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1. Abstract
Despite its significant demand in the industries, tree in-

stance segmentation has not been studied extensively ow-
ing to the complexity of tree textures and occlusions one
another. In this study, we proposed a synthetic dataset gen-
eration framework that creates high-quality segmentation
dataset for tree instances. We utilized 3D tree generation
softwares and rendered the tree models into fine-resolution
images with precise annotation maps. We tested and com-
pared two different approaches: pasting by depth infor-
mation, and using pre-defined anchor and the other ob-
jects’ annotation maps. Depth values were not plausible
due to the large noises and discontinuity. Instead, Our sec-
ond approach could produce realistic street scenes with
proper augmentation of tree instances. The bottlenecks were
mostly originated from unrealistic tree instance images and
anchors, and dichotomous occlusion flags (’Front’ or ’Be-
hind’). When we tested the instance segmentation accuracy,
the model trained with our dataset showed better perfor-
mance than the plain dataset, and model segmented precise
boundaries of tree instances.

2. Introduction
For better understanding of visual scenes, the main in-

terest of computer vision has been progressing from ob-
ject classification to more sophisticated tasks, including in-
stance localization and segmentation. Of great significance
and demand, large scale annotation datasets in various do-
mains have been established and released. Each dataset
tackles a variety of classes notwithstanding, they are biased
to a narrow range of objects with rigid boundaries (e.g.,
people, vehicles, traffic signs, etc.), namely ’things’ [14].
Conversely, amorphous objects with indistinct nature, such
as sky, grass, and trees, are considered as ’stuffs’ and seg-
mented as a whole or excluded without proper annotation
(Figure 1) [3, 18]).

Among these natural instances, trees show growing de-
mand to monitor, protect, while properly utilizing the re-
sources they provide. In the field of forestry, there has been

several attempts to detect and segment the individual tree,
using terrestrial or airborne LiDAR [9, 29], RGB-Depth
sensors [30], and high resolution airborne RGB imagery
[12]. However, these sensors are costly, and lacks in poten-
tial to build a large-scale dataset which could be shared and
utilized for tackling more generalized tasks.

Another potential bottleneck for establishing tree seg-
mentation dataset is indeterminate boundary of each tree,
which is exacerbate by occlusion from other tree instances.
Indeed, instance-level manual annotation of trees can be
costly, time-consuming, but most importantly, not pre-
cise. These limitations might have led previous large-scale
datasets containing instance annotation of trees become so
rare. Therefore one of the reasonable approach to build such
data could be using synthetic data. Synthetic data genera-
tion workflows that creates samples in different viewpoints,
illuminations, and different backgrounds would be more ef-
fective, if done properly.

In this study, we aim to propose an automated frame-
work that could produce large scale tree segmentation data
by augmenting pre-existing segmentation datasets of street
scenes. More specifically, our framework will include: syn-
thetic generation of tree instances, rendering RGBA and an-
notation maps, pasting tree images with occlusion, and dis-
crimination between real and synthetic trees in the scenes.
In this report, tree instance generation, rendering, augmen-
tation, and preliminary results on pasting methods are in-
cluded.

We utilize Blender, a 3D modelling software, and its
tree generation add-ons to create and render realistic fig-
ures of trees. Regarding placement of the rendered trees, we
test two distinct approaches: paste-by-depth which consid-
ers depth information to simulate occlusions in real-world
scenes; and paste-by-anchors that pastes trees into manu-
ally drawn anchors in the scene while simulating occlusion
using object annotation maps.
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Figure 1. Sample annotation data from COCO (left) and Map-
illary Vistas datasets (right). Unlike other objects, trees are seg-
mented as a whole, not by individual instances. Image adopted and
modified from [14, 18].

3. Related Work
3D modelling based synthetic datasets. The labourous
and costly nature of manual annotation workflows is widely
known, and recently there have been rapidly increasing
trend to utilize synthetic data within the computer vision
community [23]. Typical approaches to the synthetic data
generation problem could be listed as two distinct methods:
using 3-dimensional objects and rendered scenes, and 2-
dimensional cut-and-paste approach. Method based on 3D
modelling were mainly utilized in several object detection
studies that tackle variety of tasks in [21, 27, 16]. Regard-
ing segmentation problems, several studies have also taken
advantage of synthetic approaches, as virtual indoor scenes
[10, 20], and outdoor scenes [23].

Cut and Paste. As mention above, 3D rendering is widely
used to generate large synthetic datasets[17, 24, 26]. Even
though this method is capable of generating large datasets,
creating 3D models is not a simple task. Rendering a 3D
model from a real-world object requires skillful 3D model
designer, and also is time-consuming [38]. Another draw-
back of 3D rendering methods is that it suffers from the
domain gap problem. Several approaches were proposed to
overcome the domain gap issues [31, 22], but the most cost-
effective manner is using the 2D cut-and-paste technique to
generate synthetic datasets. This approach has been applied
in indoor and outdoor synthetic data generation scenarios in
numerous studies [5, 7, 38, 40, 33].

Tree segmentation with image sensors. Over the years,
the use of aerial image data to detect, classify and separate
individual trees has increased, with the use of Unmanned
Aerial Vehicles in forestry applications[28, 8]. Segmenta-
tion algorithms using three-dimensional (3D) information
provided by light detection and ranging (LiDAR) technol-

ogy have been developed [32, 34, 35]. Research with high-
resolution RGB images and RGB-D images using stereo
cameras have also been proposed[39, 6, 15, 19, 25]. Some
researchers have applied terrestrial image sensors to tree
segmentation [37, 13]. Methods using these imagery are be-
coming cheaper and their application range is growing in
the forestry field. It still takes a lot of temporal and human
resources to build large scale data sets.

4. Proposed Method

Synthetic Tree Generation. To obtain sufficient tree in-
stances with large variation yet realistic figures, tree gener-
ation modules in 3D modelling software were utilized. For
the base modelling software to generate, modify, and ren-
der tree instances, Blender 2.82 was adopted. Then, off-the-
shelf tree generation softwares and Blender add-ons were
utilized. We have listed plausible options for our task in Ta-
ble 1. As described in the table, tree generation tools can be
typified into two categories: parameterized generation, and
library based generation. Among the variety of tree genera-
tion tools, ’the Grove 10’ is a Blender-based parameterized
tree generation add-on, and provides powerful two-staged
growth simulation: branch simulation, and twigs allocation.
Branch simulation supports the growth procedure with var-
ious parameters including the chance of branch split, num-
ber of nodes, lengths, and angles of each branch. It was fol-
lowed by assigning twigs and leaf textures to the branches
with pre-defined chances and sizes. Despite the flexibility
and robustness of producible trees, the add-on required pur-
chase of additional twigs and texture models. Thus, in this
study, library-based generation add-ons were mainly uti-
lized.

Botaniq and Real Trees are tree model libraries, each
containing more than 80 and 20 tree species, respectively.
They include various types of trees including coniferous and
deciduous species, along with seasonal variations that ex-
hibit leaf coloring and leaf fall. As the street scenes in the
target dataset mostly contained deciduous trees with large
crowns, we sampled the most suitable tree instances among
the tree libraries, resulting in 36 unique tree instances. The
process of spawning and rendering each tree model was au-
tomated by a python script applied to the Blender engine.
Rendering was followed by a manual cropping process that
removed any redundant spaces around the trees.

Pre-rendering Augmentation and Rendering. Gener-
ated tree instances were augmented before rendering, using
the following methods: illumination adjustment and cam-
era rotation. Unlike conventional image augmentation ap-
proaches, illumination adjustment directly alters the posi-
tion, color, and magnitudes of light sources and thus pro-
duces totally different image samples from the original one.
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Name Platform Classification Free
Botaniq Blender Library N
Cinema 4d Windows Procedural N
Modular Tree Blender Procedural Y
PlantFactory Windows Procedural N
Real Trees Blender Library N
Sapling Tree Gen Blender Procedural Y
SpeedTree Windows Procedural N
The Grove 10 Blender Procedural N

Table 1. List of 3D tree generation softwares. Among the variety
of generation softwares, Botaniq, Real Trees, and The Grove 10
were considered as the most suitable option for our task. Due to
the lack of resources, we only tested library based add-ons in this
project.

Considering that the figures of tree vary significantly de-
pending on the angle of view, camera rotation was applied
to produce image samples that cover 360° degrees. 3 differ-
ent light source conditions and 6 different rotation angles,
with 60° degrees interval, were applied. Then, final render-
ing was performed by adopting and modifying python mod-
ules developed by [36], with the following settings: RGB
image, and two annotation rendering of instance and depth.

Post-rendering Augmentation. Using the rendered im-
ages of single tree instance, data augmentation of rendered
output was performed. First, object size resizing was per-
formed. The background-subtracted object size was cal-
culated by using the contour information of the image.
OpenCV was utilized to find the contour of binary image
of each tree instance and resize each instance. Resizing was
followed by object merge which generates occluded trees
from the tree instances. We could merge several objects to
create more complex synthetic images (Figure 2). These
techniques have been used in [5, 7] to generate synthetic
training datasets. We used another OpenCV program to
combine two or more instances in a background-subtracted
image. CityScape test dataset were utilized as background
images and were randomly pasted object-merged images as
the final stage.

Cityscapes Dataset. After numerous trial-and-errors, our
finalized approach to create synthetic dataset was to ap-
ply augmentation of tree instances to the pre-existing street
scene datasets with instance annotations. Among the vari-
ety of datasets, Cityscapes were adopted [4]. The dataset
contained precise annotation maps of a sufficient number
of classes (30 classes; including people, vehicles, construc-
tion objects, and also vegetation but annotated as a whole).
However, it was challenging to cope with the scenes that
already contained a large proportion of vegetation (Figure
3), and required much labor to delineate and annotate each

Figure 2. Resized and merged objects. Each tree instance was
resized using contour informations and merged to reproduce oc-
clusion effect.

tree instance. In this project, we filtered out scenes that con-
tained only a small proportion of vegetation and augmented
the scenes with our rendered tree instances. Only images
that contained vegetation less than 2% were filtered, which
gave 394 images in total.

Figure 3. Sample scenes that contained large vegetation. Tree
instances were highly occluded one another, resulting in complex
textures that were challenging to delineate.
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Paste by Depth. In order to synthesize the occluded tree
image using the cut and paste method, the depth value for
each object in the background images was required. Some
public datasets such as CityScape [4] and UASOL [1] pro-
vide both depth and RGB data. We separated the image by
removing pixels with a threshold value in the depth map.
The previously created tree object images were pasted to
the separated image, and the removed part was recombined
to generate occlusion at a specific depth level as shown in
the Figures 4 and 9. Dense depth maps without missing val-
ues are required for the image separation process. The dense
maps could be approximated using annotated objects [11].
The depth level and position of the tree object was deter-
mined randomly, and the tree was resized again using the
background object according to the depth. The synthesized
result will be labeled whether it is natural or not, and learned
through a CNN model in our future works.

Figure 4. Flowchart of paste by depth approach. Using the base
RGB and depth image, we first thresholded the images by depth
and separated into different layers. The occlusion was simulated
by overlaying the layer with smaller depth onto the synthetic tree
instance.

Paste by Anchors. We proposed another pasting method
that we called ’Paste by Anchors’, a three-staged image syn-
thesis procedure that includes (1) manual annotation of an-
chors, (2) placement and resizing tree instances to match
each corresponding anchor, and (3) cut-out regions that
are overlapped with pre-existing objects in the scenes. An
openCV-based annotation tool was implemented that can
easily draw the anchors in the scene and save them as json
objects (Figure 5. As shown in the Figure 5, anchors for
each tree were manually drawn, and marked as ’Front’ or
’Behind’ which tells whether the tree should be masked
with the occluding objects or not. Then, tree instances were
randomly sampled from the 36 unique tree images (Pro-
posed Method, Synthetic Tree Generation), and were placed
and resized to match the location and the size of each corre-
sponding anchor. It was followed by cut-out process, which
masked out the regions in trees that occlude with the other
objects (e.g., people, vehicles, poles, traffic signs). This

cut-out process was performed only when the anchor was
marked as ’Behind’.

Figure 5. Demonstration of anchor annotation process. Each
anchor was defined as 5 points: two points that consists vertical
range of tree (blue), another two points of horizontal range (red),
and the last point that indicates the lower end of the crown.

Instance Segmentation Model. To generate the tree seg-
mentation model, we used a state-of-the-art real-time in-
stance object segmentation model called YOLACT(You
Only Look at Coefficients) [2]. YOLACT breaks instance
segmentation into two parallel tasks, (1) generating a set of
prototype masks and (2) predicting pre-instance mask co-
efficients. And then produce full-image instance masks by
linearly combining the prototypes with the corresponding
mask coefficients. They claim that the YOLOCT can reach
30fps even when using the ResNet-101 backbone and gen-
erate high-quality masks compared to the FCIS and Mask
R-CNN approaches. We trained all models with the batch
size of 32 on a single RTX 3090 GPU using ResNet-50
as backbone and ImageNet pre-trained weights. The model
consists of the original CityScape dataset class list, which
contains 35 categories. In the CityScape dataset, trees are
labeled as vegetation class. We trained with SGD for 8,000
iterations at a learning rate of 103 and a momentum of 0.9.
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5. Results and Discussion

Synthetic Tree Generation. Tree instances were gener-
ated with large variety of species, branch and crown shapes,
and illuminations (Figure 6). Despite the parameterized
tree generation module, The Grove 10, could produce new
tree instances consistently, the available types of twigs and
leaves were limited to a small number, resulting in tree li-
brary modules providing the better output. After rendering
with built-in render engines in Blender (e.g., Cycles, and
Eevee), highly realistic tree instances with corresponding
annotation map could be produced (Figure 7). As shown in
the figure, high-resolution RGB and depth images were gen-
erated which could be pasted directly into any backgrounds.

Figure 6. Tree instances generated from the add-ons. Tree in-
stances with variety of species, shapes, and color were generated.

Figure 7. Render output with different settings. Images on the
left, middle, and right represents the rendered results of instance
annotation, RGB, and depth map, respectively. Instance annotation
map was rendered as a very dark images as the pixel values were
assigned as one.

Paste by Depth. We tested our method of pasting ren-
dered tree objects into existing datasets, especially with
depth information. As shown in Figure 9, pasting by depth
generated occluded tree instances with the objects in the
scenes. We also considered and calibrated the size of tree
instance image using the depth information. Here, we found
several limitations in our current approach. First, discontin-
uous quality of occlusion was shown owing to the sparse
nature of depth map. As the source depth map was not con-
tinuous (Figure 9), the cut-out regions were also not even,
resulting in large noises in the occlusion. Hence, the other

variables for pasting the objects should be considered, in-
cluding position, color space, rotation, and light condition.
As shown in the figure, the color and brightness of pasted
tree instance did not matched with other instances in the
same scene.

Paste by Anchors. As mentioned in previous section,
Proposed Methods, Paste to Anchors, we created our tree
segmentation dataset by pasting tree instances to Cityscapes
dataset and generated fine-resolution annotation maps in-
cluding trees. Figure 8 shows the output scenes using our
synthetic generation framework. As shown in the figure,
our proposed method successfully created realistic scenes
with ready-to-use annotation labels with precise boundary.
Hence, utilizing the annotation polygons of pre-existing ob-
jects (e.g., vehicles, people, traffic signs) gave more rea-
sonable occlusion effects to the tree instances. However, as
shown in Figure 10 that shows some unrealistic output re-
sults, it was mostly originated from (1) unrealistic tree in-
stance images (color, shadows, and textures), (2) faulty an-
chors with excessively small sizes, (3) dichotomous occlu-
sion effects (could not placed in the middle of two objects).
These limitations can be improved by utilizing procedural
tree generation softwares, assigning more realistic anchors,
and adding some occlusion rules that reflects more realistic
relationships between the occluding objects.

Instance Segmentation Performance. Due to the limita-
tion of time, we could not test and compare different mod-
els. We trained our dataset with 8,000 iteration and com-
pare results with original cityscape dataset vegetation class
mean average precision(mAP). Our dataset got 39.74% and
38.06% mAP for mask and bounding box respectively.
Hence the cityscape dataset only achieved 20.81% and
27.23% mAP for mask and bounding box respectively. In-
ference results of the YOLACT model is shown in Figure
11. In the figure, the model could delineate boundaries of
each tree with high precision, including the trees that were
not synthesized but already existed in the original scene.
However, it seemed to show more errors especially when
delineating the occluded trees, and the vegetation in the far
background (which is actually forests or mountains rather
than ’trees’). Hence, there are also possibility that the model
might have overfit to the exact shape of 36 tree model im-
ages. In future works, we will create the dataset with hav-
ing much variety of tree instances, and test the robustness
in real-world conditions.

6. Conclusion
In this study, we have generated 3D tree models and ren-

dered them into fine-resolution images with precise anno-
tation maps. Regarding the placement of the trees, depth
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Figure 8. Synthecized Cityscapes scenes. Original Cityscapes scenes that contained vegetation less than 2% were augmented using the
rendered tree instances. Each tree instance were resized to match the size of pre-defined anchors (Proposed Method, Paste by Anchors),
which was followed by brightness adjustment and blurring with bilateral filter. Each six images on the top, bottom left, and bottom right
represents the synthesized scenes, original scenes, and generated annotation maps, respectively.
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Figure 9. Sample outputs produced by paste-by-depth. Images
above represent the depth map of each scenes, and images below
show the occluded output generated by paste-by-depth method.
Sparsely recorded data of source depth maps resulted in noisy
occlusion in the final output. High-resolution figure is hosted on
figshare, doi.org/10.6084/m9.figshare.14562684.v1

Figure 10. Samples of unrealistically synthesized scenes. It was
mainly due to mismatching textures and colors, small anchors, and
unrealistic occlusion owing to the dichotomous occlusion flags.

Figure 11. Final inference results. YOLACT was utilized, and
was trained with 8,000 iterations using our dataset.

values were not suitable for our task owing to the exces-
sive noises and discontinuity. Instead, we proposed a three-
staged approach, which uses pre-defined anchor location to
paste and scale the tree, and then cuts out the occluding re-
gions with pre-existing objects in the scene. Our proposed
methods could produce realistic street scenes with proper
augmentation of tree instances (Figure. 8). However, the
current approach had apparent limitations as follows: lim-
ited to the scenes with less vegetation, disparity with the real
trees in terms of color, texture (shadow, simplified crown
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shapes), and complicated occlusion with different level of
orders (Figure 10). The segmentation performance was im-
proved using our dataset, and the trained model seemed to
delineate exact boundaries of tree instances.
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