
VvsS-Net :
Image-to-Image Retrieval with Controlling Visual versus Semantic Similarity

Seongeun Lee
Seoul National University

ryuha96@snu.ac.kr

Eunseok Yang
Seoul National University

mayth24@snu.ac.kr

Jonghyeon Seon
Seoul National University

sunutf@snu.ac.kr

Abstract

Image retrieval has been studied in two approaches, with
visual similarity and semantic similarity. As image searches
are carried out in various fields and situations, searching
under a single criterion has a limited ability to respond flex-
ibly to user intentions. We proposed a model that allows
users to freely adjust their weight according to their pur-
pose by considering both perspectives and meanings and to
search flexibly according to the user’s intention. We also
show that a similarity based on human-annotated region-
level captions is highly correlated with the human ranking
and constitutes a good computable surrogate. Following
this observation, we learn a visual embedding of the im-
ages where the similarity in the visual space is correlated
with their semantic similarity surrogate. Finally, our model
can consider both visual and semantic factors at the same
time, so that the ranking can be determined according to the
user’s purpose.

1. Introduction

The task of image retrieval aims at, given a query image,
retrieving all images relevant to that query within a poten-
tially very large database of images. This topic has been
heavily studied over the years. Initially tackled with bag
of-features representations, large vocabularies, and inverted
files [31], and then with feature encodings such as the Fisher
vector or the VLAD descriptors [14], the retrieval task has
recently benefited from the success of deep learning repre-
sentations such as convolutional neural networks that were
shown to be both effective and computationally efficient for
this task [33, 28, 11]. Among previous retrieval methods,
many have focused on retrieving the exact same instance as
in the query image, such as a particular landmark [27].

Another group of methods have concentrated on retriev-
ing semantically-related images. Specifically, there has
been work on grounding scene graphs into images to obtain
the likelihood of the scene graph-image pair [15, 30, 22].
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Figure 1: Image retrieval examples from Visual depen-
dent model, Semantic dependant model, and Ours VvsS-
Net. Both Visual dependent model and Semantic dependent
model look at the user’s intentions only from one point of
view and set a standard, while our model is an adjustable
model that can properly reflect both perspectives. e.g.,
VS gain(Visual semantic gain) controls visual and seman-
tic weights, if the user wants to find an image with more
similar visual elements, the gain can be increased, and if
the user wants to find an image with more similar semantic
elements, the gain can be lowered.

Alternately, we propose to utilize distributed representa-
tions derived from scene graphs of images alongside stan-
dard measures of similarity such as cosine similarity or in-
ner product. Embeddings derived from the scene graphs
capture the information present in the scene and this al-
lows us to combine the advantages of structured represen-
tations like graphs and continuous intermediate representa-
tions. Further, we demonstrate in Figure 1 that similarity
search over these embeddings captures the overall context
of the scene, offering an alternative to visual similarity pro-
vided by traditional image embeddings.

As image searches are carried out in various fields and
situations, searching under a single criterion has a limited
ability to respond flexibly to user intention. Therefore,
we propose a VvsS-Net that can adjust the weight of vi-
sual similarity and semantic similarity on scene graph level.
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As described above, by extending the scene graph genera-
tion technique that showed reliable performance in seman-
tic similarity among the existing approaches, the semantic
expression, and the visual expression are solved by proceed-
ing with scene graph generation. We train and optimize the
scene graph embedding created by the scene graph genera-
tion model for visual and semantic aspects. Unlike a simple
approach in which an extracted vector by passing an im-
age through a network for direct search, each scene graph
is embedded based on a each feature vector so that seman-
tic expressions and visual expressions are compared at the
same level as a scene graph to give equal representation.
According to VS gain(Visual-Semantic ratio gain), we ad-
justed the final candidates by internalizing the results of two
scene graph models for visual and semantic aspects.

The contribution of this paper is three-fold as follows:

• We propose a novel framework, VvsS-Net, for the im-
age to image retrieval framework, which can control
visual and semantic aspects by using the additional
controllable unit module to existed model.

• We suggest a new approach to compare visual and se-
mantic similarity by embedding it on each scene graph.

• Our algorithm outperforms the state-of-the-art meth-
ods on MS-COCO[20] and Visual-Genome[17].

2. Related Works

In this section, we provide an overview of two approach
for image retrieval.

2.1. Image Retrieval

Image retrieval has been mostly tackled as the problem
of instance-level image retrieval [31, 14, 33, 28, 11], which
focuses on the retrieval of the exact same instance as defined
in standard benchmark datasets [27]. Moving away from
instances, some works have tackled visual search as the re-
trieval of images that share the same category label [3, 4] or
a set of tags [10]. These works still have a crude understand-
ing of the semantics of a scene. On their synthetic dataset of
abstract scenes, Zitnick and Parikh have shown that image
retrieval can be greatly improved when detailed semantics
is available [38]. Explicit modeling of a scene can be done
with attributes [25], object co-occurrences [23], or pairwise
relationship between objects [5, 7, 21]. As the interaction
between objects in a scene can be highly complex, going be-
yond simple pairwise relations, one extreme interface pro-
posed by Johnson et al. [11] is to compare explicit scene
graph representations instead of visual representations. One
shortcoming of their method is that it requires the user to
query with a full scene graph, which is a tedious process.
We believe that querying with an image is a more intuitive

interface. A number of approaches have cast the task of im-
age captioning as a retrieval problem, first retrieving simi-
lar images, and then transferring caption annotations from
the retrieved images to the query image [13, 32, 24]. Yet
these methods use features that are not trained for the task,
either simple global features [13], features pre-trained on
ImageNet [32] or complex features relying on object detec-
tors, scene classifiers, etc. [24]. We believe that the rep-
resentation should be free of assumptions about the list of
objects, attributes, and interactions one might encounter in
the scene, and therefore, we learn these representations di-
rectly from the training data.

2.2. Visual Semantic Embedding Models

Image representations obtained by deep convolutional
networks have had tremendous success in a range of vision
tasks. Early works [12, 18] focused on image classification
using image-level labels. Follow-up works include triplet
formulations [34] that produce more generally useful visual
representations with reduced data requirements. Some com-
mon directions to learn visual-semantic representations for
images include the use of word embeddings of class labels
[8, 19], exploiting class structure for classification[36] and
leveraging WordNet ontology for class hierarchies [6, 2].
These methods work for simple images but cannot be triv-
ially extended to complex scenes with multiple objects and
relationships. More recent work considers the multimodal
setting where pairwise ordering constraints are placed on
both image and text modalities [16, 35] in a ranking formu-
lation for representation learning. Additionally, similarity
networks [9] have been proposed that take as input a pair of
images and train a network using regression objectives over
pairwise similarity values. We build on the above in two
directions: (1) we derive both visual and semantic feature
embeddings from scene graphs by utilizing a Graph Con-
volutional Network (2) we derivie the model to adjust the
search results according to the user’s intention, taking into
account both visual similarity and semantic similarity.

3. Method

In this section, we describe our framework, VvsS-Net.
VvsS-Net first receives a single query image and generates
a scene graph. The visual similarity and semantic similarity
between scene graphs are computed using graph visual em-
bedding and graph semantic embedding, respectively. Each
embedding is trained by a graph neural network with corre-
sponding surrogate relevance. Finally, VvsS-Net retrieves
images with total similarity reflecting visual and semantic
similarities. The critical point is that the ratio of visual and
semantic information to use is adjustable according to the
user’s purpose.
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Figure 2: An overview of the proposed algorithm VvsS-Net. Images I1, I2 are converted into two vector representations, i)
visual vector φ and ii) semantic vector ψ , through scene graph generation and graph embedding. Two parametrized graph
embedding function is learned to minimize loss to each aspects of surrogate relevance. Note that, the training objective of
our model is to embed the generated graph for each of the semantic and visual features.

3.1. Image Retrieval with Scene Graph

A scene graph is structured representations of im-
ages, where the nodes in scene graphs correspond to ob-
ject categories and attributes of objects, and the undi-
rected edges correspond to the paired relationships be-
tween objects. Each of them is associated with a word la-
bel, for example, ‘apple(object)’, ‘red(attribute)’, and ‘be-
hind(relation)’. Each word label is converted into pre-
trained 300-dimensional GloVe vector[26] and treated as
node feature. In our model, the attributes are excluded from
the scene graph because the attributes mainly represent the
visual information rather than semantic information. This
process makes a scene graph to be neutral between the vi-
sual and semantic aspects.

When a query image Iq is given, an image retrieval
framework ranks candidate images by the similarity to the
query image. Our model uses scene graphs to measure the
similarity between images sim(Ii, Ij) = f(Gi, Gj) where
Gi and Gj are the scene graphs of images Ii and Ij . the
similarity function f is obtained by training the graph neural

network with surrogate relevance. The details are described
in the following section.

It is possible to include generating a scene graph from the
image to our framework for end-to-end training, however,
the predefined scene graph is used to our experiment for
training in order to avoid the high computational cost. Dur-
ing the inference phase, the pre-trained algorithm is used
for generation.

3.2. Learning to Predict Surrogate Relevance

We define two surrogate relevance measures between
two images. One measures the visual similarity Sv(Ii, Ij),
and the other measures the semantic similarity Ss(Ii, Ij) of
images Ii and Ij .

For the visual surrogate relevance, the visual features
φ(Ii) and φ(Ij) of images Ii and Ij are used. The vi-
sual feature vector is created by averaging the pretrained
ResNet-152[12] node features of the image. For the object
node, the bounding box of it is used. For the relation node,
the union of the corresponding object and subject bounding
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boxes is used. The visual surrogate relevance of two images
is then defined by the dot product of two representation unit
vectors.

Sv(Ii, Ij) = φ(Ii) · φ(Ij)

For semantic surrogate relevance, human-annotated cap-
tions ci and cj of image Ii and Ij are used. The captions
describing the semantic information of images are given in
the form of one or several sentences. We used Sentence-
BERT(SBERT) [29] to convert each caption ci into the unit
vector ψ(ci). The semantic surrogate relevance of two im-
ages is then defined by the inner product of two embedded
unit vectors.

Ss(Ii, Ij) = ψ(ci) · ψ(cj)

When there are more than one caption in one image, the
semantic surrogate relevance of every caption pair is aver-
aged.

We train the visual and semantic scene graph similar-
ity models by minimizing mean squared error from the vi-
sual and semantic surrogate relevance measures. When the
scene graphs Gi and Gj of Image Ii and Ij are given, the
loss functions for images are defined as

Lv(Ii, Ij) = ||fv(Gi, Gj)− Sv(Ii, Ij)||2

Ls(Ii, Ij) = ||fs(Gi, Gj)− Ss(Ii, Ij)||2

where fv and fs are the visual and semantic scene graph
similarities.

Finally we define the VS scene graph similarity as
fvs(Ii, Ij) = λfv(Ii, Ij) + (1 − λ)fs(Ii, Ij) where 0 ≤
λ ≤ 1. λ is VS gain(Visual Semantic ratio gain), the fac-
tor to control the importance of visual or semantic aspect
when the similarity of two images is measured. The visual
information is highlighted when λ = 1, and the semantic
information is emphasized when λ = 0.

3.3. Human agreement score

We measure the human agreement score to compare the
decisions of choice in user-to-user and user-to-algorithm
sense. The score is the proportion of annotators who made
the same choice as the other annotators as proposed in [37].
In detail, let s1, s2, s3, and s4 be the number of human
annotators who chose the first, second, both, and none of
the given target images. The the human agreement score
is defined as wi/(s1 + s2 + s3 + s4) where wi = (s1 +
0.5s3)1i=1+(s2+0.5s3)1i=2+(0.5s1+0.5s2+s3)1i=3.

Given the query images, the retrieval algorithm choose
the similar one between the target images on the relative or
absolute criteria. The relative criteria refers to the selection
of a more similar image between the two target images. In
this case, one and only one image is chosen regardless of

what the similarity between the query image and target im-
age is. On the other hand, the absolute criteria has a thresh-
old to choose the image. Therefore, none or both of tar-
get images might be chosen by the threshold setting. We
used the absolute criteria with several thresholds to make
the algorithm more human-like decisions unlike the previ-
ous studies using the relative criteria. Finally, the agreement
scores are compared to the human decision for the evalua-
tion.

4. Experiments
In this section, we evaluate our VvsS-Net and other base-

lines on the retrieval task with two metrics. First, we com-
pute normalized discounted cumulative gain(nDCG) with
the surrogate relevance as gain using pre-trained ResNet vi-
sual similarity and SBERT semantic similarity respectively.
A larger nDCG indicates more relevant images are ranked
higher in the retrieval result. Second, the agreement score
between a retrieval algorithm and human decision is mea-
sured for evaluation. Human agreement score without adop-
tion of threshold setting are used to compare our model with
baselines. Then, within our model or other interpolation
based baseline models, human agreement score with thresh-
old is calculated.

4.1. Experimental Setup

Data In experiments, we decide to use datasets in a simi-
lar manner to [37]. We have image dataset with captions and
scene graphs and human annotation similarity dataset about
image triplets. The image dataset is VG-COCO, which is
the intersection of Visual Genome[17] and MS-COCO[20].
Visual Genome is a dataset with a scene graph containing
object, attribute, relationship, and bounding box informa-
tion for each image. MS-COCO is a dataset with five hu-
man annotated captions for each image. We obtain fully
annotated 35,017 training images and 13,203 test images.
For query images, we randomly select a fixed 1000 im-
ages among test images as the query set and retrieve images
among the other 13,202 test images for each query image.

We decide to use the VG-COCO to utilize both seman-
tic annotations, caption and scene graph. However, since
it is impractical to assume human annotated scene graphs
for images are given in the evaluation phase, we also use
automatically generated scene graphs for each image. The
human-annotated similarity dataset is a dataset of which hu-
mans label which image is semantically closer to the query
image, or whether they are similar or neither given an im-
age triplet. The implementation detail of generating scene
graphs and collection detail of human annotation similarity
is illustrated in [37].

Scene graph generation follows the works [1], which the
bounding boxes of objects in images are detected by Faster
R-CNN method, and the name is predicted based on the
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Method Data nDCG Human
Agreement5 10 20 30 40 50

Inter Human - - - - - - - 0.728±0.05
ResNet I 1 1 1 1 1 1 0.494

Caption SBERT Cap(GT) 0.972 0.976 0.980 0.983 0.986 0.988 0.646
Gen. Cap. SBERT Cap(Gen) 0.971 0.974 0.979 0.982 0.985 0.987 0.473

Object Count I+SG 0.971 0.974 0.979 0.982 0.985 0.987 0.506
VvsS-Visual I+SG 0.979 0.981 0.984 0.986 0.988 0.990 0.527

VvsS-Semantic I+SG 0.971 0.975 0.979 0.982 0.985 0.987 0.509
VvsS-Half I+SG 0.973 0.976 0.980 0.983 0.986 0.988 0.510
VvsS-Best I+SG 0.978 0.981 0.984 0.986 0.988 0.990 0.528

Table 1: Image retrieval on VG-COCO with human-annotated scene graphs. VvsS-Visual: our visual graph embedding.
VvsS-Semantic: our semantic graph embedding. VvsS-Half: interpolation of our visual model and semantic model, weighted
with 0.5 and 0.5. VvsS-Best: interpolation of our visual model and semantic model, weighted with the highest human
agreement score. Data columns indicates which data are used to inference. Cap(GT): human annotated caption. Cap(Gen):
machine-generated captions. I: image. SG: scene graphs. The nDCG scores are calculated using the surrogate relavance of
visual ResNet feature. Human agreement score is calculated without threshold setting so that model only distinguishes which
one is more relevant to a query image.

ResNet-101 features from the detected bounding boxes. We
keep up to 100 objects in a image with a confidence thresh-
old of 0.3. To extract relation between objects, we used
the frequency prior information constructed from the GQA
dataset that covers 309 kinds of relations. For the detected
pairs of objects, relations are predicted with a confidence
threshold of 0.2. Human-annotated similarity dataset con-
tains 10,712 human annotations from 29 human labelers for
1,752 image triplets. The triplet consists of a query image
from the query set and two candidate images with selection
criterion. Two candidate images are selected with two cri-
teria, visual similarity with the query and exceeding margin
distances between candidates.

Two-step retrieval using pre-trained ResNet feature
We use two-step approach in the experiment, roughly re-
trieving relevant images and reranking over them using rel-
evance. We employ this approach for two reasons, to reduce
the computational burden and to make a set of good candi-
date images. For a query image, we first retrieve 100 images
that are closest to the query with pre-trained ResNet-152
feature. After making candidates, we rerank over them us-
ing the retrieval algorithms. We should note that although
there is large flexibility for designing this step, we employ
the same approach with [37]. Unless mentioned, the results
of our paper is based on the reranking setting.

Training details We use Adam optimizer with the initial
learning rate of 0.0001 for both visual and semantic model,
multiplying 0.9 to the learning rate each epoch. We set
batch size as 16, and models are trained for 20 epochs. We

pair images using an oversampling approach making total
three images for each anchor image. Among three images,
the first one is drawn from 100 most relevant samples from
visual surrogate relevance score, the second one is drawn
from semantic surrogate relevance score, and final one is
drawn from the other. By employing oversampling scheme,
we design training more suitable for the image retrieval by
reinforcing the learning of more similar images through the
oversampling approach.

Our VvsS-Net applies GCN to scene graphs of visual
and semantic and the final node embeddings are aggregated
through average pooling and scaled to the unit norm, mak-
ing a graph embedding representation vector. We use three
graph convolution layers with 1024 hidden neurons in each
layer.

4.2. Baselines

ResNet-152 Features Image retrieval is performed based
on the cosine similarity of pre-trained ResNet-152 feature,
which implicits visual charateristic of the images.
Object Count(OC) Using only objects in scene graph, we
compute the cosine similarity between object count vectors.
Caption SBERT To implicit semantic meaning of the im-
ages, we obtain SBERT representations of both ground truth
captions and generated captions.
Interpolation of ResNet and SBERT To tackle the frame-
work which puts different importances on visual and seman-
tic similarity, we set the explicit baseline with cosine sim-
ilarity of features using interpolation of ResNet feature of
the image and SBERT feature of the captions. The differ-
ence from our model is that they are trained for different
purpose and one is for image and the other is for sentence,
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Method Data nDCG Human
Agreement5 10 20 30 40 50

Inter Human - - - - - - - 0.728±0.05
ResNet I 0.821 0.838 0.859 0.874 0.887 0.898 0.494

Caption SBERT Cap(GT) 1 1 1 1 1 1 0.646
Gen. Cap. SBERT Cap(Gen) 0.823 0.836 0.857 0.872 0.886 0.898 0.473

Object Count I+SG 0.806 0.827 0.850 0.865 0.879 0.895 0.506
VvsS-Visual I+SG 0.805 0.825 0.848 0.864 0.878 0.891 0.527

VvsS-Semantic I+SG 0.822 0.837 0.856 0.870 0.882 0.894 0.509
VvsS-Half I+SG 0.822 0.837 0.856 0.870 0.883 0.895 0.510
VvsS-Best I+SG 0.809 0.829 0.851 0.867 0.880 0.893 0.528

Table 2: Image retrieval on VG-COCO with human-annotated scene graphs. The nDCG scores are calculated using the
surrogate relavance using semantic SBERT feature of groundtruth caption.

on the other hand, our embedding is trained on the same
graph using different features and surrogate relevance.

4.3. Quantitative Results

Table 1 and Table 2 are the quantitative results of re-
trieval using ground truth scene graphs. The nDCG scores
of Table 1 are calculated using surrogate relevance through
similarity between ResNet features of the images as the
ground truth label of relevance. Table 2 is computed us-
ing SBERT feature of ground truth captions as the label.
VvsS-Visual, VvsS-Semantic, VvsS-Half, and VvsS-Best
indicate our visual embedding model, semantic model, in-
terpolation of both using weights 0.5, and best combination
in respect to human agreement score, respectively. Due to
the difficulty of considering all methods using threshold ap-
proach to output human agreement score, human agreement
scores of Table 1 and Table 2 are calculated without thresh-
olds so that algorithms selecting which one is more similar
to a query image, not none or both of them.

From Table 1, our VvsS-Visual model shows larger
nDCG score than other models. Here, we should note
that the experiment is conducted in reranking setting of
candidates using ResNet feature. Although overall nDCG
score of all algorithms are high, our VvsS-Visual embed-
ding could capture overall image visual similarity over
other models. The nDCG score of VvsS-Semantic is lower
than other models and interpolations with visual embed-
ding yield higher nDCG score. From Table 2, our VvsS-
Semantic model shows one of the largest nDCG score than
other models and VvsS-Visual model shows lower nDCG
score than other models. Although interpolations of both
model produce slightly better result, this may be due to
the reranking setting. From Table 1 and Table 2, our
model successfully divide visual and semantic aspect of the
scene graph. Table 3 is the result of image retrieval using
machine-generated scene graph and calculate nDCG with
SBERT features as label. Comparing Table 2 and Table 3,

Method nDCG Human
Agreement5 10 20 40

Inter Human - - - - 0.728
ResNet 0.821 0.838 0.859 0.887 0.494

Caption SBERT 1 1 1 1 0.646
Gen. Cap. SBERT 0.823 0.836 0.857 0.886 0.473

Object Count 0.795 0.801 0.822 0.865 0.511
VvsS-Visual 0.799 0.815 0.839 0.872 0.501

VvsS-Semantic 0.800 0.820 0.842 0.874 0.523
VvsS-Half 0.798 0.812 0.842 0.874 0.537
VvsS-Best 0.798 0.812 0.842 0.874 0.537

Table 3: Image retrieval on VG-COCO with machine-
generated scene graphs using SBERT feature as groundtruth
label. The results of baseline methods not using scene
graphs are same as Table 2. The nDCG scores are calcu-
lated using the surrogate relavance using semantic SBERT
feature of groundtruth caption.

although only the groundtruth scene graphs are used with-
out generated during training, it can be seen that the perfor-
mance does not deteriorate significantly even for the gen-
erated graph, which would have slightly different structure
from groundtruth scene graph. If the training proceeds with
the generated scene graph and the inference is also con-
ducted with the generated graph, the performance may be
better.

Figure 3 illustrates human agreement score across inter-
polation of visual features and semantic features. Semantic
feature with caption is linearly interpolated with visual fea-
ture with ResNet feature of whole image. Semantic fea-
ture with scene graph is linearly interpolated with visual
feature of scene graph. Interpolation using SBERT feature
of ground truth caption and ResNet feature of whole image
yields the best performance among them. However, ground
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Figure 3: Human agreement score across interpolation of
visual features and semantic features.

truth caption and human annotated scene graph are almost
available in practice. Comparing generated scene graph and
generated caption, interpolation with generated scene graph
has slightly better result. Note that model is not trained us-
ing generated scene graph, then using state-of-the-art scene
graph generation and training using them can improve the
result.

We employ threshold setting for calculating human
agreement score. There are two thresholds, which the first
one is the minimum similarity between anchor and chosen
candidate and the second one is the minimum margin be-
tween chosen candidate and the other. We explore various
values for thresholds, and the first theshold of 0.4 and the
second one of 0.05 are chosen. There are no significant dif-
ferences among using different thresholds.

We also perform an additional experiment that shows bi-
ases of individuals toward visual and semantic aspect of im-
ages, calculating using visual feature and semantic feature
of generated scene graphs. We test weights from 0.0 to 1.0
by 0.1 scale and get min and max human agreement score
along weights. By applying different weights to each indi-
vidual, we can get better results in respect to maximum hu-
man agreement score by 0.543, which is 0.006 higher than
applying same weight to all and minimum score by 0.457,
which is 0.08 lower. Mean inter individual standard devia-
tion is 0.03. Figure 4 shows number of humans with highest
human agreement score for each weight, indicating human
evaluate retrieval results by different patterns between indi-
viduals.

4.4. Quantitative Results

Figure 5 show the example retrieved result from the
query images we test. In this section, our goal is not show-
ing our model outperforms other baselines, but showing the
possibility that VvsS-Net can control weights of visual and

Figure 4: Number of humans across different weights of
visual feature.

semantic aspects. In the each block, the first row is retrieved
with only visual features and increasing semantic ratio as
the row to the final row could be with only visual features.
For example, on the left instance, query images is people
hugging dog but the top image retrieved with visual feature
is the woman with poodle-like hair. ResNet feature is sen-
sitive to the pattern of the image and dog and woman has
the large importance in scene graphs respectively. By com-
paring the visual scene graph embedding, her poodle-like
hair get importance and retrieved. Besides the top 1 image,
images with dog or with backgroud of ocean are retrieved
for visual similarity. On the contrary, semantic feature puts
the importance on the dogs and people, them retrieves im-
age with dogs or humans. There would be improvement
toward solving the pattern-sensitive issues in using visual
similarity. The right instance shows ability of our VvsS-
Net well. The query image is the cat with laptop and re-
trieved results with visual similarities often ignore cats and
concentrate on visual similarity of objects. However, the re-
sults with semantic similarities retrieved the images that a
cat lay on laptop, although patterns or directions the cat lay
is different from the query image.

5. Conclusion

We tackle the limitation of the existing image retrieval
approach that can not adjust the weight of importance be-
tween visual and semantic. Moreover, we check the prob-
lem: Humans utilize both semantic and visual information
with images, and individuals have biases toward their im-
portance from the baseline method, as interpolates between
the ResNet feature and caption SBERT. Therefore, we pro-
pose the framework VvsS-Net, which aims to retrieve im-
ages based on different importance to visual and seman-
tic similarity. We implemented data pipelines and base-
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Figure 5: Image retrieval with query image in the first column for each block with VvsS-Net. The first row is retrieved with
visual similarity only. The second row is more with visual similarity(0.67, 0.33 for visual and semantic), and the third row is
more with semantic similarity(0.33, 0.67 for visual and semantic). The fourth row is retrieved with semantic similarity only.

lines using pre-trained models. Then, We train on the scene
graph without attributes using surrogate relevance with cap-
tion and image. The ablation studies that replace each em-
bedding with ResNet and caption SBERT show that com-
paring the same level to train graph embedding on visual
and semantic features is fairer than the naive approach.
Our algorithm outperforms on MS-COCO[20] and Visual-
Genome[17].
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object retrieval with integral max-pooling of cnn activations.
arXiv preprint arXiv:1511.05879, 2015. 1, 2

[34] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,
Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learn-
ing fine-grained image similarity with deep ranking. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1386–1393, 2014. 2

[35] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep
structure-preserving image-text embeddings. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 5005–5013, 2016. 2

[36] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Ja-
gadeesh, Dennis DeCoste, Wei Di, and Yizhou Yu. Hd-cnn:
hierarchical deep convolutional neural networks for large
scale visual recognition. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2740–2748,
2015. 2

[37] Sangwoong Yoon, Woo Young Kang, Sungwook Jeon,
SeongEun Lee, Changjin Han, Jonghun Park, and Eun-Sol
Kim. Image-to-image retrieval by learning similarity be-
tween scene graphs. arXiv preprint arXiv:2012.14700, 2020.
4, 5

[38] C Lawrence Zitnick and Devi Parikh. Bringing semantics
into focus using visual abstraction. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3009–3016, 2013. 2

9


