one can collect and
add more patches to the dataset. In addition, as shown in
Figure 6, our amodal segmentation model did not capture
cucumber occluded by the other cucumber because syn-
thetic patches were only made from the leaves. The patches
taking these special cases into account can further be added.

Moreover, cucumber pictures containing incomplete
masks were removed from the dataset. This removal pro-
cess reduced the number of data available for training. The
image of cucumbers with perfect shape will be collected for
better performance and to refine the data quality. The cu-
cumber dataset was taken from three greenhouses located in
Korea. The dataset only contains a single cucumber species,
so other cucumber species will be added to the dataset to en-
hance the model’s generalizability.
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Method Shape Prior Feature training inference
Refinement Matching mAP mAP50 mAP75 mAR time time(sec/img)

Mask RCNN − − 46.84 76.12 49.47 57.229 1 h58 m 0.1409
(ResNet50 FPN)

Amodal Segmentation O O 39.96 63.35 44.08 60.58 2 h22 m 0.1588
(ResNet50 FPN C4)

Amodal Segmentation O X 33.84 61.29 24.368 59.43 2 h21 m 0.1576
(ResNet50 FPN)

Amodal Segmentation − X 47.95 74.09 51.53 57.82 2 h18 m 0.1557
(U-Net/ResNet50 FPN)

Amodal Segmentation − O 49.22 75.11 55.61 59.08 2 h12 m 0.2762
(U-Net/ResNet50 FPN)

Table 4: Inference results and ablations

(A) Ground Truth (B) Mask RCNN (C) Amodal Segmentation (D) UNet + C

Figure 5: Some examples of instance segmentation results implemented by three different models: (B) Mask RCNN, (C)
Amodal Segmentation, (D) UNet + C

merated. Their contributions to this group project are much
appreciated. First, however, we would like to express a spe-
cial thanks to Physical Properties and Process Engineering

of Agriculture Product Laboratory (SNU PHEL) for pro-
viding us a cucumber dataset to conduct experimentation.
In the process, we developed an open mindset towards agri-
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Figure 6: Inference result of cucumber occluded to each
other

cultural data science and hoped to maintain the learned pro-
cess as a cornerstone throughout the remainder of education
and beyond.
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