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Abstract

Generating text conditioned fashion image has promis-
ing impacts in real-world application, since it can assist
people be their own designers for creating a range of fash-
ion clothing for themselves. However, this is a challeng-
ing task as it requires rich understanding of diverse text in-
puts and high-quality image representation ability. Result-
ing models that requires complex architectures, auxiliary
losses, or side information such as object part labels or seg-
mentation masks. Recent approach which autoregressively
models text and image tokens as a single stream of data
and applying self-attention showed great success. In this
work, we apply Generative Adversarial Networks (GAN),
highly compelling image generation model, to autoregres-
sive transformer. In particular, we show (i) effectiveness of
adopting GAN in transformer based fashion text-to-image
generator, and (ii) how to properly train such model by con-
ducting diverse experiments.

1. Introduction

Especially in the fashion industry, trends change very
fast with new designs or patterns come every day in the mar-
ket. In recent years, advanced machine learning approaches
have been successfully applied to various fashion-based
problems such as attribute recognition[57, 17], attribute
discovery[22, 62], recommendation[6, 23, 56], retrieval[21,
1, 2, 3]and human/fashion parsing[5] .

In fact, a large body of literature exists that focuses
on clothing segmentations[24, 31], recognition[?, 37], and
fashion image retrieval[14, 19, 43]. Some other works
have focused on identifying fashion ability[56, 64] or
occupation[59] from the clothing in images. In addition,
some researchers have explored methods for clothing re-
trieval, including within-scenario retrieval [41] and cross-
scenario [42, 43].

According to rising demand in the market, recent re-

search is mostly on image recognition. Still, approach with
text is important especially in the fashion industry in terms
of the characteristics of fashion communication. Actually,
in the age of digitalization, tons of data combined with text
analyzing designs through images is provided. Especially
at the stage of design, tons of detailed pattern and textiles
are important factors separating clothes, which is still a de-
manding issue.

In the same context, recent researches with GAN-based
methods have been developed to deal with text-to-image
synthesis to deal with the generating high-quality issue[53,
5]. Still,such a problem with distinguishing clothes with de-
tailed factor and generating high resolution images has left.

This study proposes a framework to enable high-quality
image representation ability, while keeping the rich under-
standing of text inputs mainly in the fashion domain. In
this study, SOTA T2I methods is applied with GAN based
decoder, dealing with the problem with generation and un-
derstanding of context. As a result, combined with exist-
ing autoregressive transformer which shows great accuracy,
highly compelling image has generated with far more detail.

2. Related Works
2.1. Text-to-Image Generation

Not only can humans easily describe images as text, but
when reading text, humans can easily visually recall the
corresponding image. With the rapid development of deep
learning technology in recent years, it has become possi-
ble to mechanically implement the human visual cognitive
structure. Computer vision research that can take an im-
age as an input and explain the image in text form has been
actively conducted, and has also demonstrated performance
beyond humans. However, research on image generation in-
cluding the field of compositing images from text-based de-
scription called text-to-image(T2I) has been relatively slow.

GAN-based Text-to-Image Generation Meanwhile,
with the advent of Generative Adversarial Networks
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Figure 1. Overview of proposed method

(GANs)[20], research that can effectively generate images
in an unsupervised manner has increased remarkably. It
showed relatively good performance while competing and
learning the two networks, and based on this, it was used
in various fields such as human face synthesis, image
translation and style transfer. Based on this technology,
Reed et al. [52] paved the way for text-to-image research
by presenting a model using conditional GAN using a
pertained encoder. ver the next five years, with the compre-
hensive dataset such as COCO[40], this text-to-image field
has grown rapidly. A text-to-image models were created
through a variety of neural network architectures. In the
early days, studies based on a stacked architecture using
multiple stacked generators have been conducted to create
a high-resolution image with better performance. Zhang
et al.[66, 67] improved the image quality by changing the
model using a multi-scale generator in StackGAN and
StackGAN++, and similar studies such as FusedGAN[7]
and HDGAN[68] were conducted. In addition, there
was also a model using the attention mechanism. Rep-
resentatively, AttnGAN[63] applied attention to text and
images based on StackGAN++ to create a fine-grained
model using words and global sentence vector. Huang
et al[28] and ControlGAN[38] also tried to improve
performance by using an attention mechanism. Methods
such as SD-GAN[65], SEGAN[61], and Text-SeGAN[9]
using Siamese Network, which two branches share and
use model parameters, were also presented, and sentence
and word embeddings were cascaded based on Cycle Con-
sistency under the influence of CycleGAN[69]. Methods
such as MirrorGAN[48] used in the generator structure

were conducted. Based on dynamic memory networks,
DM-GAN[70] receives images and word features, and then
generates high-quality images using memory writing gates.
In addition, textStyleGAN[60], which enables semantic
manipulation based on StyleGAN[33], was developed.

Transformer-based image generation Most text-to-
image models using GAN, but text-to-image models using
other architectures were also suggested. Models using Vari-
ational Autoencoders (VAEs) [36, 51] and Autoregressive
models [27, 45, 44], flow-based models [15, 16, 35], score-
matching networks [29, 32, 58], transformer models[46,
10, 18, 50]. Among these approaches, as transformers
are widely used in the Natural Language Processing(NLP)
field, there has been a growing trend to study the relation-
ship between images and texts using transformers. OpenAI
has developed CLIP[49] that can effectively learn visual
concepts from natural language supervision. Based on this,
a study was conducted to enable text-driven image manipu-
lation, called SytleCLIP[47], using multi-modal embedding
space and semantic similarity between text and image. In
addition, OpenAI released a zero shot text-to-image model
called DALL-E[50] based on GPT-3[8], an autoregressive
language model . Also, by applying the GPT-based trans-
former model to the pixel sequence, OpenAI presented Im-
age GPT[10] which is a high-performance model that can
learn features without domain-specific model architecture.

2.2. AI in Fashion

Image Generation in Fashion Recent research proposes
an approach that will accept text input from the user about

2



the fashion pattern and the model will generate images of
fashion clothing based on the text input[30].Still, generat-
ing images according to natural language descriptions is a
challenging task[55],

In that text to image generation (T2I) model aims to gen-
erate photo-realistic images which are semantically consis-
tent with the text descriptions[39]. The dataset used in this
study is biased to birds and especially in the Fashion in-
dustry, such technology is still insufficient. There is a lack
of research in the fashion industry simultaneously adopting
the image with text understanding[12]. With the approach
to image generation based on text, topics in fashion could
be detailed.

Text-to-Image task in Fashion It is believed that images
evoke deeper elements of human consciousness compared
to text; this is partly due to the age of brain parts that process
visual information[34]. Still in the fashion industry, visual
information is given as combined with text messages.

Text-to-image synthesis is quite an important task which
would allow an artist to design specific clothing prod-
ucts with text information[5]. Unlike conditioning on
attributes[11, 4], the use of text offers more flexibility for
specifying desired attributes for image synthesis[5].

Further, posts can be in various formats, including single
photo, multiple photos, videos,text, text-embedded photos
or text-embedded videos[5]. Fashion is the industry where
value is shared through images and texts, especially from
the user’s point of view, it is important to consider image
and text at the same time. In other words, Synthesizing im-
ages based on text descriptions is an important task.

3. Approach
Our goal is to create fashion T2I model with rich un-

derstanding of diverse text inputs and high-quality image
generation ability. Our work mostly follows the state of the
art transformer based T2I generator DALL-E[50].

3.1. Vector Quantised GAN

Esser et al.[18] recently proposed Vector Quantised
GAN (VQGAN). VQGAN combines the effectiveness of
the inductive bias of CNNs with the expressivity of trans-
formers, enables them to model and thereby synthesize
high-resolution images. VQGAN use CNNs to learn a con-
textrich vocabulary of image, and utilize transformers to
efficiently model their composition within high-resolution
images.

GAN based models are well known for higher image
quality relative to VAE based models in terms of details
in the image. Experiments in Esser et al.[18] shows that
VQGAN with smaller latent size and smaller codebook size
generated sharper image than Vector Quantised VAE (VQ-
VAE). In addition, our experiment results in ?? also shows

that VQGAN has better reconstruction ability in fashion do-
main. Experiments details are in 4.2

Proposed model substitutes VQGAN for VQVAE in
DALL-E fashioned training.

3.2. Decoder-only multi-modal Transformer

In the field of natural language process, encoder only
transformers (e.g. BERT[13] are known for better under-
standing, and decoder only transformers (e.g. GPT[8]) are
known for better generation ability. We followed these find-
ings in our work by applying decoder-only transformer. In
detail, our final model used 8 layer transformer decoder
with 8 attention heads with dimension 64.

3.3. Training Method

Inspired by DALL-E, we applied same 2-stage method.
Overview of proposed method is shown in 1.

In stage 1, train a VQGAN to compress each 256×256
RGB image into a 16 × 16 grid of image tokens, each ele-
ment of which can assume 16384 possible values.

In stage 2, concatenate up to 80 BPE-encoded text tokens
with the 16 × 16 = 256 image tokens, and train an autore-
gressive transformer to model the joint distribution over the
text and image tokens.

In generating stage, use 80 BPE-encoded text tokens as
the input of the transformer to predict the 16 × 16 = 256 im-
age tokens. Decode 16 × 16 = 256 image tokens to generate
image.

4. Experiments

This section evaluates the ability of pre-trained recon-
struction models (sec 4.2), comparison in diverse settings of
training dataset (sec 4.3). Furthermore, in Sec. 4.4 and 4.4
we evaluate our model by providing a quantitative and qual-
itative comparison to our baseline model VQVAE DALL-E.
Finally, in Sec. 4.6 we report other factors regarding the
performance of the proposed model.

4.1. Data preparation

Fashion dataset we used for training[53] contains vari-
ous categories of apparel, including accessories, hat, etc;
total 260,468 images with text-paired data for each image.
On the stage of data pre-processing, extra categories like
accessories and sunglasses, considered as a disturbance in
training overall visual patterns, especially the form of the
apparel, so these images are removed. Also for images,
dataset of given images has a pose diversity, front, back,
side view, etc. We pre-process the dataset to only consider
about the front-view images to prevent the blurred results
after training and to train well with the fixed pose.
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Original DALL-E VQGAN VQGAN 1024
(Pretrained)

VQGAN 16384
(Pretrained)

DALL-E
(Pretrained)

Figure 2. Reconstruction Comparison. Original Images and 5 im-
ages generated by each VAEs which is used for evaluation
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Figure 3. FID (Fréchet Inception Distance) and IS (Inception
Score) of 5 VAEs

4.2. Reconstruction model

A comparative experiment was conducted to enable text-
to-image generation using the VAE model with the best per-
formance. Qualitative and quantitative analyses were con-

VAE FID IS
DALL-E 60.80 3.39
DALL-E (Pre-trained) 12.60 3.52
VQGAN 10.84 3.41
VQGAN 1024 (Pre-trained) 8.97 3.85
VQGAN 16384 (Pre-trained) 6.30 3.80

Table 1. Detailed FID (Fréchet Inception Distance) and IS (Incep-
tion Score) of 5 VAEs

ducted on the images generated by each model using the
images of the dataset. There are a total of five VAE mod-
els used, and they can be broadly divided into two. The
first is the VQVAE-based model suggested in the DALL-
E[50], and the second is the VQGAN[18]-based model. The
DALL-E VQVAE-based model was tested with a model
trained with the prepared fashion dataset along with the ex-
isting pre-trained model. For the VQGAN-based model, a
pre-trained model with codebook dimensionality of 1024
and 16384, respectively, and a model trained with a fashion
dataset were used.

Qualitative analysis is performed based on reconstructed
images by randomly selecting images from within the fash-
ion dataset, and images that can represent each characteris-
tic are shown in 2. First of all, the common point is that they
cannot properly express the shape of the face. The image of
the DALL-E series expressed the shape of the face well, but
it was blurred, and the image of the VQGAN series showed
a distorted shape although the sharpness was high. This
point is well reflected in the overall image, including not
only the face but also the fashion items. In the case of the
dataset trained directly with the fashion dataset, the reso-
lution and size of the dataset are insufficient, so the recon-
struction quality is lower than that of the pre-trained model.
It can be shown experimentally that the pre-trained DALL-E
model shows the overall image characteristics well, and the
detail and sharpness are well represented by the pre-trained
VQGAN model with a codebook dimensionality of 16384.

Quantitative evaluation was performed using Fréchet In-
ception Distance (FID)[26] and Inception Score (IS)[54],
which are mainly used as metrics to evaluate generative
models. IS is a metric that evaluates performance based
on the quality of the generated image and their diversity
based on the entropy of the distribution of synthetic data,
and means the higher the score, the better the performance.
Unlike IS, which uses only generated images, FID evalu-
ates the performance of the generator using the distribution
of real images, and means the lower the value, the better the
performance. The results of using this FID and IS as eval-
uation indicators for the five VAEs can be seen in 4.2 and
3. First, in FID score, it was shown that VQGAN-16384
showed the best performance, and in IS, VQGAN-1024 had
the best score. A characteristic point is that the difference

4



in IS score, considering only the generated image, is not
large, whereas FID showed low performance when manu-
ally trained with the fashion dataset. Based on the qualita-
tive and quantitative analysis results, we selected the pre-
trained VQGAN-16384 model which showed the best over-
all performance for text-to-image generation.

4.3. Data Comparison

First, in this section, we compare the result with varying
the conditions of the data. We set two main variables and
train with other conditions remaining the same. First vari-
able is the categories used in training. Data is firstly divided
into sub-categories: top-wear, bottom-wear, set. Here, due
to the data imbalance matter, set-wear is trained together
with the top-wear data as a unit class. Sub-categories are
also divided into the type of apparel: jeans, skirts, dress,etc.
4 shows the detail composition of the data and text-caption
information given in the data. With training whole ap-

Figure 4. Data composition and example of caption set

parel, due to the massive amount of data which contains the
various information of the apparels, rhetorical information,
such as with pattern, styles is comparatively well-trained.
Only training with one category did not work well when the
number of data is not that large in one category to be well
trained. As an example of result, here we shows the com-
parison among under three conditions: First train with the
whole apparel data, second with bottom-wear sub-category
apparel, third only with one type of apparel data. Result
comparison shows in 5.

Figure 5. Generated images varying caption condition

Second variable is the text caption used in training. From
the data[53] initially two types of text data is given. One
type is a 7-line-length brief explanation of images(detail

caption), and the other is a text file with the name of im-
age(name caption). Figure above 4 shows the example of
comparison of two text files. For training, text caption we
used is varied with below conditions: First, using whole de-
tail caption not pre-processed, second, using only first-line
information of detail caption including style, color, subcate-
gory info. Third, using first line of detail caption with name
caption. The result show in 6. With using whole captions,
text information quite contains excessive information about
the image, even not concerned with a visual form. Espe-
cially in terms of color and styles, third condition, using first
line of detail caption with name caption quite well-trained
on our data.

Figure 6. Generated images varying category condition

4.4. Quantitative results

We evaluate our model using three quantitative metrics.
IS and FID scores are used to evaluate the quality of gener-
ated image. For evaluating the similarity between the input
text and the generated image, we used CLIP score as the
metric. Recent study[25] showed that CLIP, a cross-modal
model pre-trained on web crawled image+caption pair data,
can be used for robust automatic evaluation of image cap-
tioning without need for references. We believe that CLIP
can also be a powerful tool in evaluating T2I models.

For in-dataset text experiments, we sample 5 random
samples from training data. 512 images were generated for
each samples. In total, 2560 images are evaluated. For ran-
dom text experiment, we used 5 texts that are randomly cre-
ated by human. Similar to in-dataset text experiments, 2560
images (512 for each text) are generated and evaluated. De-
tails in sampled and created sentences are in table 3. As
shown in table 2 VQGAN based transformer (ours) showed
better results in all three metrics. As expected, in-dataset
text showed better results than random created texts.
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Figure 7. Generated images, texts are sampled from training data

Figure 8. Generated images, texts are randomly generated from user

4.5. Qualitative results

CLIP score sorted top-3 generated images are compared.
7 shows generated images from training samples, 8 shows

generated images from random sample texts. Same texts in
3 are used to generate images.

Overall, generated images from our model showed much
sharper images where images from DALL-E seem much
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Model (data setting) FID IS CLIP
DALL-E (in-dataset) 80.82 2.27 26.42
Ours (in-dataset) 70.5 2.85 27.45
DALL-E (random) 104.92 2.07 22.85
Ours (random) 90.41 2.56 26.26

Table 2. Quantitative results; DALL-E, OpenAI pre-trained model

Setting Sampled Texts

In-dataset Skinnyfit jeans in deep indigo Dry Twill wash
Relaxed-fit nylon taffeta shorts in pink
Long sleeve waffle-knit cotton pullover in black
Short sleeve t-shirt in blue
Sleeveless jersey knit dress in red
Blue Faded Palm Leaf T-Shirt

Random Dark blue slim-fit narrow leg jean
Light grey with green print slim-fit leather
trouser
Baby-blue long sleeve wool crewnecks
Long-sleeve green shirts with diagonal pattern
Short-sleeve crewneck dress in white

Table 3. Texts used in evaluation

blurry. Unlike the results in 2 quality of images generated
from random created text are not much worse than images
generated from in-dataset texts. This shows that our model
is well generalized.

4.6. Other factors

In efficiency wise, since DALL-E model used 32 X 32
grid latent inference time of DALL-E model was about 8
times slower than our model (using single RTX Titan GPU).

Generated results are quite dependent on input text tem-
plate. In our experiments, IS score varied in range of 0.2
points only by shuffling the order of the tokens. In addition,
original text was not always optimal.

5. Conclusion
In this project, we trained T2I model by applying GAN

to autoregressive transformer. By autoregressively model-
ing text and image tokens as a single stream of data, our
proposed model was able to understand diverse text inputs
and generate fine images. Due to the limited time and re-
sources, our final results are far below our initial expec-
tations. However, our work shows that applying GAN to
transformer based T2I is effective in both quality and effi-
ciency. With enough resources (data, hardware), we believe
that the proposed model have potential to be used in real
world fashion applications like fashion design.

For future work, applying encoder-decoder transformer
to create multi-task multi-modal model may be a great

project. In addition, applying prompt optimization technics
to boost the quality of the generated images will be a fun
project.
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