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Abstract

Sign languages use multiple and channels including ges-
ture by hand, pose and facial expressions in communica-
tion. These are hard to take account in computational Sign
Language Tranlstion(SLT). To solve this problem, multi-
ple models, encompassing seq2seq and transformers had
been widely proposed. In this paper, we tackle the SLT
problem with aid of pretrained 3D convolution neural net-
works(CNNs) without any aid of bridging representations.
We used RWTH-PHOENIX 2014 T dataset, one of the
most commonly used dataset encompassing sign language
videos, aligned transcription, and translations. Currently,
the state-of-the art result of SLT task in this dataset demon-
strates a BLEU-4 score of 13.41, with an end-to-end fashion
training. In this paper, we propose a model with compa-
rable performance of state-of-the art(SOTA) models with a
BLEU score of 11.2, but with parameter size less than 1/5.

1. Introduction
Sign Languages are the primary communication medium

of the Deaf. Sign Languages are distinct language sys-
tems which convey information through hand shape, facial
expression, upper body posture, etc. Generally, sign lan-
guages are developed independently of spoken languages
and have different linguistic rules compared to those of spo-
ken languages. Hence, converting sign language and natural
language one to another is an important task to bridge com-
munication gaps with the deaf people. There have been var-
ious approaches to interpret sign video sequences into nat-
ural language text. This, especially Sign Language Recog-
nition (SLR) or Sign Language Translation (SLT) is a chal-
lenging task in the field of computer vision since it involves
interpreting several visual information such as body move-
ments, facial expression into linguistic information.

Early works had focused on SLR approaches to interpret
sign language into natural language. SLR methods mainly
regards this task as a gesture recognition problem with the

assumption that there exists one-to-one mapping between
sign language and spoken language. Early works in SLR
mainly focused on using hand-craft features with statisti-
cal modeling. More recently, extracting features from video
with deep-learning method have achieved breakthrough in
the field of continuous SLR. However, as we can see in
Figure 1, when interpreting sign language glosses into spo-
ken language, linguistic and grammar characteristics such
as sentence length and word order are significantly differ-
ent. So, it is challenging to precisely align sign language
into spoken language with existing SLR methods.

As such, there have been Sign Language Translation ap-
proaches aiming at full translation dealing this task with an
aspect of machine translation because one-to-one mapping
between sign language and spoken language does not ex-
ist. Conceptual video-based methods were introduced in
early SLT works. Recently, end-to-end approaches were in-
troduced using attention-based Neural Machine Translation
(NMT) models [4].

The biggest obstacle of video based continuous SLT
research has been lack of suitable datasets to train mod-
els. Recently, Camgoz et al.[4] released the first continu-
ous SLT dataset containing video segments, gloss annota-
tions and spoken language translation, RWTH-PHOENIX-
Weather-2014T (PHOENIX14T), which comprises glosses
of popular SLR dataset RWTH-PHOENIX-Weather-2014
(PHOENIX14). The authors also approached translation
task as a NMT problem, namely Sign2Text approaching
the end goal of SLT without going via gloss annotation,
Sign2Gloss2Text extracting gloss sequence (Sign2Gloss)
and then approaching the task as a text-text problem
(Gloss2Text).

More recently, d, Li et al. [15] focused on Sign2Text
problem, namely TSPNet. By using features learned from
video segments which encodes both spatial and temporal
features with semantic hierarchical structure, TSPNet cap-
tures temporal information in sign gestures and has in-
creased the BLEU-4 score from 9.58 [4] to 13.41. Camgoz
et al. [7] proposed an end-to-end transformer based archi-
tecture jointly learning sign language recognition and trans-
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Figure 1. Difference between CSLR and SLT [4]

lation which is the current state-of-art on PHOENIX14T,
namely Sign2(Gloss+Text). The authors used gloss anno-
tations to train transformer encoders to learn spatial rep-
resentation for SLT named Sign Language Recognition
Transformers (SLRT) and then autoregressive transformer
decoder named Sign Language Translation Transformers
(SLTT) exploits this representation learned by SLRT in-
creasing the BLEU-4 score from 9.58 [4] to 21.80[7]. How-
ever, as they are already transcription-guided, we aim to
achieve comparable sign translation accuracy with current
SOTA models, with relatively few parameters. In this point
of view, we focused on optimizing translation model based
on seq2seq with attention.

2. Related Works
2.1. Sign Language Recognition Models

The researches in SLR have been developed for decades,
from sign segmentation to end-to-end sign language transla-
tion. They are divided by two main goals: Recognition and
translation. The goal of sign language recognition is to de-
tect and locate the signs so that the systems understand the
information that sign language videos deliver. The goal of
the latter is to translate sign language into natural language.

Initial works in SLR had focused on recognizing isolated
sign gestures [17, 9, 19, 23]. Beyond recognizing only iso-
lated signs, continuous SLR (CSLR) has emerged in order
to apply to real-life signs. The studies have focused on rec-
ognizing sign glosses. However, such SLR using glosses
have limitations since glosses, even manually provided by
experts, can represent only a few frames in sign videos com-
pared to actual actions involved in sign languages. With
such failure of utilizing only glosses, other feature extrac-
tion methods have developed in SLR to extract visual in-
formation from sign videos. Recently, convolutional neu-
ral networks (CNNs) [21, 22] or pose estimation technique
[12, 8] have been widely used as feature extractors.

2.2. Sign Language Translation Models

The research in sign language translation (SLT) is chal-
lenging because sign languages have their own grammati-
cal and semantic structures. Sign language and natural lan-

guage cannot be converted to each other as one-to-one map-
ping. The models which generate spoken language from
sign videos in an end-to-end manner are called Sign2Text.
Glosses could also be used as an intermediate representa-
tion in SLT research; therefore, to reach the end goal of
SLT, one may go through two consecutive steps, Sign2Gloss
and Gloss2Text. The CSLR models are used for the first
step, Sign2Gloss, and the output of the CSLR models are
used for text-to-text translation, which is the second step
Gloss2Text.

Camgoz et al. [4] achieved the translation process
without glosses, using attention-based NMT. Their work
was the first end-to-end learning which enabled deriving
text from the sign videos. The results showed that, since
Sign2Text networks had problem of long term dependen-
cies, Sign2Gloss2Text networks resulted in better perfor-
mance than Sign2Text networks. Subsequently, Camgoz et
al.[7] used similar attention-based encoder-decoder archi-
tecture and supplemented it by adding Positional Encod-
ing to Word and Spatial Embeddings. Despite the high
performances of [4] and [7], they lose temporal informa-
tion among the frames. In that context, Yin and Read
[24] achieved state-of-the-art performance using Spatial-
Temporal Multi-Cue (STMC) Network. They obtained
quality tokenization by translating ground truth glosses and
the Sign2Gloss2Text task using STMC-Transformer was
followed by Gloss2Text experiment. Although the perfor-
mance of Sigh2Gloss2Text surpassed that of Gloss2Text in
this study, gloss annotations seem to play a critical role as
intermediate representation in SLT.

On the other hand, Li et al. [15] used video features in
Sign2Text network instead of gloss annotations. The video
features were extracted with 3D-CNN I3D as video segment
representation. This approach improved capturing temporal
information of sign videos. In the current study, we ap-
ply the encoder-decoder architecture, substituting the spa-
tial embeddings for 3D-CNN features.

3. Embeddings

3.1. Video Embeddings

We consider the SLT task as a machine language trans-
lation task, and designed a model which receives visual
features of the given videos as inputs, and returns a se-
quence of sign language, translated to plain text. To fully
utilize the advantage of multiple visual clues, it is possi-
ble to append a simple CNN under the encoder layer and
obtain features. However, it cannot learn temporal clues
that are expected to be useful in translation. As we tar-
get to learn from spatio-temporal features extracted from
the whole video, we decided to use 3D CNN models that
can learn both spatial and temporal features and summa-
rize within a small dimension. Visual features were first
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Figure 2. The overall encoder-decoder structure. Numbers of layers of both encoder and decoder are the same. The entire output of the
encoder and the entire hidden state joins in the attention process.

extracted from the last few layers of pretrained 3D CNN,
with temporal span of 16 frames. In the first step, we tried
to use I3D[5] to extract features. But as the original model
was only trained from the kinetics dataset, we utilized the
open source from TSPNet[15]. Here the authors fine-tuned
only the last layer with their WLASL[14]dataset, a word
level sign language dataset. The final feature outputs have
dimension of 1024, and expected to learn meaningful data
from the given frames.

3.2. Word Embeddings

PHOENIX14T dataset supports video frames and video-
wise translations. Every word in the translation text cor-
pus was transformed into one-hot vectors and then projected
in 512-dimension embedding space by a linear embedding
layer. We also tried to exploit word vectors from fasttext[3],
a pre-trained language model which incorporates subword
tokenizer. However, to cover rare words, the size of the lan-
guage model have to be excessively large and makes it dif-
ficult to restore a complete text from the vector sequence.
Thus, we embed word vectors from scratch and trained in
an end-to-end fashion to prevent such problems.

3.3. The Dataset

We trained our model using PHOENIX14T dataset[13],
a sign language video with translation and aligned
glosses(sign annotations) comprising one or multiple sen-
tences. Translation of all videos contains one or more sen-

tences, forming a text corpus with 2887 unique words and
gloss corpus with 1066 unique sign words. The size of the
dataset are each 7069, 642, 519 for training, test, valida-
tion set. Before training, video length over 314 frames were
truncated, as this length results a length of 150 after extract-
ing features. Videos which have shorter length than this
were zero-padded after the final frame. This was possible
since only 24 videos over 7096 in the training set exceeds
this threshold. Therefore the loss from the error by omitting
frames could be much smaller than the risk of the vanishing
gradient when we set the length of our model as the maxi-
mum length of the training videos.

4. Implementation details and Results

Framework and Architecture : We used Tensorflow
[1] to build our network. To test whether Seq2Seq mod-
els are able to learn from video features, we started from
a similar model as Camgoz et al. [4] did. 2 to 4 layers
of RNN, either LSTM [10] or GRU [6] are stacked in both
the encoder and the decoder, and the encoder was tested in
a bidirectional or in a unidirectional structure as shown in
Figure 1. To obtain output tokens using the overall context,
we applied bahdanau attention [2] between the encoder and
the decoder. After passing through a linear layer which re-
turns the softmax score of our given words in the corpus,
beam search was applied to obtain the full text of the sign
language video as well as to maximize conditional proba-
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bility of the entire text.
Learning Rate and Optimizer :All training processes

used piecewise constant learning rates that decays halfway
with predefined boundaries with the initial learning rate of
5e-3 to 5e-5. Adam optimizer [11] was used for the mini-
batch gradient descent [16], using categorical cross entropy
as a loss metric.

Training Protocol :We evaluate the model changing
batch size from 8 to 64, and applied Xavier initialization
in every layer to achieve fast training. Every layer has a
dropout rate of 0.2 to alleviate overfitting of the model. Af-
ter training 12 epochs and when the loss becomes relatively
flat, early stopping was applied to retrieve the trained model
before overfitting occurs.

Evaluation :To evaluate the quality of translation, we
used BLEU [20] score metric for every model with the pre-
dicted translations of the test dataset.

4.1. The Encoder-Decoder Layer

We optimized the encoder-decoder structure in three
ways. By the direction of state propagation(i.e. whether
the model is unidirectional or bidirectional) in the encoder
stage, numbers of the layer, and the type of the RNN
cell(whether the used cell is LSTM or GRU). We observed
that unidirectional structure with shallow layers are more
suited for encoding the given spatio-temporal feature. This
maybe due to the excessively large model complexity of
former deep layer structures, as the input features contain
meaningful information on itself. As we expected, the most
prominent performance was found from the two layer uni-
directional GRU structure.

Hereafter, Video features and word embeddings are no-
tated as zi, gi each, and the outputs of the encoders are no-
tated as oi while superscripts represents from what layer is
this output from, and subscripts represents sequence num-
bers. The encoder and decoder were both set up to have
every hidden size of 512, and have the same layer num-
bers, while the sequence lengths are set to be 150 and 50
each. This is due to the high variation of sequence length
in our dataset, and to alleviate gradient vanishing. Detailed
explanation of comparison results will be provided in the
following sections.

4.2. Attention mechanism

Attention mechanism was applied with the encoder out-
puts and decoder hidden states in every experiment. The
attention layer performs bahdanau attention between every
encoder outputs oj∈[1:2]

i∈[1:N ] and specific decoder hidden state

h
j∈[1:2]
t . First, the outputs of the encoder stage from each

layer are concatenated to a vector notated asO1:N , and form
a weighted sum of the source sequence, which will provide
us a vector for the representation of the encoder. This is

notated as α(t), which will be constructed as

αt =

N∑
i=1

γi(t)Oi (1)

where γi is defined as the attention score expressed as,

γt =
exp(score([h1t ;h

2
t ], Oi)∑N

i=1 exp(score([h
1
t ;h

2
t ], Oi)

(2)

and the score function is defined using the expression in [2].

score(A,B) = V T tanh(W [A;B]) (3)

at = tanh(Wc[αt; (h
1
t ;h

2
t )]) (4)

where W and V are parameters to be learned. Finally, to ob-
tain the context vector or the attention vector a in equation
(4), we again concatenate the hidden states in each layer
of a certain timestep with the encoder representation, and
project it into a smaller dimension. Here, the output dimen-
sion is equal to the dimension of Oi.

After the attention layer, we pass the attention vector at
to a fully connected layer with softmax activation to get the
probability map of unique vocabularies in our dataset. The
index with the maximum probability will be the number of
output vocabulary token at timestep t. We basically apply
greedy search to predict the whole sentence, using only the
token with maximum probability. However, greedy search
does not always guarantee the maximum conditional prob-
ability of our output sentence. To maximize the prediction
score, beam search was also used, beam search with beam
width of k was used, utilizing tokens with top-k probability
for every timestep.

4.3. Evaluation Metric

As mentioned above, we used BLEU score [20] as the
metric of translation performance. BLEU is widely adopted
in the domain of machine translation between one or multi-
ple languages, as it takes into account the order of retrieved
sequence as well as the numbers of the correct word tokens
using N-grams. We report BLEU-1,2,3,4 scores of the best
performing model to compare our models directly with pre-
vious works.

4.4. Quantitative Results

4.4.1 Unidirectional vs Bidirectional

We evaluate categorical cross entropy loss and BLEU-4
score of the generated translation using the test dataset to
compare performance of unidirectional and bidirectional
layers using LSTM cells. As shown in Table 1, unidirec-
tional networks outperforms in both loss and BLEU score
metrics. This maybe attributes from the nature of 3D con-
vnets, which already encompasses spatial and temporal fea-
tures, such that bidirectional structure halts the encoding of
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the temporal cues from the features. Hence, the effects of
depth or kind of the cell are evaluated using only the uni-
directional structure. From here, we set the batch size and
the initial learning rate as 32 and 5e-3, dropout rate as 0.2.
Every loss and BLEU scores are from the test dataset.

4.4.2 LSTM vs GRU, and Layer Depth.

Table 2 lists the overall loss and BLEU-4 score from the
test dataset with our trained models. As shown in our re-
sults, GRU-based Neural Nets(NNs) greatly outperforms
the LSTM-based NNs, and shallower layers were more ef-
fective in translating video features. Therefore, we can con-
clude that the reduced number of parameters of GRU cell
reduced overfitting and make the training more effective.
Using only one layer could be another choice, but we ob-
tained no meaningful results with a single layer seq2seq
structure, with a drastic BLEU-4 score of under 4. This im-
plies that the features itself requires substantial model com-
plexity, which we could question about why deeper mod-
els over 2 layers could not give us a notable performance.
Therefore, investigating about the gradient vanishing prob-
lems of deeper models seems to be crucial to understanding
these phenomena.

(Direction, Num-
ber of layers)

Loss BLEU-4 score

(Uni, 4) 0.8751 7.3820
(Bi, 4) 0.9214 5.9701
(Uni, 3) 0.8310 8.0963
(Bi, 3) 0.8998 7.0312

Table 1. Loss and BLEU-4 score with the propagation direction of
the hidden state. LSTM cells were used for this experiment.

(Cell type, Num-
ber of layers)

Loss BLEU-4 score

(LSTM, 4) 0.8751 7.3820
(LSTM, 3) 0.8310 8.0963
(LSTM, 2) 0.8081 8.8011
(GRU, 4) 0.8705 8.0356
(GRU, 3) 0.8322 8.9327
(GRU, 2) 0.7971 10.261

Table 2. Loss and BLEU-4 score with different RNN cells and
layer depths. Using 2 unidirectional GRU structure outperforms
Sign2Text translation of [4].

4.4.3 Effects of Batch Size

Huge batch sizes consumes less time in training, also gen-
erally good in finding the local minimum. However, as we

are handling large but noisy datasets, updating gradient with
large batches can increase risks to fall in through the local
minimum. Therefore testing the model with various batch
size is important in optimization, and as shown in Table 4,
smaller batch sizes really do outperform models that trained
with larger batch sizes. This is also consistent with Masters
and Luschi(2018)[18] who quantitatively examined about
the effects of smaller batch size. In this experiment, we
used learning rate of 5e-5 to slow the update as to pre-
vent the model to be overfitted in some easy clues in the
early training phase. As the final outcome, 2-layer GRU
models trained with batch size of 8 demonstrates the best
performance, 2.15 lower BLEU-4 score than TSPNet[15],
but 1.68 higher than the former seq2seq based Sign2Text
model[4]. The comparison between examples from ground
truth translation and predicted translation from the best per-
forming model are listed in Table 3.

GT: und nun die wettervorhersage für morgen dienstag den neun-
zehnten april
( and now the weather forecast for tomorrow, Tuesday the
nineteenth of april )

Ours: und nun die wettervorhersage für morgen dienstag den
achten mai
( and now the weather forecast for tomorrow, Tuesday, the
eighth of may )

GT: am sonntag im nordwesten eine mischung aus sonne und
wolken mit einigen zum teil gewittrigen schauern
( on sunday in the northwest a mixture of sun and clouds with
some thunderstorm showers )

Ours: am sonntag im norden und westen einige schauer und kurze
gewitter
( on sunday in the north and west some showers and short
thunderstorms )

GT: im westen ist es freundlich
( in the west it is friendly )

Ours: sonst ist es recht freundlich
( otherwise it is quite friendly )

GT: am sonntag ziehen von nordwesten wieder schauer und ge-
witter heran
( on sunday, showers and thunderstorms are approaching
again from the northwest )

Ours: am sonntag regnet es gebietsweise im flachland regnet es
( on sunday it rains in areas in the lowlands it rains )

GT: vom südwesten bis in die mitte bleibt es meist trocken
( from the southwest to the center it usually stays dry )

Ours: im übrigen land bleibt es weitgehend trocken
( the rest of the country remains largely dry )

Table 3. Generated translations from our best performing models.
(GT: Ground Truth, Ours: Predicted Sequence)

4.5. Comparison with our target model

CSLT can be achieved with various training methods,
such as employing intermediate representations(gloss), or
extracting human keypoints from the source video. Unfor-
tunately, due to the low resolution, extracting meaningful
keypoints were not an option. Hence we focus on direct
translation from the video features, named as Sign2Text by
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Batch size BLEU-1 BLEU-2 BLEU-3 BLEU-4
8 30.57 19.92 14.41 11.26
16 27.86 18.80 14.03 10.77
32 26.44 18.72 13.50 10.26
64 26.28 17.92 13.14 10.09

Table 4. BLEU scores of the predicted sentence of the training dataset, with different batch size in training. The structure is the same with
the one used in Table 2.

Model Architecture BLEU-1 BLEU-2 BLEU-3 BLEU-4 Num. of parameters
TSPNet[15] Transformer 36.10 23.12 16.88 13.41 76.2M
S2T[4] Seq2Seq 32.24 19.03 12.83 9.58 26.4M
Ours Seq2Seq 30.57 19.92 14.41 11.26 14.5M

Table 5. BLEU scores, structures and numbers of parameter of compared models. Interestingly, our model generated sentences that are less
accurate in word level, but more likely to form a correct N-grams with N greater than 1.

Camgoz et al.(2018)[4]. Nevertheless, we succeeded in per-
forming beyond the previous model[4], with less numbers
of parameters. Moreover, we could reach similar perfor-
mance with feature based transformer model[15] with only
14.5 million parameters, nearly 1/5 of the cited paper. The
results of each baseline models of feature-driven translation,
their architectures, BLEU scores, and numbers of parame-
ters are listed in Table 5. Ours even show relatively small
variations in BLEU scores, which is thought to be our model
had catch the whole context of the given video, leading rel-
atively large error rate in word level(BLEU-1), but a more
accurate predictions in 2 to 4-gram sentences.

4.6. Further Improvements

We constructed a transformer model which inputs are
video embeddings from pretrained I3D model with 3 dif-
ferent span lengths, and outputs are translated text. Due to
the pipeline error, we could not make any improvements.

5. Conclusion and Future works

We proposed a model which has relatively small num-
bers of parameters but comparable with leading feature-
based translation models. As the inputs are ’video words’
from a pretrained 3D CNN model, encoding and decoding
such well-refined summary needs relatively shallow layer
depth. This is consistant with the results using GRU were
better than when using LSTM as our RNN cell. However,
using only one layers could not get a notable performance,
as the model could not learn complex representations of the
given dataset, or due to the insufficient parameters of the
attention layer. Batch size was also a crucial factor towards
a more effective training. Results from it reveals us the im-
portance of smaller batch size, contrary to numerous studies
that had been conducted in the field of computer vision.

There also exists problems about achieving fully video-
driven end-to-end SLT, since we still need pretrained mod-
els before we train our translation model. End-to-end train-
ing is also a problem. To handle this problem, most of
the current the-state-of-the-art approaches in the field of
SLT exploits Transformer based architecture which can re-
solve limitations of Seq2Seq models such as poor paral-
lelization and gradient vanishing. Since we achieved com-
parable accuracy by optimizing Seq2Seq, we expect using
well-optimized Transformer models could lead to further
improvement.

Including gloss level annotation as a ’bridge’ rep-
resentations in the training process(Sign2Gloss2Text)
demonstrated better performance compared to Sign2Text
approach[4, 7]. Unfortunately, many approaches of
Sign2Gloss2Text are difficult to train a end-to-end man-
ner as required parameters are way larger than Sign2Text
models. One possible extensions we can make to achieve
state-of-the-art results in Sign2Text is to exploit custom 3D
CNNs for the feature extraction. Applying this is expected
to reduce the dependency of glosses as they could catch
complex features both in the spatial and temporal domain
at the same time. This is also consistent with our results
that 3D CNN based feature-driven models outperform for-
mer 2D-CNN linked models. Also, since there is no guar-
antee for the maximum conditional probability obtained by
greedy search in the decoder. We expect that better re-
sults can be obtained by applying beam search and opti-
mizing beam width as to find the most probable translation
of the given video. Linking video CNNs, Transformers, and
HMMs will be our next step of this work.
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